版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
基于ArcGIS的水利大數(shù)據(jù)及應(yīng)用基于ArcGIS的水利大數(shù)據(jù)及應(yīng)用1團隊簡介水利大數(shù)據(jù)及其面臨的挑戰(zhàn)基于水利大數(shù)據(jù)的多災(zāi)害信息集成與風(fēng)險預(yù)警案例主要內(nèi)容123團隊簡介水利大數(shù)據(jù)及其面臨的挑戰(zhàn)基于水利大數(shù)據(jù)的多災(zāi)害信息集2二、水利大數(shù)據(jù)及其面臨的挑戰(zhàn)二、水利大數(shù)據(jù)及其面臨的挑戰(zhàn)3水利工作關(guān)系到國計民生,尤其是我國水資源分布存在嚴(yán)重的時空分布不均特性,旱災(zāi)洪澇易發(fā)多發(fā)。水利行業(yè)在經(jīng)濟、生態(tài)、社會等方面都扮演著重要角色,對水利大數(shù)據(jù)的研究具有重要的現(xiàn)實意義和應(yīng)用價值。水利大數(shù)據(jù)是在大數(shù)據(jù)的理論指導(dǎo)及技術(shù)支撐下的水利科學(xué)和工程的重要實踐。水利工作及水利大數(shù)據(jù)的重要性水利工作關(guān)系到國計民生,尤其是我國水資源分布存在嚴(yán)重的時空4水利大數(shù)據(jù)水利大數(shù)據(jù)是指產(chǎn)生于各種水文監(jiān)測網(wǎng)絡(luò)、水利設(shè)施、用水單位和水利相關(guān)經(jīng)濟活動,并通過現(xiàn)代化信息技術(shù)高效傳輸、分布存儲于各地存儲系統(tǒng)、但又可以快速讀取集中于云端、實現(xiàn)深度數(shù)據(jù)挖掘并可視化的海量多源數(shù)據(jù)總和。ValueVelocityVolume海量快速價值Variety多樣Veracity真實水利大數(shù)據(jù)水利大數(shù)據(jù)ValueVelocityVolume快5交叉性,由于水利和其它領(lǐng)域具有交叉性,因此水利大數(shù)據(jù)和遙感大數(shù)據(jù)、氣象大數(shù)據(jù)、海洋大數(shù)據(jù)等交叉;時空分布性,需要依賴先進(jìn)大數(shù)據(jù)技術(shù)進(jìn)行處理分析,包括分布式大數(shù)據(jù)存儲框架、機器學(xué)習(xí)等數(shù)據(jù)挖掘方法;多元循環(huán)性,由水的多元循環(huán)決定的水利大數(shù)據(jù)在經(jīng)濟、社會、生態(tài)等領(lǐng)域的價值循環(huán)。水利大數(shù)據(jù)的外延交叉性,由于水利和其它領(lǐng)域具有交叉性,因此水利大數(shù)據(jù)和遙感6挑戰(zhàn)一:水利大數(shù)據(jù)的收集與集成水利大數(shù)據(jù)來源廣泛,不同的監(jiān)測平臺得到的數(shù)據(jù)具有不同的數(shù)據(jù)結(jié)構(gòu)、存儲系統(tǒng),非結(jié)構(gòu)化數(shù)據(jù)、半結(jié)構(gòu)化數(shù)據(jù)、結(jié)構(gòu)化數(shù)據(jù)并存;由于觀測條件的差異,數(shù)據(jù)可信度層次不齊,對數(shù)據(jù)清洗和質(zhì)量的確保提出了很高的要求;大數(shù)據(jù)的存儲與管理需要新型數(shù)據(jù)庫的支持,水利大數(shù)據(jù)的信息化還未與新型數(shù)據(jù)庫接軌。水利大數(shù)據(jù)面臨的挑戰(zhàn)挑戰(zhàn)一:水利大數(shù)據(jù)的收集與集成水利大數(shù)據(jù)面臨的挑戰(zhàn)7挑戰(zhàn)二:水利大數(shù)據(jù)的時空多維度分析水利大數(shù)據(jù)具有明顯的時空分布特性,時間、空間雙維度下的數(shù)據(jù)分析具有難度;水利大數(shù)據(jù)在其應(yīng)用領(lǐng)域講究實時性,比如洪水預(yù)報等,這對大數(shù)據(jù)的處理分析速度提出了高要求;水利大數(shù)據(jù)的深度挖掘有賴于引入先進(jìn)的人工智能算法,兩者的有效結(jié)合至關(guān)重要。水利大數(shù)據(jù)面臨的挑戰(zhàn)挑戰(zhàn)二:水利大數(shù)據(jù)的時空多維度分析水利大數(shù)據(jù)面臨的挑戰(zhàn)8挑戰(zhàn)三:水利大數(shù)據(jù)的共享與安全眾多水利數(shù)據(jù)掌握在政府機關(guān)部門,為非公開數(shù)據(jù),形成數(shù)據(jù)孤島現(xiàn)象;水利數(shù)據(jù)是國家安全的重要組成部分,水利數(shù)據(jù)的共享與安全是一個值得探討的問題。水利大數(shù)據(jù)面臨的挑戰(zhàn)挑戰(zhàn)三:水利大數(shù)據(jù)的共享與安全水利大數(shù)據(jù)面臨的挑戰(zhàn)9三、基于水利大數(shù)據(jù)的多災(zāi)害信息集成與風(fēng)險預(yù)警案例介紹三、基于水利大數(shù)據(jù)的多災(zāi)害信息集成與風(fēng)險預(yù)警案例介紹10基于水利大數(shù)據(jù)的多災(zāi)害信息集成與風(fēng)險預(yù)警案例介紹1、天、地、空、海,多基多源降水?dāng)?shù)據(jù)采集2、移動眾包信息收集可視化云平臺mPing3、基于水利大數(shù)據(jù)的全球洪水泥石流災(zāi)害預(yù)測預(yù)報4、基于概率洪水風(fēng)險預(yù)報EF55、城市洪水模型Urban
