版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F且EF=,則下列結(jié)論中錯誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值2.一個組合體的三視圖如圖所示(圖中網(wǎng)格小正方形的邊長為1),則該幾何體的體積是()A. B. C. D.3.已知集合,,,則()A. B. C. D.4.已知三棱錐的四個頂點都在球的球面上,平面,是邊長為的等邊三角形,若球的表面積為,則直線與平面所成角的正切值為()A. B. C. D.5.命題“”的否定是()A. B.C. D.6.已知是邊長為的正三角形,若,則A. B.C. D.7.已知隨機變量服從正態(tài)分布,且,則()A. B. C. D.8.已知F是雙曲線(k為常數(shù))的一個焦點,則點F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.29.執(zhí)行如圖所示的程序框圖,若輸出的,則①處應填寫()A. B. C. D.10.某單位去年的開支分布的折線圖如圖1所示,在這一年中的水、電、交通開支(單位:萬元)如圖2所示,則該單位去年的水費開支占總開支的百分比為()A. B. C. D.11.如圖,四邊形為平行四邊形,為中點,為的三等分點(靠近)若,則的值為()A. B. C. D.12.相傳黃帝時代,在制定樂律時,用“三分損益”的方法得到不同的竹管,吹出不同的音調(diào).如圖的程序是與“三分損益”結(jié)合的計算過程,若輸入的的值為1,輸出的的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某校共有師生1600人,其中教師有1000人,現(xiàn)用分層抽樣的方法,從所有師生中抽取一個容量為80的樣本,則抽取學生的人數(shù)為_____.14.若直線與直線交于點,則長度的最大值為____.15.平行四邊形中,,為邊上一點(不與重合),將平行四邊形沿折起,使五點均在一個球面上,當四棱錐體積最大時,球的表面積為________.16.若隨機變量的分布列如表所示,則______,______.-101三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線的極坐標方程為.(1)求曲線的直角坐標方程和曲線的參數(shù)方程;(2)設曲線與曲線在第二象限的交點為,曲線與軸的交點為,點,求的周長的最大值.18.(12分)在直角坐標系中,曲線的參數(shù)方程為:(其中為參數(shù)),直線的參數(shù)方程為(其中為參數(shù))(1)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,求曲線的極坐標方程;(2)若曲線與直線交于兩點,點的坐標為,求的值.19.(12分)設函數(shù).(1)當時,求不等式的解集;(2)當時,求實數(shù)的取值范圍.20.(12分)已知橢圓:的離心率為,左、右頂點分別為、,過左焦點的直線交橢圓于、兩點(異于、兩點),當直線垂直于軸時,四邊形的面積為1.(1)求橢圓的方程;(2)設直線、的交點為;試問的橫坐標是否為定值?若是,求出定值;若不是,請說明理由.21.(12分)已知函數(shù),其中為實常數(shù).(1)若存在,使得在區(qū)間內(nèi)單調(diào)遞減,求的取值范圍;(2)當時,設直線與函數(shù)的圖象相交于不同的兩點,,證明:.22.(10分)在平面直角坐標系中,已知直線的參數(shù)方程為(為參數(shù))和曲線(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系.(1)求直線和曲線的極坐標方程;(2)在極坐標系中,已知點是射線與直線的公共點,點是與曲線的公共點,求的最大值.
