版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022中考數(shù)學(xué)模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.tan45°的值等于()A. B. C. D.12.已知☉O的半徑為5,且圓心O到直線l的距離是方程x2-4x-12=0的一個(gè)根,則直線l與圓的位置關(guān)系是()A.相交B.相切C.相離D.無法確定3.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=1,將繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到Rt△ADE,點(diǎn)B經(jīng)過的路徑為弧BD,則圖中陰影部分的面積是()A. B. C.- D.4.在下列二次函數(shù)中,其圖象的對稱軸為的是A. B. C. D.5.6的相反數(shù)為A.-6 B.6 C. D.6.如圖,點(diǎn)ABC在⊙O上,OA∥BC,∠OAC=19°,則∠AOB的大小為()A.19° B.29° C.38° D.52°7.從﹣1,2,3,﹣6這四個(gè)數(shù)中任選兩數(shù),分別記作m,n,那么點(diǎn)(m,n)在函數(shù)y=圖象上的概率是()A. B. C. D.8.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列結(jié)論正確的是()A.a(chǎn)<0 B.b2-4ac<0 C.當(dāng)-1<x<3時(shí),y>0 D.-=19.如圖,,交于點(diǎn),平分,交于.若,則
的度數(shù)為()
A.35o B.45o C.55o D.65o10.在一個(gè)不透明的盒子里有2個(gè)紅球和n個(gè)白球,這些球除顏色外其余完全相同,搖勻后隨機(jī)摸出一個(gè),摸到紅球的概率是,則n的值為()A.10 B.8 C.5 D.311.如圖,在RtΔABC中,AB=9,BC=6,∠B=90°,將ΔABC折疊,使A點(diǎn)與BC的中點(diǎn)D重合,折痕為MN,則線段BN的長為()A.52 B.53 C.412.如圖,已知函數(shù)y=﹣與函數(shù)y=ax2+bx的交點(diǎn)P的縱坐標(biāo)為1,則不等式ax2+bx+>0的解集是()A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>0二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,一艘海輪位于燈塔P的北偏東方向60°,距離燈塔為4海里的點(diǎn)A處,如果海輪沿正南方向航行到燈塔的正東位置,海輪航行的距離AB長_____海里.14.已知∠=32°,則∠的余角是_____°.15.如圖,直線a∥b,∠l=60°,∠2=40°,則∠3=_____.16.A、B兩地相距20km,甲乙兩人沿同一條路線從A地到B地.甲先出發(fā),勻速行駛,甲出發(fā)1小時(shí)后乙再出發(fā),乙以2km/h的速度度勻速行駛1小時(shí)后提高速度并繼續(xù)勻速行駛,結(jié)果比甲提前到達(dá).甲、乙兩人離開A地的距離y(km)與時(shí)間t(h)的關(guān)系如圖所示,則甲出發(fā)_____小時(shí)后和乙相遇.17.如圖所示,四邊形ABCD中,,對角線AC、BD交于點(diǎn)E,且,,若,,則CE的長為_____.18.在平面直角坐標(biāo)系中,直線l:y=x﹣1與x軸交于點(diǎn)A1,如圖所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得點(diǎn)A1、A2、A3、…在直線l上,點(diǎn)C1、C2、C3、…在y軸正半軸上,則點(diǎn)Bn的坐標(biāo)是_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)程大位是珠算發(fā)明家,他的名著《直指算法統(tǒng)宗》詳述了傳統(tǒng)的珠算規(guī)則,確立了算盤用書中有如下問題:一百饅頭一百僧,大僧三個(gè)更無爭,小僧三人分一個(gè),大小和尚得幾?。馑际牵河?00個(gè)和尚分100個(gè)饅頭,如果大和尚1人分3個(gè),小和尚3人分1個(gè),正好分完,大、小和尚各有多少人?20.