CREST介紹6、全球風(fēng)暴數(shù)據(jù)庫及CI-FLOW7、中國區(qū)域多尺度洪水模擬及預(yù)警系統(tǒng)的建立8、基于ArcGIS的FFG介紹9、基于ArcGIS平臺開發(fā)的ArcCREST介紹基于水利大數(shù)據(jù)的多災(zāi)害信息集成與風(fēng)險預(yù)警案例介紹基于水利大數(shù)據(jù)的多災(zāi)害信息集成與風(fēng)險預(yù)警案例介紹1、天113小時臨近預(yù)報(250米/2.5分鐘)+36小時模型預(yù)報(1公里/小時)1.天、地、空、海多基多源降水?dāng)?shù)據(jù)采集雙偏振雷達(dá)+衛(wèi)星+站點+模型3小時臨近預(yù)報1.天、地、空、海多基多源降水?dāng)?shù)據(jù)采集雙偏振12PERSIANN
全球衛(wèi)星產(chǎn)品(4km,
hourly)Hongetal.,2004,
JAM;5顆地球靜止衛(wèi)星(可見光紅外)以及4顆極軌衛(wèi)星(雷達(dá)和被動微波)通過人工神經(jīng)網(wǎng)絡(luò)ANN/機器學(xué)習(xí)訓(xùn)練反演
HighQuality
衛(wèi)星降水產(chǎn)品MergeSatellites,ground(Radar&Gauge),andModel
(NWP)PERSIANN全球衛(wèi)星產(chǎn)品(4km,hourly)Ho13TRMMAquaDMSPNOAAMETEOSAT(Europe)GOESGMS/MTSAT(Japan)TMPAuses4Polar-orbitalmicrowavesatellites(NOAA,DoD,NASA)and5Geo-IR
satellites(GOES8-10,GMS,MYSAT,MeteoSAT);allcalibratedby
TRMMPreci
Radar17+years(‘98-16’)ofdata;MostrequestedTRMMproductfrom
NASAWith
Huffman
et
al.2007
:(1700+
引用)2005
加入
NASA:多衛(wèi)星聯(lián)合反演共性技術(shù);(1700+引用)全球天地空標(biāo)準(zhǔn)產(chǎn)品系列:TMPA30-dayHQ
coefficientsInstant-aneousSSM/ITRMMAMSRAMSU3-hourlymerged
HQHourlyIR
TbHourlyHQ-calib
IRprecip3-hourly
multi-satellite
(MS)MonthlygaugesMonthly
SGRescale3-hourly
MStomonthly
SGRescaled3-hourly
MSCalibrate
High-Quality(HQ)Estimatesto“Best”Space
RadarMergeHQ
EstimatesMatchIRand
HQ,generate
coeffsApplyIR
coefficientsMergeIR,merged
HQestimatesCompute
monthlysatellite-gaugecombination
(SG)30-dayIR
coefficientsTRMMAquaDMSPNOAAMETEOSATGOESTM1426深度學(xué)習(xí)方法研制全球衛(wèi)星產(chǎn)品研制青藏西南部IR云圖 相應(yīng)時段降水情況在深度學(xué)習(xí)中,我們可以將不同頻段的可見光、紅外、微波影像同時作為訓(xùn)練數(shù)據(jù)輸入模型,且不需要事先設(shè)定Feature,海量的遙感影像下,讓模型自己去尋找Feature。26深度學(xué)習(xí)方法研制全球衛(wèi)星產(chǎn)品研制青藏西南部IR云圖 相應(yīng)155-minute250mRainfall
Dataover
USA5-minute250m162.
mPING
美國版災(zāi)害Crowdsourcing移動平臺技術(shù)2.mPING美國版災(zāi)害Crowdsourcing移動平172.移動眾包信息收集可視化云平臺mPING–CrowdSourcingTooland
Data750,000+AppDownloadsSinceDec
20132.移動眾包信息收集可視化云平臺mPING–Crowd18硅谷SFIoT/BigDataWeather2.0
Service
Inc.硅谷SFIoT/BigDataWeather2.0S19EnsembleCoupledHydro-LandslideModeling
SystemWaterBalance
ComponentCREST(VariableInfiltrationCurve)SAC-SMARunoff
RoutingCell-by-celllinear
reservoirLandslideModel
EnsembleTRIGRSSLIDE+SurfaceFlow
andInundationSoilWater
ContentOther
variablesOccurrenceandLocationsof
landslidesRemoteSensing
basedPrecipitation
EstimatesTopographyLandcover/Land
Use3.基于水利大數(shù)據(jù)的全球水洪泥石流災(zāi)害預(yù)測預(yù)報NationalFlashLandslide
SystemEnsembleCoupledHydro-Lands203.