2023學年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【答案解析】
A.通過線面的垂直關系可證真假;B.根據(jù)線面平行可證真假;C.根據(jù)三棱錐的體積計算的公式可證真假;D.根據(jù)列舉特殊情況可證真假.【題目詳解】A.因為,所以平面,又因為平面,所以,故正確;B.因為,所以,且平面,平面,所以平面,故正確;C.因為為定值,到平面的距離為,所以為定值,故正確;D.當,,取為,如下圖所示:因為,所以異面直線所成角為,且,當,,取為,如下圖所示:因為,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯誤.故選:D.【答案點睛】本題考查立體幾何中的綜合應用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計算,難度較難.注意求解異面直線所成角時,將直線平移至同一平面內(nèi).2.C【答案解析】
根據(jù)組合幾何體的三視圖還原出幾何體,幾何體是圓柱中挖去一個三棱柱,從而解得幾何體的體積.【題目詳解】由幾何體的三視圖可得,幾何體的結(jié)構(gòu)是在一個底面半徑為1的圓、高為2的圓柱中挖去一個底面腰長為的等腰直角三角形、高為2的棱柱,故此幾何體的體積為圓柱的體積減去三棱柱的體積,即,故選C.【答案點睛】本題考查了幾何體的三視圖問題、組合幾何體的體積問題,解題的關鍵是要能由三視圖還原出組合幾何體,然后根據(jù)幾何體的結(jié)構(gòu)求出其體積.3.D【答案解析】
根據(jù)集合的基本運算即可求解.【題目詳解】解:,,,則故選:D.【答案點睛】本題主要考查集合的基本運算,屬于基礎題.4.C【答案解析】
設為中點,先證明平面,得出為所求角,利用勾股定理計算,得出結(jié)論.【題目詳解】設分別是的中點平面是等邊三角形又平面為與平面所成的角是邊長為的等邊三角形,且為所在截面圓的圓心球的表面積為球的半徑平面本題正確選項:【答案點睛】本題考查了棱錐與外接球的位置關系問題,關鍵是能夠通過垂直關系得到直線與平面所求角,再利用球心位置來求解出線段長,屬于中檔題.5.D【答案解析】
根據(jù)全稱命題的否定是特稱命題,對命題進行改寫即可.【題目詳解】全稱命題的否定是特稱命題,所以命題“,”的否定是:,.故選D.【答案點睛】本題考查全稱命題的否定,難度容易.6.A【答案解析】
由可得,因為是邊長為的正三角形,所以,故選A.7.C【答案解析】
根據(jù)在關于對稱的區(qū)間上概率相等的性質(zhì)求解.【題目詳解】,,,.故選:C.【答案點睛】本題考查正態(tài)分布的應用.掌握正態(tài)曲線的性質(zhì)是解題基礎.隨機變量服從正態(tài)分布,則.8.D【答案解析】
分析可得,再去絕對值化簡成標準形式,進而根據(jù)雙曲線的性質(zhì)求解即可.【題目詳解】當時,等式不是雙曲線的方程;當時,,可化為,可得虛半軸長,所以點F到雙曲線C的一條漸近線的距離為2.故選:D【答案點睛】本題考查雙曲線的方程與點到直線的距離.屬于基礎題.9.B【答案解析】
模擬程序框圖運行分析即得解.【題目詳解】;;.所以①處應填寫“”故選:B【答案點睛】本題主要考查程序框圖,意在考查學生對這些知識的理解掌握水平.10.A【答案解析】
由折線圖找出水、電、交通開支占總開支的比例,再計算出水費開支占水、電、交通開支的比例,相乘即可求出水費開支占總開支的百分比.【題目詳解】水費開支占總開支的百分比為.故選:A【答案點睛】本題考查折線圖與柱形圖,屬于基礎題.11.D【答案解析】
使用不同方法用表示出,結(jié)合平面向量的基本定理列出方程解出.【題目詳解】解:,又解得,所以故選:D【答案點睛】本題考查了平面向量的基本定理及其意義,屬于基礎題.12.B【答案解析】
