廣東省梅州市蕉嶺中學2023屆數(shù)學高一上期末質(zhì)量檢測試題含解析_第1頁
廣東省梅州市蕉嶺中學2023屆數(shù)學高一上期末質(zhì)量檢測試題含解析_第2頁
廣東省梅州市蕉嶺中學2023屆數(shù)學高一上期末質(zhì)量檢測試題含解析_第3頁
廣東省梅州市蕉嶺中學2023屆數(shù)學高一上期末質(zhì)量檢測試題含解析_第4頁
廣東省梅州市蕉嶺中學2023屆數(shù)學高一上期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年高一上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1.已知一元二次方程的兩個不等實根都在區(qū)間內(nèi),則實數(shù)的取值范圍是()A. B.C. D.2.下列函數(shù)中,既是奇函數(shù)又在區(qū)間上單調(diào)遞增的是()A. B.C. D.3.函數(shù)的大致圖像為()A. B.C. D.4.一個扇形的弧長為6,面積為6,則這個扇形的圓心角是()A.1 B.2C.3 D.45.函數(shù)的零點所在區(qū)間是()A.(0,1) B.(1,2)C.(2,3) D.(3,+∞)6.函數(shù)的圖象如圖所示,則在區(qū)間上的零點之和為()A. B.C. D.7.如圖程序框圖的算法源于我國古代數(shù)學名著《九章算術(shù)》中的“更相減損術(shù)”,執(zhí)行該程序框圖,若輸入的值分別為30,12,0,經(jīng)過運算輸出,則的值為()A.6 B.C.9 D.8.若,且x為第四象限的角,則tanx的值等于A. B.-C. D.-9.設(shè)函數(shù)的定義域為R,滿足,且當時,.若對任意,都有,則m的最大值是()A. B.C. D.10.將函數(shù)圖象向右平移個單位得到函數(shù)的圖象,已知的圖象關(guān)于原點對稱,則的最小正值為()A.2 B.3C.4 D.611.已知偶函數(shù)在上單調(diào)遞增,則對實數(shù)、,“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.計算器是如何計算,,,,等函數(shù)值的?計算器使用的是數(shù)值計算法,其中一種方法是用容易計算的多項式近似地表示這些函數(shù),通過計算多項式的值求出原函數(shù)的值,如,,,其中.英國數(shù)學家泰勒(B.Taylor,1685-1731)發(fā)現(xiàn)了這些公式,可以看出,右邊的項用得越多,計算得出的和的值也就越精確.運用上述思想,可得到的近似值為()A.0.50 B.0.52C.0.54 D.0.56二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13.計算____________14.函數(shù)的定義域是__________15.已知是定義在R上的偶函數(shù),且在區(qū)間上單調(diào)遞增.若實數(shù)滿足,則的取值范圍是______.16.如圖,扇形的面積是,它的周長是,則弦的長為___________.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17.已知函數(shù)(,為常數(shù),且)的圖象經(jīng)過點,(1)求函數(shù)的解析式;(2)若關(guān)于不等式對都成立,求實數(shù)的取值范圍18.已知函數(shù),且(1)求f(x)的解析式;(2)判斷f(x)在區(qū)間(0,1)上的單調(diào)性,并用定義法證明19.已知平面直角坐標系內(nèi)四點,,,.(1)判斷的形狀;(2)A,B,C,D四點是否共圓,并說明理由.20.已知函數(shù).(1)求的單調(diào)區(qū)間;(2)若,且,求值.21.已知函數(shù)(1)求的最小正周期;(2)當時,求的單調(diào)區(qū)間;(3)在(2)的件下,求的最小值,以及取得最小值時相應自變量x的取值.22.設(shè)集合,.(1)若,求;(2)若,求實數(shù)的取值集合.