基于水利大數(shù)據(jù)的全球水洪泥石流災(zāi)害預(yù)測預(yù)報美國暴雨山洪泥石流災(zāi)害鏈業(yè)務(wù)化系統(tǒng)NFL:NMQ: NationalMosaicandMulti-SensorQPE
(NMQ)FLASH: FloodedLocationsAndSimulated
HydrographsLANDSLIDE:SLope-Infiltration-Distributed
Equilibrium
ModelNMQRadarPrecipitationObservations250m/2.5
minFLASHDistributed
CRESTHydrologic
Models10-11June2010,AlbertPike
RecArea,
Arkansas250
mm150200Simulatedsurfacewater
flow20fatalitiesLANDSLIDELandslideHotspotModelsRed:
ObservationsPink:
PredictionsLandslide
prediction3.基于水利大數(shù)據(jù)的全球水洪泥石流災(zāi)害預(yù)測預(yù)報NMQ: N21IntegratedHydrologic-LandslideModeliCRESLIDE=CREST+
SLIDECoupledRoutingandExcessSTorage(CREST)Jointlydeveloped
byOU/NASARunoperationallyoverglobeDistributed,fullycoupledrunoffgenerationand
routingWangamnoddHelongetal.2011
HSJIntegratedHydrologic-LandslideModel:iCRESLIDEDevelopmentand
Application--CRESThasbeensetupatbothnationaland
basinscalesin
China;--iCRESLIDEshowsgreatcapabilityin
forecastingshallowlandslidesaroundthe
world;--Morefloodandlandslideeventdatais
needed.IntegratedHydrologic-Landslid22250m/5-minresolutionofQ2precipitationforcingandmodel
outputsAddressesserviceneedsinNWS;flashfloodingis#1weather-related
killer6/1112:30am-4am20deaths:LittleMissouriRiverCrestedfrom3ftto23.5ftwithin2
hoursIncludedataassimilationandprobabilistic
productsReadilyincorporatedual-polradarproducts(Q3)andstormscaleensemble
forecastsNFL:Real-time,directpredictionofflashfloodsa
realityPhotosource:National
Geographic250m/5-minresolutionofQ2pr23美國暴雨山洪泥石流災(zāi)害鏈耦合系統(tǒng)核心模型Physically-couplediCRESTSLIDE(SLopeInfiltration-Distributed
Equilibrium)020408010012000.460Radius
(m)PODFARCSIValidationwithinventory
dataRed:
ObservationsPink:
Predictions美國北卡州
梅肯縣Within18-m120-meterbuffer
zonePOD
>
0.5 0.9CSI>0.1 0.8FAR
<
0.9 0.2(Liaoetal.,2011,Nat.Hazards
)16th
hrFSMapvs.
Time18th
hr21st
hr美國暴雨山洪泥石流災(zāi)害鏈耦合系統(tǒng)核心模型020408010024ForecastStreamflow
(2010)Recurrence
Interval(2010)Inundation
(2015)State-Param
EstimationDREAM
(2010)Observed
StreamflowGroundwaterMODFLOWRoutingKinematicwave
(2014)Linearreservoir
(2010)4.基于概率洪水風(fēng)險預(yù)報
EF5EnsembleFrameworkFor Flash Flood
ForecastingBestdistributedhydrologicSystem
yetPrecipForcingMRMSTMPA
RTWRR/HRRR
QPFEvapotranspirationFEWSNET
PETHRRR
tempVIIRS?Surface
RunoffCREST
(2010)SAC-SMA
(2013)Hydrophobic
(2015)SnowmeltSNOW-17(2015)- 2m
TempCurrentVersionFutureAdditionForecastState-ParamEstimation25EF5:ProbabilityofFlashFloodForecast
(PFFF)基于概率洪水風(fēng)險預(yù)報100%50%0%PFFF(RP=5yr
)EF5:ProbabilityofFlashFloo26TheNewFeaturesofuCRESTModel1-10MeterDEMandUrbanDrainage
SystemUrban Canopy and High Rise Building Impact on
the RainfallInterceptionEnhancedImpervious(pavement,roofetc.)andNon-impervioussurfaceinfiltrationandSurfaceProcesses(runoff,ET
etc)Urban Sewer/Pipeline Module included as a special InterflowProcess/reservoirHasbeentestedandimplementedinOklahomaCityandDallasMetropolitanatspatial
resolution5.城市洪水模型Urban CREST介紹AHigh-ResolutionUrbanCRESTFloodModelingandMapping
SystemForUrbanandBuilt-up
EnvironmentsTheNewFeaturesofuCRESTMod272010June14,OKCFlash
Flood101
km1ReturnPeriod
(years)2 10200+NoFloodingFloodingSevereFloodingUrban-CRESTFloodModelImplementedatOklahomaCity&Dallas
Metropolitan137
km2010June14,OKCFlashFlood1286.全球風(fēng)暴數(shù)據(jù)庫及CI-FLOWGlobalStorms(2000-2010)*Sellarsetal.(2013),ComputationalEarthScience:BigDataTransformedIntoInsight,EOSTrans.AGU,
94(32),2776.全球風(fēng)暴數(shù)據(jù)庫及CI-FLOWGlobalStor29Nov2011
BAMSTheCI-FLOWProject:ASystemforTotalWaterLevelPredictionFromTheSummitToThe
SeaCI-FLOWsummarypaperwithHurricaneIsabel,HurricaneEarl,&TropicalStormNicole
resultsVolume##Number#November
2011BAMSAmericanMeteorological
SocietyNov2011BAMSTheCI-FLOWProje30SuzanneVanCooten,…,YangHong,etal.,2011:
Theci-flowproject:asystemfortotalwaterlevelpredictionfromthesummittothesea.Bull.