(6分)如圖1,在四邊形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中點(diǎn),P是AB上的任意一點(diǎn),連接PE,將PE繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到PQ.(1)如圖2,過A點(diǎn),D點(diǎn)作BC的垂線,垂足分別為M,N,求sinB的值;(2)若P是AB的中點(diǎn),求點(diǎn)E所經(jīng)過的路徑弧EQ的長(結(jié)果保留π);(3)若點(diǎn)Q落在AB或AD邊所在直線上,請直接寫出BP的長.21.(6分)如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過A作BC的平行線交CE的延長線與F,且AF=BD,連接BF。求證:D是BC的中點(diǎn);如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論。22.(8分)已知平行四邊形ABCD中,CE平分∠BCD且交AD于點(diǎn)E,AF∥CE,且交BC于點(diǎn)F.求證:△ABF≌△CDE;如圖,若∠1=65°,求∠B的大?。?3.(8分)如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD,等邊△ABE,已知∠BAC=30°,EF⊥AB,垂足為F,連接DF試說明AC=EF;求證:四邊形ADFE是平行四邊形.24.(10分)已知,如圖,直線MN交⊙O于A,B兩點(diǎn),AC是直徑,AD平分∠CAM交⊙O于D,過D作DE⊥MN于E.求證:DE是⊙O的切線;若DE=6cm,AE=3cm,求⊙O的半徑.25.(10分)如圖,AB是⊙O的直徑,C、D為⊙O上兩點(diǎn),且,過點(diǎn)O作OE⊥AC于點(diǎn)E⊙O的切線AF交OE的延長線于點(diǎn)F,弦AC、BD的延長線交于點(diǎn)G.(1)求證:∠F=∠B;(2)若AB=12,BG=10,求AF的長.26.(12分)如圖,在△ABC中,∠C=90°,以AB上一點(diǎn)O為圓心,OA長為半徑的圓恰好與BC相切于點(diǎn)D,分別交AC,AB于點(diǎn)E,F(xiàn).(1)若∠B=30°,求證:以A,O,D,E為頂點(diǎn)的四邊形是菱形;(2)填空:若AC=6,AB=10,連接AD,則⊙O的半徑為,AD的長為.27.(12分)在平面直角坐標(biāo)系xOy中,將拋物線(m≠0)向右平移個(gè)單位長度后得到拋物線G2,點(diǎn)A是拋物線G2的頂點(diǎn).(1)直接寫出點(diǎn)A的坐標(biāo);(2)過點(diǎn)(0,)且平行于x軸的直線l與拋物線G2交于B,C兩點(diǎn).①當(dāng)∠BAC=90°時(shí).求拋物線G2的表達(dá)式;②若60°<∠BAC<120°,直接寫出m的取值范圍.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】
根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】解:tan45°=1,故選D.【點(diǎn)睛】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關(guān)鍵.2、C【解析】
首先求出方程的根,再利用半徑長度,由點(diǎn)O到直線a的距離為d,若d<r,則直線與圓相交;若d=r,則直線與圓相切;若d>r,則直線與與圓相離.【詳解】∵x2-4x-12=0,
(x+2)(x-6)=0,
解得:x1=-2(不合題意舍去),x2=6,
∵點(diǎn)O到直線l距離是方程x2-4x-12=0的一個(gè)根,即為6,
∴點(diǎn)O到直線l的距離d=6,r=5,
∴d>r,
∴直線l與圓相離.故選:C【點(diǎn)睛】本題考核知識點(diǎn):直線與圓的位置關(guān)系.解題關(guān)鍵點(diǎn):理解直線與圓的位置關(guān)系的判定方法.3、A【解析】
先根據(jù)勾股定理得到AB=,再根據(jù)扇形的面積公式計(jì)算出S扇形ABD,由旋轉(zhuǎn)的性質(zhì)得到Rt△ADE≌Rt△ACB,于是S陰影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.【詳解】∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD=,又∵Rt△ABC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S陰影部分=S△ADE+S扇形ABD?S△ABC=S扇形ABD=,故選A.【點(diǎn)睛】本題考查扇形面積計(jì)算,熟記扇形面積公式,采用作差法計(jì)算面積是解題的關(guān)鍵.4、A【解析】y=(x+2)2的對稱軸為x=–2,A正確;y=2x2–2的對稱軸為x=0,B錯(cuò)誤;y=–2x2–2的對稱軸為x=0,C錯(cuò)誤;y=2(x–2)2的對稱軸為x=2,D錯(cuò)誤.故選A.1.5、A【解析】