參考答案一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的,請將正確答案涂在答題卡上.)1、D【解析】設(shè),根據(jù)二次函數(shù)零點分布可得出關(guān)于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.【詳解】設(shè),則二次函數(shù)的兩個零點都在區(qū)間內(nèi),由題意,解得.因此,實數(shù)的取值范圍是.故選:D.2、D【解析】利用是偶函數(shù)判定選項A錯誤;利用判定選項B錯誤;利用的定義域判定選項C錯誤;利用奇偶性的定義證明是奇函數(shù),再通過基本函數(shù)的單調(diào)性判定的單調(diào)性,進而判定選項D正確.【詳解】對于A:是偶函數(shù),即選項A錯誤;對于B:是奇函數(shù),但,所以在區(qū)間上不單調(diào)遞增,即選項B錯誤;對于C:是奇函數(shù),但的定義域為,,即選項C錯誤;對于D:因為,,有,即奇函數(shù);因為在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞增,所以在區(qū)間上單調(diào)遞增,即選項D正確.故選:D.3、D【解析】分析函數(shù)的定義域、奇偶性,以及的值,結(jié)合排除法可得出合適的選項.【詳解】對任意的,,則函數(shù)的定義域為,排除C選項;,,所以,函數(shù)為偶函數(shù),排除B選項,因為,排除A選項.故選:D.4、C【解析】根據(jù)扇形的弧長公式和扇形的面積公式,列出方程組,即可求解,得到答案.【詳解】設(shè)扇形所在圓的半徑為,由扇形的弧長為6,面積為6,可得,解得,即扇形的圓心角為.故選C.【點睛】本題主要考查了扇形的弧長公式,以及扇形的面積公式的應用,其中解答中熟練應用扇形的弧長公式和扇形的面積公式,準確運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.5、B【解析】計算出,并判斷符號,由零點存在性定理可得答案.【詳解】因為,,所以根據(jù)零點存在性定理可知函數(shù)的零點所在區(qū)間是,故選:B【點睛】本題考查了利用零點存在性定理判斷函數(shù)的零點所在區(qū)間,解題方法是計算區(qū)間端點的函數(shù)值并判斷符號,如果異號,說明區(qū)間內(nèi)由零點,屬于基礎(chǔ)題.6、D【解析】先求出周期,確定,再由點確定,得函數(shù)解析式,然后可求出上的所有零點【詳解】由題意,∴,又且,∴,∴由得,,,在內(nèi)有:,它們的和為故選:D7、D【解析】利用程序框圖得出,再利用對數(shù)的運算性質(zhì)即可求解.【詳解】當時,,,當時,,,當時,,,當時,,所以.故選:D【點睛】本題考查了循環(huán)結(jié)構(gòu)嵌套條件結(jié)構(gòu)以及對數(shù)的運算,解題的關(guān)鍵是根據(jù)程序框圖求出輸出的結(jié)果,屬于基礎(chǔ)題.8、D【解析】∵x為第四象限的角,,于是,故選D.考點:商數(shù)關(guān)系9、A【解析】分別求得,,,,,,,時,的最小值,作出的簡圖,因為,解不等式可得所求范圍【詳解】解:因為,所以,當時,的最小值為;當時,,,由知,,所以此時,其最小值為;同理,當,時,,其最小值為;當,時,的最小值為;作出如簡圖,因為,要使,則有解得或,要使對任意,都有,則實數(shù)的取值范圍是故選:A10、B【解析】根據(jù)圖象平移求出g(x)解析式,g(x)為奇函數(shù),則g(0)=0,據(jù)此即可計算ω的取值.【詳解】根據(jù)已知,可得,∵的圖象關(guān)于原點對稱,所以,從而,Z,所以,其最小正值為3,此時故選:B11、C【解析】直接利用充分條件和必要條件的定義判斷.【詳解】因為偶函數(shù)在上單調(diào)遞增,若,則,而等價于,故充分必要;故選:C12、C【解析】根據(jù)新定義,直接計算取近似值即可.