根據(jù)循環(huán)語句,輸入,執(zhí)行循環(huán)語句即可計算出結(jié)果.【題目詳解】輸入,由題意執(zhí)行循環(huán)結(jié)構(gòu)程序框圖,可得:第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,不滿足判斷條件;第次循環(huán):,,滿足判斷條件;輸出結(jié)果.故選:【答案點睛】本題考查了循環(huán)語句的程序框圖,求輸出的結(jié)果,解答此類題目時結(jié)合循環(huán)的條件進行計算,需要注意跳出循環(huán)的判定語句,本題較為基礎.二、填空題:本題共4小題,每小題5分,共20分。13.1【答案解析】
直接根據(jù)分層抽樣的比例關系得到答案.【題目詳解】分層抽樣的抽取比例為,∴抽取學生的人數(shù)為6001.故答案為:1.【答案點睛】本題考查了分層抽樣的計算,屬于簡單題.14.【答案解析】
根據(jù)題意可知,直線與直線分別過定點,且這兩條直線互相垂直,由此可知,其交點在以為直徑的圓上,結(jié)合圖形求出線段的最大值即可.【題目詳解】由題可知,直線可化為,所以其過定點,直線可化為,所以其過定點,且滿足,所以直線與直線互相垂直,其交點在以為直徑的圓上,作圖如下:結(jié)合圖形可知,線段的最大值為,因為為線段的中點,所以由中點坐標公式可得,所以線段的最大值為.故答案為:【答案點睛】本題考查過交點的直線系方程、動點的軌跡問題及點與圓的位置關系;考查數(shù)形結(jié)合思想和運算求解能力;根據(jù)圓的定義得到交點在以為直徑的圓上是求解本題的關鍵;屬于中檔題.15.【答案解析】
依題意可得、、、四點共圓,即可得到,從而得到三角形為正三角形,利用余弦定理可得,且,要使四棱錐體積最大,當且僅當面面時體積取得最大值,利用正弦定理求出的外接圓的半徑,再又可證面,則外接球的半徑,即可求出球的表面積;【題目詳解】解:依題意可得、、、四點共圓,所以因為,所以,,所以三角形為正三角形,則,,利用余弦定理得即,解得,則所以,當面面時,取得最大,所以的外接圓的半徑,又面面,,且面面,面所以面,所以外接球的半徑所以故答案為:【答案點睛】本題考查多面體的外接球的相關計算,正弦定理、余弦定理的應用,屬于中檔題.16.【答案解析】
首先求得a的值,然后利用均值的性質(zhì)計算均值,最后求得的值,由方差的性質(zhì)計算的值即可.【題目詳解】由題意可知,解得(舍去)或.則,則,由方差的計算性質(zhì)得.【答案點睛】本題主要考查分布列的性質(zhì),均值的計算公式,方差的計算公式,方差的性質(zhì)等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)曲線的直角坐標方程為,曲線的參數(shù)方程為為參數(shù)(2)【答案解析】
(1)將代入,可得,所以曲線的直角坐標方程為.由可得,將,代入上式,可得,整理可得,所以曲線的參數(shù)方程為為參數(shù).(2)由題可設,,,所以,,,所以,因為,所以,所以當,即時,l取得最大值為,所以的周長的最大值為.18.(1)(2)5【答案解析】
(1)首先消去參數(shù)得到曲線的普通方程,再根據(jù),,得到曲線的極坐標方程;(2)將直線的參數(shù)方程代入曲線的直角坐標方程,利用直線的參數(shù)方程中參數(shù)的幾何意義得解;【題目詳解】解:(1)曲線:消去參數(shù)得到:,由,,得所以(2)代入,設,,由直線的參數(shù)方程參數(shù)的幾何意義得:【答案點睛】本題考查參數(shù)方程、極坐標方程、普通方程的互化,以及直線參數(shù)方程的幾何意義的應用,屬于中檔題.19.(1)(2)當時,的取值范圍為;當時,的取值范圍為.【答案解析】