根據(jù)相反數(shù)的定義進(jìn)行求解.【詳解】1的相反數(shù)為:﹣1.故選A.【點(diǎn)睛】本題主要考查相反數(shù)的定義,熟練掌握相反數(shù)的定義是解答的關(guān)鍵,絕對值相等,符號相反的兩個(gè)數(shù)互為相反數(shù).6、C【解析】
由AO∥BC,得到∠ACB=∠OAC=19°,根據(jù)圓周角定理得到∠AOB=2∠ACB=38°.【詳解】∵AO∥BC,∴∠ACB=∠OAC,而∠OAC=19°,∴∠ACB=19°,∴∠AOB=2∠ACB=38°.故選:C.【點(diǎn)睛】本題考查了圓周角定理與平行線的性質(zhì).解題的關(guān)鍵是掌握在同圓或等圓中,同弧或等弧所對的圓周角等于這條弧所對的圓心角的一半定理的應(yīng)用是解此題的關(guān)鍵.7、B【解析】
首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與點(diǎn)(m,n)恰好在反比例函數(shù)y=圖象上的情況,再利用概率公式即可求得答案.【詳解】解:畫樹狀圖得:∵共有12種等可能的結(jié)果,點(diǎn)(m,n)恰好在反比例函數(shù)y=圖象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴點(diǎn)(m,n)在函數(shù)y=圖象上的概率是:.故選B.【點(diǎn)睛】此題考查了列表法或樹狀圖法求概率.用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.8、D【解析】試題分析:根據(jù)二次函數(shù)的圖象和性質(zhì)進(jìn)行判斷即可.解:∵拋物線開口向上,∴∴A選項(xiàng)錯(cuò)誤,∵拋物線與x軸有兩個(gè)交點(diǎn),∴∴B選項(xiàng)錯(cuò)誤,由圖象可知,當(dāng)-1<x<3時(shí),y<0∴C選項(xiàng)錯(cuò)誤,由拋物線的軸對稱性及與x軸的兩個(gè)交點(diǎn)分別為(-1,0)和(3,0)可知對稱軸為即-=1,∴D選項(xiàng)正確,故選D.9、D【解析】分析:根據(jù)平行線的性質(zhì)求得∠BEC的度數(shù),再由角平分線的性質(zhì)即可求得∠CFE的度數(shù).詳解:又∵EF平分∠BEC,.故選D.點(diǎn)睛:本題主要考查了平行線的性質(zhì)和角平分線的定義,熟知平行線的性質(zhì)和角平分線的定義是解題的關(guān)鍵.10、B【解析】∵摸到紅球的概率為,∴,解得n=8,故選B.11、C【解析】
設(shè)BN=x,則由折疊的性質(zhì)可得DN=AN=9-x,根據(jù)中點(diǎn)的定義可得BD=3,在Rt△BND中,根據(jù)勾股定理可得關(guān)于x的方程,解方程即可求解.【詳解】設(shè)BN=x,則AN=9-x.由折疊的性質(zhì),得DN=AN=9-x.因?yàn)辄c(diǎn)D是BC的中點(diǎn),所以BD=3.在RtΔNBD中,由勾股定理,得BN即x2解得x=4,故線段BN的長為4.故選C.【點(diǎn)睛】此題考查了折疊的性質(zhì),勾股定理,中點(diǎn)的定義以及方程思想,熟練掌握折疊的性質(zhì)及勾股定理是解答本題的關(guān)鍵.12、C【解析】
首先求出P點(diǎn)坐標(biāo),進(jìn)而利用函數(shù)圖象得出不等式ax2+bx+>1的解集.【詳解】∵函數(shù)y=﹣與函數(shù)y=ax2+bx的交點(diǎn)P的縱坐標(biāo)為1,∴1=﹣,解得:x=﹣3,∴P(﹣3,1),故不等式ax2+bx+>1的解集是:x<﹣3或x>1.故選C.【點(diǎn)睛】本題考查了反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是正確得出P點(diǎn)坐標(biāo).二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1【解析】分析:首先由方向角的定義及已知條件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根據(jù)平行線的性質(zhì)得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP?cos∠A=1海里.詳解:如圖,由題意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP?cos∠A=4×cos60°=4×=1海里.故答案為1.點(diǎn)睛:本題考查了解直角三角形的應(yīng)用-方向角問題,平行線的性質(zhì),三角函數(shù)的定義,正確理解方向角的定義是解題的關(guān)鍵.14、58°【解析】