Amer.Meteor.Soc.,92,1427–1442.已應(yīng)用到美國北卡羅來納州、墨西哥灣等易受颶風(fēng)和風(fēng)暴潮影響的海岸帶地區(qū)海洋風(fēng)暴潮與內(nèi)陸洪水監(jiān)測預(yù)警系統(tǒng)(CI-FLOW)SuzanneVanCooten,…,YangHo31CI-FLOWCoastalandInlandFloodingObservationand
WarningTrackingtheraindropsanddisastersfromtheSKYandtheSUMMITtothe
seaCI-FLOWCoastalandInlandFloo32CI-FLOW:HL-RDHM/SWAN/ADCIRCCoupled
ModelPrecipitationSig.Wave
HeightsTotalWater
LevelsRiver
BCsDischargeSurface
BCsPressureWind
ForcingSurface
BCsWave
ForcingHydrodynamicModel
(ADCIRC)HydrologicModelAtmosphericModelWave
ModelPrecipitationSource:QPE/QPFAtmosphericModel:NAMorNHC
trackHydrologicModel:HL-RDHM,Vfloor
CRESTWaveModel:unstructured
SWANCI-FLOW:HL-RDHM/SWAN/ADCIRCC337.中國區(qū)域多尺度洪水模擬及預(yù)警系統(tǒng)的建立中國的山洪預(yù)警系統(tǒng)量融合,驅(qū)動CREST模型,模擬徑流分布與氣象局以及國家氣象中心合作開發(fā)多源降水產(chǎn)品和地面臺站數(shù)據(jù)進(jìn)行雨地貌水動力學(xué)模型模擬洪水淹沒情景的時空演進(jìn),實時動態(tài)提取洪水淹沒范圍、水深分布和淹沒時間分布,實現(xiàn)對洪水的模擬7.中國區(qū)域多尺度洪水模擬及預(yù)警系統(tǒng)的建立中國的山洪預(yù)警系統(tǒng)34洪水模擬的時間:199806280501001502002503000500010000150002000025000Date3/5/19975/8/19977/11/19979/13/199711/16/19971/19/19983/24/19985/27/19987/30/199810/2/199812/5/19982/7/19994/12/19996/15/19998/18/199910/21/199912/24/19992/26/20004/30/20007/3/20009/5/200011/8/20001/11/20013/16/20015/19/20017/22/20019/24/200111/27/20011/30/20024/4/20026/7/20028/10/200210/13/200212/16/20022/18/20034/23/20036/26/20038/29/200311/1/20031/4/20043/8/20045/11/20047/14/20049/16/200411/19/20041/22/20053/27/20055/30/20058/2/200510/5/200512/8/2005R_Obsin
(m^3/s)R(v2.1)in
(m^3/s)rain率定期驗證期NSCE=0.897CC=0.947Bias=-1.57%20
年、10
年、5年、2年、1年
一遇洪水外州站CREST模型率定/模擬效果:氣象臺站數(shù)據(jù)驅(qū)動7.中國區(qū)域多尺度洪水模擬及預(yù)警系統(tǒng)的建立洪水模擬的時間:199806280501001502002535114114.5115115.5116116.51172525.52626.52727.52828.529114114.5115115.5116116.511725236iMAP
在嘉陵江流域的應(yīng)用結(jié)果7.中國區(qū)域多尺度洪水模擬及預(yù)警系統(tǒng)的建立iMAP在嘉陵江流域的應(yīng)用結(jié)果7.中國區(qū)域多尺度洪水模擬及379.基于ArcGIS平臺開發(fā)的ArcCREST介紹ArcCREST
UIPrecip
ThiessenEvap
ThiessenGeo
Data9.基于ArcGIS平臺開發(fā)的ArcCREST介紹Arc38Usedforrainfallsites(Cell-baseddataneedsome
effort)Parametersdistributionneedmoreadvanced
methodBugsincode,theresultsarenot
correctGeoandHydrodatamanagementand
operationParametersdistribution
settingModelrunningandresults
showUsedforrainfallsites(Cell-39ArcCREST運行結(jié)果分析ArcCRESTv1.0(Uncalib)ArcCRESTv1.0Nash-Sutliffe-0.415460.8121Bias
(%)-99.999915.25CC0.79630.8382300200100040050011325374961738597109121133145157169181193205217229241253265277289301313325337349361Discharge(m3)Time(24h)Discharge:ArcCRESTvs
GageCalibUnCalibActualR2=0.7025501001502002503000050100150200250300350ArcCRESTGageDischarge:ArcCRESTvs
