益陽市重點中學(xué)2022-2023學(xué)年高一上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第1頁
益陽市重點中學(xué)2022-2023學(xué)年高一上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第2頁
益陽市重點中學(xué)2022-2023學(xué)年高一上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第3頁
益陽市重點中學(xué)2022-2023學(xué)年高一上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第4頁
益陽市重點中學(xué)2022-2023學(xué)年高一上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年高一上數(shù)學(xué)期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.把函數(shù)的圖象上所有點向左平行移動個單位長度,再把所得圖象上所有點的橫坐標縮短到原來的倍(縱坐標不變),得到的圖象所表示的函數(shù)是()A., B.,C., D.,2.劉徽(約公元225年—295年),魏晉期間偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一.他在割圓術(shù)中提出的“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術(shù)的核心思想是將一個圓的內(nèi)接正邊形等分成個等腰三角形(如圖所示),當變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術(shù)的思想,可以得到的近似值為()A. B.C. D.3.若直線與圓交于兩點,關(guān)于直線對稱,則實數(shù)的值為()A. B.C. D.4.已知命題,則命題的否定為()A. B.C. D.5.已知正方體ABCD-ABCD中,E、F分別為BB、CC的中點,那么異面直線AE與DF所成角的余弦值為A. B.C. D.6.已知函數(shù)(其中)的圖象如下圖所示,則的圖象是()A. B.C. D.7.已知O是所在平面內(nèi)的一定點,動點P滿足,則動點P的軌跡一定通過的()A.內(nèi)心 B.外心C.重心 D.垂心8.已知三個頂點的坐標分別為,,,則外接圓的標準方程為()A. B.C. D.9.若,則的值為()A. B.C. D.10.已知是定義在上的奇函數(shù),且在上單調(diào)遞增,若,則的解集為()A. B.C. D.11.在半徑為2的圓上,一扇形的弧所對的圓心角為,則該扇形的面積為()A. B.C. D.12.方程的解所在的區(qū)間為()A. B.C. D.二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.函數(shù)的單調(diào)遞增區(qū)間為______.14.函數(shù)的定義域為_________.15.已知函數(shù)若存在實數(shù)使得函數(shù)的值域為,則實數(shù)的取值范圍是__________16.某同學(xué)在研究函數(shù)

f(x)=(x∈R)

時,分別給出下面幾個結(jié)論:①等式f(-x)=-f(x)在x∈R時恒成立;②函數(shù)f(x)的值域為(-1,1);③若x1≠x2,則一定有f(x1)≠f(x2);④方程f(x)=x在R上有三個根其中正確結(jié)論的序號有______.(請將你認為正確的結(jié)論的序號都填上)三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.某城市上年度電價為0.80元/千瓦時,年用電量為千瓦時.本年度計劃將電價降到0.55元/千瓦時~0.7元/千瓦時之間,而居民用戶期望電價為0.40元/千瓦時(該市電力成本價為0.30元/千瓦時),經(jīng)測算,下調(diào)電價后,該城市新增用電量與實際電價和用戶期望電價之差成反比,比例系數(shù)為.試問當?shù)仉妰r最低為多少元/千瓦時,可保證電力部門的收益比上年度至少增加20%.18.已知函數(shù)為奇函數(shù).(1)求實數(shù)a的值;(2)求的值.19.在單位圓中,已知第二象限角的終邊與單位圓的交點為,若.(1)求、、的值;(2)分別求、、的值.20.已知函數(shù),其中,且.(1)若函數(shù)的圖像過點,且函數(shù)只有一個零點,求函數(shù)的解析式;(2)在(1)的條件下,若,函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍.21.已知函數(shù)是定義在上的偶函數(shù),函數(shù).(1)求實數(shù)的值;(2)若時,函數(shù)的最小值為.求實數(shù)的值.22.已知函數(shù)(1)求函數(shù)的對稱中心;(2)當時,求函數(shù)的值域