根據(jù)余角:如果兩個(gè)角的和等于90°(直角),就說這兩個(gè)角互為余角.即其中一個(gè)角是另一個(gè)角的余角可得答案.【詳解】解:∠α的余角是:90°-32°=58°.故答案為58°.【點(diǎn)睛】本題考查余角,解題關(guān)鍵是掌握互為余角的兩個(gè)角的和為90度.15、80°【解析】
根據(jù)平行線的性質(zhì)求出∠4,根據(jù)三角形內(nèi)角和定理計(jì)算即可.【詳解】解:∵a∥b,∴∠4=∠l=60°,∴∠3=180°-∠4-∠2=80°,故答案為:80°.【點(diǎn)睛】本題考查的是平行線的性質(zhì)、三角形內(nèi)角和定理,掌握兩直線平行,同位角相等是解題的關(guān)鍵.16、【解析】
由圖象得出解析式后聯(lián)立方程組解答即可.【詳解】由圖象可得:y甲=4t(0≤t≤5);y乙=;由方程組,解得t=.故答案為.【點(diǎn)睛】此題考查一次函數(shù)的應(yīng)用,關(guān)鍵是由圖象得出解析式解答.17、【解析】
此題有等腰三角形,所以可作BH⊥CD,交EC于點(diǎn)G,利用三線合一性質(zhì)及鄰補(bǔ)角互補(bǔ)可得∠BGD=120°,根據(jù)四邊形內(nèi)角和360°,得到∠ABG+∠ADG=180°.此時(shí)再延長GB至K,使AK=AG,構(gòu)造出等邊△AGK.易證△ABK≌△ADG,從而說明△ABD是等邊三角形,BD=AB=,根據(jù)DG、CG、GH線段之間的關(guān)系求出CG長度,在Rt△DBH中利用勾股定理及三角函數(shù)知識得到∠EBG的正切值,然后作EF⊥BG,求出EF,在Rt△EFG中解出EG長度,最后CE=CG+GE求解.【詳解】如圖,作于H,交AC于點(diǎn)G,連接DG.∵,∴BH垂直平分CD,∴,∴,∴,∴,延長GB至K,連接AK使,則是等邊三角形,∴,又,∴≌(),∴,∴是等邊三角形,∴,設(shè),則,,∴,∴,在中,,解得,,當(dāng)時(shí),,所以,∴,,,作,設(shè),,,,,∴,,∴,則,故答案為【點(diǎn)睛】本題主要考查了等腰三角形的性質(zhì)及等邊三角形、全等三角形的判定和性質(zhì)以及勾股定理的運(yùn)用,綜合性較強(qiáng),正確作出輔助線是解題的關(guān)鍵.18、(2n﹣1,2n﹣1).【解析】
解:∵y=x-1與x軸交于點(diǎn)A1,
∴A1點(diǎn)坐標(biāo)(1,0),
∵四邊形A1B1C1O是正方形,
∴B1坐標(biāo)(1,1),
∵C1A2∥x軸,
∴A2坐標(biāo)(2,1),
∵四邊形A2B2C2C1是正方形,
∴B2坐標(biāo)(2,3),
∵C2A3∥x軸,
∴A3坐標(biāo)(4,3),
∵四邊形A3B3C3C2是正方形,
∴B3(4,7),
∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,
∴Bn坐標(biāo)(2n-1,2n-1).
故答案為(2n-1,2n-1).三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、大和尚有25人,小和尚有75人.【解析】
設(shè)大和尚有x人,小和尚有y人,根據(jù)100個(gè)和尚吃100個(gè)饅頭且1個(gè)大和尚分3個(gè)、3個(gè)小和尚分1個(gè),即可得出關(guān)于x,y的二元一次方程組,解之即可得出結(jié)論.【詳解】解:設(shè)大和尚有x人,小和尚有y人,依題意,得:,解得:.答:大和尚有25人,小和尚有75人.【點(diǎn)睛】考查了二元一次方程組的應(yīng)用,找準(zhǔn)等量關(guān)系,正確列出二元一次方程組是解題的關(guān)鍵.20、(1)1213;(2)5π;(3)PB的值為10526或【解析】