GageR2=
0.7025ArcCRESTtendsto
overestimatedischargeUncalibratedresultsindicatenomodelsensitivityandunreliable
estimationsArcCREST運行結(jié)果分析ArcCRESTArcCREST40FlashFloodGuidance:FFGistheamountofrainfallrequiredinagivenperiodoftimetoproducebankfullconditionsonsmallbasinsfromFlashFloodGuidance
1970toHydrologicFlashFloodGuidance201227-
4343-
5454-
6868-
8282-
9898-
115115-
139139-
192192-
3051hFFG(level1)
CMAunit:mm12-
278.基于ArcGIS平臺的FFG1hFFG(level1)CMAFFG(FlashFlood
Guidance)FlashFloodGuidance:FFGist41DistributedFFG(0.189°)inSouth
China采用ArcGIS插值模塊得到面臨界雨量分布單位:mmDistributedFFG(0.189°)inSout42FlashFloodPotential
Index(FFPI):DevelopedbyhydrologistGregSmith,CBRFC
(2003).Geographicalfeatures
playakeyroleinflash
floodingDevelopedasbackgroundinformationtobeincorporatedinto
productionofbettergriddedFlashFlood
GuidanceUsingtheFFPI,theroles
ofsoil,slope,vegetationandurbanizationcanbevisualized基于ArcGIS平臺的中國洪水風(fēng)險潛在指標(biāo)FFPIFlashFloodPotentialIndex43基于ArcGIS的水利大數(shù)據(jù)及應(yīng)用課件44基于ArcGIS的水利大數(shù)據(jù)及應(yīng)用基于ArcGIS的水利大數(shù)據(jù)及應(yīng)用45團隊簡介水利大數(shù)據(jù)及其面臨的挑戰(zhàn)基于水利大數(shù)據(jù)的多災(zāi)害信息集成與風(fēng)險預(yù)警案例主要內(nèi)容123團隊簡介水利大數(shù)據(jù)及其面臨的挑戰(zhàn)基于水利大數(shù)據(jù)的多災(zāi)害信息集46二、水利大數(shù)據(jù)及其面臨的挑戰(zhàn)二、水利大數(shù)據(jù)及其面臨的挑戰(zhàn)47水利工作關(guān)系到國計民生,尤其是我國水資源分布存在嚴(yán)重的時空分布不均特性,旱災(zāi)洪澇易發(fā)多發(fā)。水利行業(yè)在經(jīng)濟、生態(tài)、社會等方面都扮演著重要角色,對水利大數(shù)據(jù)的研究具有重要的現(xiàn)實意義和應(yīng)用價值。水利大數(shù)據(jù)是在大數(shù)據(jù)的理論指導(dǎo)及技術(shù)支撐下的水利科學(xué)和工程的重要實踐。水利工作及水利大數(shù)據(jù)的重要性水利工作關(guān)系到國計民生,尤其是我國水資源分布存在嚴(yán)重的時空48水利大數(shù)據(jù)水利大數(shù)據(jù)是指產(chǎn)生于各種水文監(jiān)測網(wǎng)絡(luò)、水利設(shè)施、用水單位和水利相關(guān)經(jīng)濟活動,并通過現(xiàn)代化信息技術(shù)高效傳輸、分布存儲于各地存儲系統(tǒng)、但又可以快速讀取集中于云端、實現(xiàn)深度數(shù)據(jù)挖掘并可視化的海量多源數(shù)據(jù)總和。ValueVelocityVolume海量快速價值Variety多樣Veracity真實水利大數(shù)據(jù)水利大數(shù)據(jù)ValueVelocityVolume快49交叉性,由于水利和其它領(lǐng)域具有交叉性,因此水利大數(shù)據(jù)和遙感大數(shù)據(jù)、氣象大數(shù)據(jù)、海洋大數(shù)據(jù)等交叉;時空分布性,需要依賴先進(jìn)大數(shù)據(jù)技術(shù)進(jìn)行處理分析,包括分布式大數(shù)據(jù)存儲框架、機器學(xué)習(xí)等數(shù)據(jù)挖掘方法;多元循環(huán)性,由水的多元循環(huán)決定的水利大數(shù)據(jù)在經(jīng)濟、社會、生態(tài)等領(lǐng)域的價值循環(huán)。水利大數(shù)據(jù)的外延交叉性,由于水利和其它領(lǐng)域具有交叉性,因此水利大數(shù)據(jù)和遙感50挑戰(zhàn)一:水利大數(shù)據(jù)的收集與集成水利大數(shù)據(jù)來源廣泛,不同的監(jiān)測平臺得到的數(shù)據(jù)具有不同的數(shù)據(jù)結(jié)構(gòu)、存儲系統(tǒng),非結(jié)構(gòu)化數(shù)據(jù)、半結(jié)構(gòu)化數(shù)據(jù)、結(jié)構(gòu)化數(shù)據(jù)并存;由于觀測條件的差異,數(shù)據(jù)可信度層次不齊,對數(shù)據(jù)清洗和質(zhì)量的確保提出了很高的要求;大數(shù)據(jù)的存儲與管理需要新型數(shù)據(jù)庫的支持,水利大數(shù)據(jù)的信息化還未與新型數(shù)據(jù)庫接軌。