參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、D【解析】利用三角函數(shù)圖象變換依次列式求解作答.【詳解】函數(shù)的圖象上所有點向左平行移動個單位長度,所得圖象的解析式為,把圖象上所有點的橫坐標縮短到原來的倍(縱坐標不變),得到的圖象所表示的函數(shù)是,.故選:D【點睛】易錯點睛:涉及三角函數(shù)圖象變換問題,當周期變換和相位變換的先后順序不同時,原圖象沿x軸的伸縮量是不同的2、B【解析】將一個圓的內(nèi)接正邊形等分成個等腰三角形;根據(jù)題意,可知個等腰三角形的面積和近似等于圓的面積,從而可求的近似值.【詳解】將一個圓的內(nèi)接正邊形等分成個等腰三角形,設(shè)圓的半徑為,則,即,所以.故選:B.3、A【解析】所以直線過圓的圓心,圓的圓心為,,解得.故選A.【點睛】本題給出直線與圓相交,且兩個交點關(guān)于已知直線對稱,求參數(shù)的值.著重考查了直線與圓的位置關(guān)系等知識,屬于基礎(chǔ)題.4、D【解析】由特稱(存在)量詞命題的否定是全稱量詞命題直接可得.【詳解】由特稱(存在)量詞命題的否定是全稱量詞命題直接可得:命題的否定為:.故選:D5、C【解析】連接DF,因為DF與AE平行,所以∠DFD即為異面直線AE與DF所成角的平面角,設(shè)正方體的棱長為2,則FD=FD=,由余弦定理得cos∠DFD==.6、A【解析】根據(jù)二次函數(shù)圖象上特殊點的正負性,結(jié)合指數(shù)型函數(shù)的性質(zhì)進行判斷即可.【詳解】解:由圖象可知:,因,所以由可得:,由可得:,由可得:,因此有,所以函數(shù)是減函數(shù),,所以選項A符合,故選:A7、A【解析】表示的是方向上的單位向量,畫圖象,根據(jù)圖象可知點在的角平分線上,故動點必過三角形的內(nèi)心.【詳解】如圖,設(shè),,已知均為單位向量,故四邊形為菱形,所以平分,由得,又與有公共點,故三點共線,所以點在的角平分線上,故動點的軌跡經(jīng)過的內(nèi)心.故選:A.8、C【解析】先判斷出是直角三角形,直接求出圓心和半徑,即可求解.【詳解】因為三個頂點的坐標分別為,,,所以,所以,所以是直角三角形,所以的外接圓是以線段為直徑的圓,所以圓心坐標為,半徑故所求圓的標準方程為故選:C9、D【解析】,故選D.10、D【解析】由可得,由單調(diào)性即可判定在和上的符號,再由奇偶性判定在和上的符號,即可求解.【詳解】∵即,∵在上單調(diào)遞增,∴當時,,此時,當時,,此時,又∵是定義在上的奇函數(shù),∴在上單調(diào)遞增,且,當時,,此時,當時,,此時,綜上可知,的解集為,故選:D【點睛】本題考查了函數(shù)的奇偶性和單調(diào)性的交匯,求得函數(shù)在各個區(qū)間上的符號是關(guān)鍵,考查了推理能力,屬于中檔題.11、D【解析】利用扇形的面積公式即可求面積.【詳解】由題設(shè),,則扇形的面積為.故選:D12、C【解析】將方程轉(zhuǎn)化為函數(shù)的零點問題,根據(jù)函數(shù)單調(diào)性判斷零點所處區(qū)間即可.【詳解】函數(shù)在上單增,由,知,函數(shù)的根處在里,故選:C二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、【解析】首先將函數(shù)拆分成內(nèi)外層函數(shù),根據(jù)復(fù)合函數(shù)單調(diào)性的判斷方法求解.【詳解】函數(shù)分成內(nèi)外層函數(shù),是減函數(shù),根據(jù)“同增異減”的判斷方法可知求函數(shù)的單調(diào)遞增區(qū)間,需求內(nèi)層函數(shù)的減區(qū)間,函數(shù)的對稱軸是,的減區(qū)間是,所以函數(shù)的單調(diào)遞增區(qū)間為.故答案為:【點睛】本題考查復(fù)合函數(shù)的單調(diào)性,意在考查基本的判斷方法,屬于基礎(chǔ)題型,判斷復(fù)合函數(shù)的單調(diào)性根據(jù)“同增異減”的方法判斷,當內(nèi)外層單調(diào)性一致時為增函數(shù),當內(nèi)外層函數(shù)單調(diào)性不一致時為減函數(shù),有時還需注意定義域.14、【解析】根據(jù)根式、對數(shù)的性質(zhì)有求解集,即為函數(shù)的定義域.