(1)如圖1中,作AM⊥CB用M,DN⊥BC于N,根據(jù)題意易證Rt△ABM≌Rt△DCN,再根據(jù)全等三角形的性質(zhì)可得出對應(yīng)邊相等,根據(jù)勾股定理可求出AM的值,即可得出結(jié)論;(2)連接AC,根據(jù)勾股定理求出AC的長,再根據(jù)弧長計(jì)算公式即可得出結(jié)論;(3)當(dāng)點(diǎn)Q落在直線AB上時(shí),根據(jù)相似三角形的性質(zhì)可得對應(yīng)邊成比例,即可求出PB的值;當(dāng)點(diǎn)Q在DA的延長線上時(shí),作PH⊥AD交DA的延長線于H,延長HP交BC于G,設(shè)PB=x,則AP=13﹣x,再根據(jù)全等三角形的性質(zhì)可得對應(yīng)邊相等,即可求出PB的值.【詳解】解:(1)如圖1中,作AM⊥CB用M,DN⊥BC于N.∴∠DNM=∠AMN=90°,∵AD∥BC,∴∠DAM=∠AMN=∠DNM=90°,∴四邊形AMND是矩形,∴AM=DN,∵AB=CD=13,∴Rt△ABM≌Rt△DCN,∴BM=CN,∵AD=11,BC=21,∴BM=CN=5,∴AM==12,在Rt△ABM中,sinB==.(2)如圖2中,連接AC.在Rt△ACM中,AC===20,∵PB=PA,BE=EC,∴PE=AC=10,∴的長==5π.(3)如圖3中,當(dāng)點(diǎn)Q落在直線AB上時(shí),∵△EPB∽△AMB,∴==,∴==,∴PB=.如圖4中,當(dāng)點(diǎn)Q在DA的延長線上時(shí),作PH⊥AD交DA的延長線于H,延長HP交BC于G.設(shè)PB=x,則AP=13﹣x.∵AD∥BC,∴∠B=∠HAP,∴PG=x,PH=(13﹣x),∴BG=x,∵△PGE≌△QHP,∴EG=PH,∴﹣x=(13﹣x),∴BP=.綜上所述,滿足條件的PB的值為或.【點(diǎn)睛】本題考查了相似三角形與全等三角形的性質(zhì),解題的關(guān)鍵是熟練的掌握相似三角形與全等三角形的判定與性質(zhì).21、(1)詳見解析;(2)詳見解析【解析】
(1)根據(jù)兩直線平行,內(nèi)錯(cuò)角相等求出∠AFE=∠DCE,然后利用“角角邊”證明△AEF和△DEC全等,再根據(jù)全等三角形的性質(zhì)和等量關(guān)系即可求解;(2)由(1)知AF平行等于BD,易證四邊形AFBD是平行四邊形,而AB=AC,AD是中線,利用等腰三角形三線合一定理,可證AD⊥BC,即∠ADB=90°,那么可證四邊形AFBD是矩形.【詳解】(1)證明:∵AF∥BC,∴∠AFE=∠DCE,∵點(diǎn)E為AD的中點(diǎn),∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴CD=BD,∴D是BC的中點(diǎn);(2)若AB=AC,則四邊形AFBD是矩形.理由如下:∵△AEF≌△DEC,∴AF=CD,∵AF=BD,∴CD=BD;∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形,∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四邊形AFBD是矩形.【點(diǎn)睛】本題考查了矩形的判定,全等三角形的判定與性質(zhì),平行四邊形的判定,是基礎(chǔ)題,明確有一個(gè)角是直角的平行四邊形是矩形是解本題的關(guān)鍵.22、(1)證明見解析;(2)50°.【解析】試題分析:(1)由平行四邊形的性質(zhì)得出AB=CD,AD∥BC,∠B=∠D,得出∠1=∠DCE,證出∠AFB=∠1,由AAS證明△ABF≌△CDE即可;(2)由(1)得∠1=∠DCE=65°,由平行四邊形的性質(zhì)和三角形內(nèi)角和定理即可得出結(jié)果.試題解析:(1)∵四邊形ABCD是平行四邊形,∴AB=CD,AD∥BC,∠B=∠D,∴∠1=∠DCE,∵AF∥CE,∴∠AFB=∠ECB,∵CE平分∠BCD,∴∠DCE=∠ECB,∴∠AFB=∠1,在△ABF和△CDE中,,∴△ABF≌△CDE(AAS);(2)由(1)得:∠1=∠ECB,∠DCE=∠ECB,∴∠1=∠DCE=65°,∴∠B=∠D=180°﹣2×65°=50°.考點(diǎn):(1)平行四邊形的性質(zhì);(2)全等三角形的判定與性質(zhì).23、證明見解析.【解析】