(1)當時,分類討論把不等式化為等價不等式組,即可求解.(2)由絕對值的三角不等式,可得,當且僅當時,取“”,分類討論,即可求解.【題目詳解】(1)當時,,不等式可化為或或,解得不等式的解集為.(2)由絕對值的三角不等式,可得,當且僅當時,取“”,所以當時,的取值范圍為;當時,的取值范圍為.【答案點睛】本題主要考查了含絕對值的不等式的求解,以及絕對值三角不等式的應用,其中解答中熟記含絕對值不等式的解法,以及合理應用絕對值的三角不等式是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.20.(1)(2)是為定值,的橫坐標為定值【答案解析】
(1)根據(jù)“直線垂直于軸時,四邊形的面積為1”列方程,由此求得,結(jié)合橢圓離心率以及,求得,由此求得橢圓方程.(2)設出直線的方程,聯(lián)立直線的方程和橢圓方程,化簡后寫出根與系數(shù)關系.求得直線的方程,并求得兩直線交點的橫坐標,結(jié)合根與系數(shù)關系進行化簡,求得的橫坐標為定值.【題目詳解】(1)依題意可知,解得,即;而,即,結(jié)合解得,,因此橢圓方程為(2)由題意得,左焦點,設直線的方程為:,,.由消去并整理得,∴,.直線的方程為:,直線的方程為:.聯(lián)系方程,解得,又因為.所以.所以的橫坐標為定值.【答案點睛】本小題主要考查根據(jù)橢圓離心率求橢圓方程,考查直線和橢圓的位置關系,考查直線和直線交點坐標的求法,考查運算求解能力,屬于中檔題.21.(1);(2)見解析.【答案解析】
(1)將所求問題轉(zhuǎn)化為在上有解,進一步轉(zhuǎn)化為函數(shù)最值問題;(2)將所證不等式轉(zhuǎn)化為,進一步轉(zhuǎn)化為,然后再通過構(gòu)造加以證明即可.【題目詳解】(1),根據(jù)題意,在內(nèi)存在單調(diào)減區(qū)間,則不等式在上有解,由得,設,則,當且僅當時,等號成立,所以當時,,所以存在,使得成立,所以的取值范圍為。(2)當時,,則,從而所證不等式轉(zhuǎn)化為,不妨設,則不等式轉(zhuǎn)化為,即,即,令,則不等式轉(zhuǎn)化為,因為,則,從而不等式化為,設,則,所以在上單調(diào)遞增,所以即不等式成立
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025中國電建集團鐵路建設限公司招聘高頻重點提升(共500題)附帶答案詳解
- X光檢查車相關行業(yè)投資方案范本
- 2025中國建筑裝飾集團華中公司中建幕墻限公司校園招聘120人高頻重點提升(共500題)附帶答案詳解
- 2025中信建投證券股份限公司校園招聘高頻重點提升(共500題)附帶答案詳解
- 2025下半年陜西延安事業(yè)單位招聘533人高頻重點提升(共500題)附帶答案詳解
- 2025下半年浙江臺州市仙居縣國企業(yè)員工和行政事業(yè)單位編外人員招聘221人高頻重點提升(共500題)附帶答案詳解
- 2025下半年四川眉山事業(yè)單位招聘(499人)歷年高頻重點提升(共500題)附帶答案詳解
- 2025上海文學創(chuàng)作中心擬聘人員歷年高頻重點提升(共500題)附帶答案詳解
- 2024年地坪材料加工定制合同范本3篇
- 2025上半年安徽事業(yè)單位聯(lián)考高頻重點提升(共500題)附帶答案詳解
- 水稻生產(chǎn)技術知識考核試題及答案
- 教科版八年級下冊物理《力的描述》參考課件
- AGV智能小車循跡系統(tǒng)的建模與仿真
- 中心極限定理的應用
- 北京市海淀區(qū)2020-2021學年度第一學期期末初三物理檢測試卷及答案
- 家庭室內(nèi)裝飾裝修工程保修單
- 有效減輕中小學生課業(yè)負擔的實踐研究開題報告
- ATS技術交流(新型發(fā)動機智能恒溫節(jié)能冷卻系統(tǒng))100318
- 應急照明裝置安裝施工方法
- E5015焊條成分設計及焊接性能分析
- 壓力管道驗收資料表格(共38頁)
評論
0/150
提交評論