水利大數(shù)據(jù)面臨的挑戰(zhàn)挑戰(zhàn)一:水利大數(shù)據(jù)的收集與集成水利大數(shù)據(jù)面臨的挑戰(zhàn)51挑戰(zhàn)二:水利大數(shù)據(jù)的時空多維度分析水利大數(shù)據(jù)具有明顯的時空分布特性,時間、空間雙維度下的數(shù)據(jù)分析具有難度;水利大數(shù)據(jù)在其應(yīng)用領(lǐng)域講究實時性,比如洪水預(yù)報等,這對大數(shù)據(jù)的處理分析速度提出了高要求;水利大數(shù)據(jù)的深度挖掘有賴于引入先進(jìn)的人工智能算法,兩者的有效結(jié)合至關(guān)重要。水利大數(shù)據(jù)面臨的挑戰(zhàn)挑戰(zhàn)二:水利大數(shù)據(jù)的時空多維度分析水利大數(shù)據(jù)面臨的挑戰(zhàn)52挑戰(zhàn)三:水利大數(shù)據(jù)的共享與安全眾多水利數(shù)據(jù)掌握在政府機關(guān)部門,為非公開數(shù)據(jù),形成數(shù)據(jù)孤島現(xiàn)象;水利數(shù)據(jù)是國家安全的重要組成部分,水利數(shù)據(jù)的共享與安全是一個值得探討的問題。水利大數(shù)據(jù)面臨的挑戰(zhàn)挑戰(zhàn)三:水利大數(shù)據(jù)的共享與安全水利大數(shù)據(jù)面臨的挑戰(zhàn)53三、基于水利大數(shù)據(jù)的多災(zāi)害信息集成與風(fēng)險預(yù)警案例介紹三、基于水利大數(shù)據(jù)的多災(zāi)害信息集成與風(fēng)險預(yù)警案例介紹54基于水利大數(shù)據(jù)的多災(zāi)害信息集成與風(fēng)險預(yù)警案例介紹1、天、地、空、海,多基多源降水?dāng)?shù)據(jù)采集2、移動眾包信息收集可視化云平臺mPing3、基于水利大數(shù)據(jù)的全球洪水泥石流災(zāi)害預(yù)測預(yù)報4、基于概率洪水風(fēng)險預(yù)報EF55、城市洪水模型Urban
CREST介紹6、全球風(fēng)暴數(shù)據(jù)庫及CI-FLOW7、中國區(qū)域多尺度洪水模擬及預(yù)警系統(tǒng)的建立8、基于ArcGIS的FFG介紹9、基于ArcGIS平臺開發(fā)的ArcCREST介紹基于水利大數(shù)據(jù)的多災(zāi)害信息集成與風(fēng)險預(yù)警案例介紹基于水利大數(shù)據(jù)的多災(zāi)害信息集成與風(fēng)險預(yù)警案例介紹1、天553小時臨近預(yù)報(250米/2.5分鐘)+36小時模型預(yù)報(1公里/小時)1.天、地、空、海多基多源降水?dāng)?shù)據(jù)采集雙偏振雷達(dá)+衛(wèi)星+站點+模型3小時臨近預(yù)報1.天、地、空、海多基多源降水?dāng)?shù)據(jù)采集雙偏振56PERSIANN
全球衛(wèi)星產(chǎn)品(4km,
hourly)Hongetal.,2004,
JAM;5顆地球靜止衛(wèi)星(可見光紅外)以及4顆極軌衛(wèi)星(雷達(dá)和被動微波)通過人工神經(jīng)網(wǎng)絡(luò)ANN/機器學(xué)習(xí)訓(xùn)練反演
HighQuality
衛(wèi)星降水產(chǎn)品MergeSatellites,ground(Radar&Gauge),andModel
(NWP)PERSIANN全球衛(wèi)星產(chǎn)品(4km,hourly)Ho57TRMMAquaDMSPNOAAMETEOSAT(Europe)GOESGMS/MTSAT(Japan)TMPAuses4Polar-orbitalmicrowavesatellites(NOAA,DoD,NASA)and5Geo-IR
satellites(GOES8-10,GMS,MYSAT,MeteoSAT);allcalibratedby
TRMMPreci
Radar17+years(‘98-16’)ofdata;MostrequestedTRMMproductfrom
NASAWith
Huffman
et
al.2007
:(1700+
引用)2005
加入
NASA:多衛(wèi)星聯(lián)合反演共性技術(shù);(1700+引用)全球天地空標(biāo)準(zhǔn)產(chǎn)品系列:TMPA30-dayHQ
coefficientsInstant-aneousSSM/ITRMMAMSRAMSU3-hourlymerged
HQHourlyIR
TbHourlyHQ-calib
IRprecip3-hourly
multi-satellite
(MS)MonthlygaugesMonthly
SGRescale3-hourly
MStomonthly
SGRescaled3-hourly
MSCalibrate
High-Quality(HQ)Estimatesto“Best”Space
RadarMergeHQ
EstimatesMatchIRand
HQ,generate
coeffsApplyIR
coefficientsMergeIR,merged
HQestimatesCompute
monthlysatellite-gaugecombination
(SG)30-dayIR
coefficientsTRMMAquaDMSPNOAAMETEOSATGOESTM5826深度學(xué)習(xí)方法研制全球衛(wèi)星產(chǎn)品研制青藏西南部IR云圖 相應(yīng)時段降水情況在深度學(xué)習(xí)中,我們可以將不同頻段的可見光、紅外、微波影像同時作為訓(xùn)練數(shù)據(jù)輸入模型,且不需要事先設(shè)定Feature,海量的遙感影像下,讓模型自己去尋找Feature。26深度學(xué)習(xí)方法研制全球衛(wèi)星產(chǎn)品研制青藏西南部IR云圖 相應(yīng)595-minute250mRainfall
Dataover
USA5-minute250m602.