(1)一方面Rt△ABC中,由∠BAC=30°可以得到AB=2BC,另一方面△ABE是等邊三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,從而可證明△AFE≌△BCA,再根據(jù)全等三角形的性質(zhì)即可證明AC=EF.(2)根據(jù)(1)知道EF=AC,而△ACD是等邊三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根據(jù)平行四邊形的判定定理即可證明四邊形ADFE是平行四邊形.【詳解】證明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC.又∵△ABE是等邊三角形,EF⊥AB,∴AB=2AF.∴AF=BC.∵在Rt△AFE和Rt△BCA中,AF=BC,AE=BA,∴△AFE≌△BCA(HL).∴AC=EF.(2)∵△ACD是等邊三角形,∴∠DAC=60°,AC=AD.∴∠DAB=∠DAC+∠BAC=90°.∴EF∥AD.∵AC=EF,AC=AD,∴EF=AD.∴四邊形ADFE是平行四邊形.考點(diǎn):1.全等三角形的判定與性質(zhì);2.等邊三角形的性質(zhì);3.平行四邊形的判定.24、解:(1)證明見解析;(2)⊙O的半徑是7.5cm.【解析】
(1)連接OD,根據(jù)平行線的判斷方法與性質(zhì)可得∠ODE=∠DEM=90°,且D在⊙O上,故DE是⊙O的切線.(2)由直角三角形的特殊性質(zhì),可得AD的長,又有△ACD∽△ADE.根據(jù)相似三角形的性質(zhì)列出比例式,代入數(shù)據(jù)即可求得圓的半徑.【詳解】(1)證明:連接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,OD為⊙O的半徑,∴DE是⊙O的切線.(2)解:∵∠AED=90°,DE=6,AE=3,∴.連接CD.∵AC是⊙O的直徑,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴.∴.則AC=15(cm).∴⊙O的半徑是7.5cm.考點(diǎn):切線的判定;平行線的判定與性質(zhì);圓周角定理;相似三角形的判定與性質(zhì).25、(1)見解析;(2).【解析】
(1)根據(jù)圓周角定理得到∠GAB=∠B,根據(jù)切線的性質(zhì)得到∠GAB+∠GAF=90°,證明∠F=∠GAB,等量代換即可證明;(2)連接OG,根據(jù)勾股定理求出OG,證明△FAO∽△BOG,根據(jù)相似三角形的性質(zhì)列出比例式,計(jì)算即可.【詳解】(1)證明:∵,∴.∴∠GAB=∠B,∵AF是⊙O的切線,∴AF⊥AO.∴∠GAB+∠GAF=90°.∵OE⊥AC,∴∠F+∠GAF=90°.∴∠F=∠GAB,∴∠F=∠B;(2)解:連接OG.∵∠GAB=∠B,∴AG=BG.∵OA=OB=6,∴OG⊥AB.∴,∵∠FAO=∠BOG=90°,∠F=∠B,∴△FAO∽△BOG,∴.∴.【點(diǎn)睛】本題考查的是切線的性質(zhì)、相似三角形的判定和性質(zhì),掌握圓的切線垂直于經(jīng)過切點(diǎn)的半徑是解題的關(guān)鍵.26、(1)見解析;(2)【解析】
(1)先通過證明△AOE為等邊三角形,得出AE=OD,再根據(jù)“同位角相等,兩直線平行”證明AE//OD,從而證得四邊形AODE是平行四邊形,再根據(jù)“一組鄰邊相等的平行四邊形為菱形”即可得證.(2)利用在Rt△OBD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 個(gè)人住宅裝潢協(xié)議范本(2024年修訂)版
- 2025年度叉車安全操作培訓(xùn)課程優(yōu)化與推廣合同4篇
- 2025版廠房買賣及土地使用權(quán)變更與售后服務(wù)合同4篇
- 專業(yè)咨詢顧問合作合同(2024年度版)版B版
- 2025年度拆除宴會(huì)廳墻體改造項(xiàng)目施工協(xié)議4篇
- 2024陶瓷杯系列新品研發(fā)與市場推廣合作合同3篇
- 2025年度企業(yè)股權(quán)激勵(lì)計(jì)劃稅務(wù)籌劃與合規(guī)合同3篇
- 2025年新能源電站設(shè)備購銷合同協(xié)議4篇
- 2025年度醫(yī)療中心場地租賃及醫(yī)療設(shè)備租賃補(bǔ)充協(xié)議3篇
- 2025年度醫(yī)療設(shè)備存放租賃合同(2025年度)4篇
- 茶室經(jīng)營方案
- 軍隊(duì)文職崗位述職報(bào)告
- 小學(xué)數(shù)學(xué)六年級解方程練習(xí)300題及答案
- 電抗器噪聲控制與減振技術(shù)
- 中醫(yī)健康宣教手冊
- 2024年江蘇揚(yáng)州市高郵市國有企業(yè)招聘筆試參考題庫附帶答案詳解
- 消費(fèi)醫(yī)療行業(yè)報(bào)告
- 品學(xué)課堂新范式
- GB/T 1196-2023重熔用鋁錠
- 運(yùn)輸行業(yè)員工崗前安全培訓(xùn)
- 公路工程安全風(fēng)險(xiǎn)辨識與防控手冊
評論
0/150
提交評論