【詳解】由函數(shù)解析式知:,解得,故答案為:.15、【解析】當時,函數(shù)為減函數(shù),且在區(qū)間左端點處有令,解得令,解得的值域為,當時,fx=x在,上單調(diào)遞增,在上單調(diào)遞減,從而當時,函數(shù)有最小值,即為函數(shù)在右端點的函數(shù)值為的值域為,則實數(shù)的取值范圍是點睛:本題主要考查的是分段函數(shù)的應(yīng)用.當時,函數(shù)為減函數(shù),且在區(qū)間左端點處有,當時,在,上單調(diào)遞增,在上單調(diào)遞減,從而當時,函數(shù)有最小值,即為,函數(shù)在右端點的函數(shù)值為,結(jié)合圖象即可求出答案16、①②③【解析】由奇偶性的定義判斷①正確,由分類討論結(jié)合反比例函數(shù)的單調(diào)性求解②;根據(jù)單調(diào)性,結(jié)合單調(diào)區(qū)間上的值域說明③正確;由只有一個根說明④錯誤【詳解】對于①,任取,都有,∴①正確;對于②,當時,,根據(jù)函數(shù)的奇偶性知時,,且時,,②正確;對于③,則當時,,由反比例函數(shù)的單調(diào)性以及復(fù)合函數(shù)知,在上是增函數(shù),且;再由的奇偶性知,在上也是增函數(shù),且時,一定有,③正確;對于④,因為只有一個根,∴方程在上有一個根,④錯誤.正確結(jié)論的序號是①②③.故答案為:①②③【點睛】本題通過對多個命題真假的判斷,綜合考查函數(shù)的單調(diào)性、函數(shù)的奇偶性、函數(shù)的圖象與性質(zhì),屬于難題.這種題型綜合性較強,也是高考的命題熱點,同學(xué)們往往因為某一處知識點掌握不好而導(dǎo)致“全盤皆輸”,因此做這類題目更要細心、多讀題,盡量挖掘出題目中的隱含條件,另外,要注意從簡單的自己已經(jīng)掌握的知識點入手,然后集中精力突破較難的命題.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、電價最低為元/千瓦時,可保證電力部門的收益比上一年度至少增加.【解析】根據(jù)題意列新增用電量,再乘以單價利潤得收益,列不等式,解一元二次不等式,根據(jù)限制條件取交集得電價取值范圍,即得最低電價試題解析:設(shè)新電價為元/千瓦時,則新增用電量為千瓦時.依題意,有,即,整理,得,解此不等式,得或,又,所以,,因此,,即電價最低為元/千瓦時,可保證電力部門的收益比上一年度至少增加.18、(1)(2)【解析】(1)由奇函數(shù)定義求;(2)代入后結(jié)合對數(shù)恒等式計算.【詳解】(1)因為函數(shù)為奇函數(shù),所以恒成立,可得.(2)由(1)可得.所以.【點睛】本題考查函數(shù)的奇偶性,考查對數(shù)恒等式,屬于基礎(chǔ)題.19、(1),,(2),,【解析】(1)先由三角函數(shù)的定義得到,再利用同角三角函數(shù)基本關(guān)系進行求解;(2)利用誘導(dǎo)公式進行化簡求值.【小問1詳解】解:由三角函數(shù)定義,得,由得,又因為為第二象限角,所以,則;【小問2詳解】解:由誘導(dǎo)公式,得:,則,.20、(1)或(2)【解析】(1)因為,根據(jù)函數(shù)的圖像過點,且函數(shù)只有一個零點,聯(lián)立方程即可求得答案;(2)因為,由(1)可知:,可得,根據(jù)函數(shù)在區(qū)間上單調(diào)遞增,即可求得實數(shù)的取值范圍.【詳解】(1)根據(jù)函數(shù)的圖像過點,且函數(shù)只有一個零點可得,整理可得,消去得,解得或當時,,當時,,綜上所述,函數(shù)的解析式為:或(2)當,由(1)可知:要使函數(shù)在區(qū)間上單調(diào)遞增則須滿足解得,實數(shù)的取值范圍為.【點睛】本題考查了求解二次函數(shù)解析式和已知復(fù)合函數(shù)單調(diào)區(qū)間求參數(shù)范圍.掌握復(fù)合函數(shù)單調(diào)性同增異減是解題關(guān)鍵,考查了分析能力和計算能力,屬于中等題.21、(1)(2)【解析】(1)根據(jù)函數(shù)的奇偶性求得的值.(2)結(jié)合指數(shù)函數(shù)、二次函數(shù)的性質(zhì)求得.【小問1詳解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論