【詳解】由題意,故選:C二、選擇題(本大題共4小題,每小題5分,共20分,將答案寫在答題卡上.)13、5【解析】由分數(shù)指數(shù)冪的運算及對數(shù)的運算即可得解.【詳解】解:原式,故答案為:5.【點睛】本題考查了分數(shù)指數(shù)冪的運算及對數(shù)的運算,屬基礎(chǔ)題.14、【解析】要使函數(shù)有意義,則,解得,函數(shù)的定義域是,故答案為.15、【解析】由題意在上單調(diào)遞減,又是偶函數(shù),則不等式可化為,則,,解得16、【解析】由扇形弧長、面積公式列方程可得,再由平面幾何的知識即可得解.【詳解】設(shè)扇形的圓心角為,半徑為,則由題意,解得,則由垂徑定理可得.故答案為:.三、解答題(本大題共6個小題,共70分。解答時要求寫出必要的文字說明、證明過程或演算步驟。)17、(1)(2)【解析】(1)將,,代入函數(shù),利用待定系數(shù)法即可得出答案;(2)對都成立,即,,令,,令,求出函數(shù)的最小值即可得解.【小問1詳解】解:∵函數(shù)的圖象經(jīng)過點,,∴,即,又∵,∴,,∴,即;【小問2詳解】解:由(1)知,,∴對都成立,即對都成立,∴,,令,,則,令,即,,∴的圖象是開口向下且關(guān)于直線對稱的拋物線,∴,∴,∴的取值區(qū)間為18、(1)(2)f(x)在(0,1)上單調(diào)遞減,證明見解析.【解析】(1)根據(jù)即可求出a=b=1,從而得出;(2)容易判斷f(x)在區(qū)間(0,1)上單調(diào)遞減,根據(jù)減函數(shù)的定義證明:設(shè)x1,x2∈(0,1),并且x1<x2,然后作差,通分,得出,根據(jù)x1,x2∈(0,1),且x1<x2說明f(x1)>f(x2)即可【詳解】解:(1)∵;∴;解得a=1,b=1;∴;(2)f(x)在區(qū)間(0,1)上單調(diào)遞減,證明如下:設(shè)x1,x2∈(0,1),且x1<x2,則:=;∵x1,x2∈(0,1),且x1<x2;∴x1-x2<0,,;∴;∴f(x1)>f(x2);∴f(x)在(0,1)上單調(diào)遞減【點睛】本題考查減函數(shù)的定義,根據(jù)減函數(shù)的定義證明一個函數(shù)是減函數(shù)的方法和過程,清楚的單調(diào)性19、(1)是等腰直角三角形(2)A,B,C,D四點共圓;理由見解析【解析】(1)利用兩點間距離公式可求得,再利用斜率公式可得到,即可判斷三角形形狀;(2)由(1)先求得的外接圓,再判斷點是否在圓上即可【詳解】解:(1),,,又,,即,∴是等腰直角三角形(2)A,B,C,D四點共圓;由(1),設(shè)的外接圓的圓心為,則,即,解得,此時,所以的外接圓的方程為,將D點坐標代入方程得,即D點在的外接圓上.∴A,B,C,D四點共圓【點睛】本題考查兩點間距離公式的應用,考查斜率公式的應用,考查三角形的外接圓,考查圓的方程,考查運算能力20、(1)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間(2)【解析】(1)化簡解析式,根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)區(qū)間.(2)求得、,結(jié)合兩角差的正弦公式求得.【小問1詳解】.由,得,的單調(diào)遞增區(qū)間為,同理可得的單調(diào)遞減區(qū)間.【小問2詳解】,.,...21、(1)(2)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(3)當時,的最小值為0【解析】(1)根據(jù)周期公式計算即可.(2)求出單調(diào)區(qū)間,然后與所給的范圍取交集即可.(3)根據(jù)(2)的結(jié)論,對與進行比較即可.【小問1詳解】,,故的最小正周期為.【小問2詳解】先求出增區(qū)間,即:令解得所以在區(qū)間上

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。