mPING
美國版災(zāi)害Crowdsourcing移動平臺技術(shù)2.mPING美國版災(zāi)害Crowdsourcing移動平612.移動眾包信息收集可視化云平臺mPING–CrowdSourcingTooland
Data750,000+AppDownloadsSinceDec
20132.移動眾包信息收集可視化云平臺mPING–Crowd62硅谷SFIoT/BigDataWeather2.0
Service
Inc.硅谷SFIoT/BigDataWeather2.0S63EnsembleCoupledHydro-LandslideModeling
SystemWaterBalance
ComponentCREST(VariableInfiltrationCurve)SAC-SMARunoff
RoutingCell-by-celllinear
reservoirLandslideModel
EnsembleTRIGRSSLIDE+SurfaceFlow
andInundationSoilWater
ContentOther
variablesOccurrenceandLocationsof
landslidesRemoteSensing
basedPrecipitation
EstimatesTopographyLandcover/Land
Use3.基于水利大數(shù)據(jù)的全球水洪泥石流災(zāi)害預(yù)測預(yù)報NationalFlashLandslide
SystemEnsembleCoupledHydro-Lands643.
基于水利大數(shù)據(jù)的全球水洪泥石流災(zāi)害預(yù)測預(yù)報美國暴雨山洪泥石流災(zāi)害鏈業(yè)務(wù)化系統(tǒng)NFL:NMQ: NationalMosaicandMulti-SensorQPE
(NMQ)FLASH: FloodedLocationsAndSimulated
HydrographsLANDSLIDE:SLope-Infiltration-Distributed
Equilibrium
ModelNMQRadarPrecipitationObservations250m/2.5
minFLASHDistributed
CRESTHydrologic
Models10-11June2010,AlbertPike
RecArea,
Arkansas250
mm150200Simulatedsurfacewater
flow20fatalitiesLANDSLIDELandslideHotspotModelsRed:
ObservationsPink:
PredictionsLandslide
prediction3.基于水利大數(shù)據(jù)的全球水洪泥石流災(zāi)害預(yù)測預(yù)報NMQ: N65IntegratedHydrologic-LandslideModeliCRESLIDE=CREST+
SLIDECoupledRoutingandExcessSTorage(CREST)Jointlydeveloped
byOU/NASARunoperationallyoverglobeDistributed,fullycoupledrunoffgenerationand
routingWangamnoddHelongetal.2011
HSJIntegratedHydrologic-LandslideModel:iCRESLIDEDevelopmentand
Application--CRESThasbeensetupatbothnationaland
basinscalesin
China;--iCRESLIDEshowsgreatcapabilityin
forecastingshallowlandslidesaroundthe
world;--Morefloodandlandslideeventdatais
needed.IntegratedHydrologic-Landslid66250m/5-minresolutionofQ2precipitationforcingandmodel
outputsAddressesserviceneedsinNWS;flashfloodingis#1weather-related
killer6/1112:30am-4am20deaths:LittleMissouriRiverCrestedfrom3ftto23.5ftwithin2
hoursIncludedataassimilationandprobabilistic
productsReadilyincorporatedual-polradarproducts(Q3)andstormscaleensemble
forecastsNFL:Real-time,directpredictionofflashfloodsa
realityPhotosource:National
Geographic250m/5-minresolutionofQ2pr67美國暴雨山洪泥石流災(zāi)害鏈耦合系統(tǒng)核心模型Physically-couplediCRESTSLIDE(SLopeInfiltration-Distributed
Equilibrium)020408010012000.460Radius
(m)PODFARCSIValidationwithinventory
dataRed:
ObservationsPink:
Predictions美國北卡州
梅肯縣Within18-m120-meterbuffer
zonePOD
>
0.5 0.9CSI>0.1 0.8FAR
<
0.9 0.2(Liaoetal.,2011,Nat.Hazards
)16th
hrFSMapvs.
Time18th
hr21st
hr美國暴雨山洪泥石流災(zāi)害鏈耦合系統(tǒng)核心模型020408010068ForecastStreamflow
(2010)Recurrence
Interval(2010)Inundation
(2015)State-Param
EstimationDREAM
(2010)Observed
StreamflowGroundwaterMODFLOWRoutingKinematicwave
(2014)Linearreservoir
(2010)4.基于概率洪水風(fēng)險預(yù)報
EF5EnsembleFrameworkFor Flash Flood
ForecastingBestdistributedhydrologicSystem
yetPrecipForcingMRMSTMPA
RTWRR/HRRR
QPFEvapotranspirationFEWSNET
PETHRRR
tempVIIRS?Surface
RunoffCREST
(2010)SAC-SMA
(2013)Hydrophobic
(2015)SnowmeltSNOW-17(2015)- 2m
TempCurrentVersionFutureAdditionForecastState-ParamEstimation69EF5:ProbabilityofFlashFloodForecast
(PFFF)基于概率洪水風(fēng)險預(yù)報100%50%0%PFFF(RP=5yr
)EF5:ProbabilityofFlashFloo70TheNewFeaturesofuCRESTModel1-10MeterDEMandUrbanDrainage
SystemUrban Canopy and High Rise Building Impact on
the RainfallInterceptionEnhancedImpervious(pavement,roofetc.)andNon-impervioussurfaceinfiltrationandSurfaceProcesses(runoff,ET
etc)Urban Sewer/Pipeline Module included as a special InterflowProcess/reservoirHasbeentestedandimplementedinOklahomaCityandDallasMetropolitanatspatial
resolution5.城市洪水模型Urban CREST介紹AHigh-ResolutionUrbanCRESTFloodModelingandMapping
SystemForUrbanandBuilt-up
EnvironmentsTheNewFeaturesofuCRESTMod712010June14,OKCFlash
Flood101
km1ReturnPeriod
(years)2 10200+NoFloodingFloodingSevereFloodingUrban-CRESTFloodModelImplementedatOklahomaCity&Dallas
Metropolitan137
km2010June14,OKCFlashFlood1726.全球風(fēng)暴數(shù)據(jù)庫及CI-FLOWGlobalStorms(2000-2010)*Sellarsetal.(2013),ComputationalEarthScience:BigDataTransformedIntoInsight,EOSTrans.AGU,
94(32),2776.全球風(fēng)暴數(shù)據(jù)庫及CI-FLOWGlobalStor73Nov2011
BAMSTheCI-FLOWProject:ASystemforTotalWaterLevelPredictionFromTheSummitToThe
SeaCI-FLOWsummarypaperwithHurricaneIsabel,HurricaneEarl,&TropicalStormNicole
resultsVolume##Number#November
2011BAMSAmericanMeteorological
SocietyNov2011BAMSTheCI-FLOWProje74SuzanneVanCooten,…,YangHong,etal.,2011:
Theci-flowproject:asystemfortotalwaterlevelpredictionfromthesummittothesea.Bull.
Amer.Meteor.Soc.,92,1427–1442.已應(yīng)用到美國北卡羅來納州、墨西哥灣等易受颶風(fēng)和風(fēng)暴潮影響的海岸帶地區(qū)海洋風(fēng)暴潮與內(nèi)陸洪水監(jiān)測預(yù)警系統(tǒng)(CI-FLOW)SuzanneVanCooten,…,YangHo75CI-FLOWCoastalandInlandFloodingObservationand
WarningTrackingtheraindropsanddisastersfromtheSKYandtheSUMMITtothe
seaCI-FLOWCoastalandInlandFloo76CI-FLOW:HL-RDHM/SWAN/ADCIRCCoupled
ModelPrecipitationSig.Wave
HeightsTotalWater
LevelsRiver
BCsDischargeSurface
BCsPressureWind
ForcingSurface
BCsWave
ForcingHydrodynamicModel
(ADCIRC)HydrologicModelAtmosphericModelWave
ModelPrecipitationSource:QPE/QPFAtmosphericModel:NAMorNHC
trackHydrologicModel:HL-RDHM,Vfloor
CRESTWaveModel:unstructured
SWANCI-FLOW:HL-RDHM/SWAN/ADCIRCC777.中國區(qū)域多尺度洪水模擬及預(yù)警系統(tǒng)的建立中國的山洪預(yù)警系統(tǒng)量融合,驅(qū)動CREST模型,模擬徑流分布與氣象局以及國家氣象中心合作開發(fā)多源降水產(chǎn)品和地面臺站數(shù)據(jù)進(jìn)行雨地貌水動力學(xué)模型模擬洪水淹沒情景的時空演進(jìn),實時動態(tài)提取洪水淹沒范圍、水深分布和淹沒時間分布,實現(xiàn)對洪水的模擬7.中國區(qū)域多尺度洪水模擬及預(yù)警系統(tǒng)的建立中國的山洪預(yù)警系統(tǒng)78洪水模擬的時間:199806280501001502002503000500010000150002000025000Date3/5/19975/8/19977/11/19979/13/199711/16/19971/19/19983/24/19985/27/19987/30/199810/2/199812/5/19982/7/19994/12/19996/15/19998/18/199910/21/199912/24/19992/26/20004/30/20007/3/20009/5/200011/8/20001/11/20013/16/20015/19/20017/22/20019/24/200111/27/20011/30/20024/4/20026/7/20028/10/200210/13/200212/16/20022/18/20034/23/20036/26/20038/29/200311/1/20031/4/20043/8/20045/11/20047/14/20049/16/200411/19/20041/22/20053/2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年白糖道路運輸服務(wù)協(xié)議范例版B版
- 2024年社區(qū)便利店商品庫存管理與銷售預(yù)測合同3篇
- 2024版服務(wù)器租賃合同下載
- 2024年高速公路拓寬工程征收補償合同
- 2024年生物醫(yī)藥研發(fā)與許可協(xié)議
- 西藏集中式光伏電站(10MW以上)建設(shè)流程
- oqc組長崗位職責(zé)(共5篇)
- 2023年第一季度思想?yún)R報
- 老年護(hù)理-復(fù)習(xí)題
- 2025年度建筑工程施工安全管理及文明施工責(zé)任書3篇
- 如何認(rèn)識和欣賞《楚辭》
- 幼兒園英語教學(xué)計劃模板述職匯報
- T-ISEAA 001-2020 網(wǎng)絡(luò)安全等級保護(hù)測評高風(fēng)險判定指引
- QC成果提高地下室剪力墻混凝土施工質(zhì)量
- 子宮內(nèi)膜癌護(hù)理查房
- 神通數(shù)據(jù)庫管理系統(tǒng)v70企業(yè)版5安裝部署手冊
- 信息部年終工作總結(jié)(2篇)
- 化工廠有限公司年終工作總結(jié)
- JJF 1089-2002滾動軸承徑向游隙測量儀校準(zhǔn)規(guī)范
- GB/T 4348.1-2013工業(yè)用氫氧化鈉氫氧化鈉和碳酸鈉含量的測定
- GB/T 3745.1-1983卡套式三通管接頭
評論
0/150
提交評論