版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高一上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如果且,那么直線不經(jīng)過()A第一象限 B.第二象限C.第三象限 D.第四象限2.若函數(shù)f(x)=,則f(f())=()A.4 B.C. D.3.一個幾何體的三視圖如圖所示,則該幾何體的表面積為A. B.C. D.4.中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學的“對稱美”.如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,充分體現(xiàn)了相互變化、對稱統(tǒng)一的形式美、和諧美.給出定義:能夠?qū)A(為坐標原點)的周長和面積同時平分的函數(shù)稱為這個圓的“優(yōu)美函數(shù)”.給出下列命題:①對于任意一個圓,其“優(yōu)美函數(shù)”有無數(shù)個;②函數(shù)可以是某個圓的“優(yōu)美函數(shù)”;③正弦函數(shù)可以同時是無數(shù)個圓的“優(yōu)美函數(shù)”;④函數(shù)是“優(yōu)美函數(shù)”的充要條件為函數(shù)的圖象是中心對稱圖形A.①④ B.①③④C.②③ D.①③5.關(guān)于的不等式恰有2個整數(shù)解,則實數(shù)的取值范圍是()A. B.C. D.6.函數(shù)的最大值與最小值分別為()A.3,-1 B.3,-2C.2,-1 D.2,-27.對于每個實數(shù)x,設(shè)取兩個函數(shù)中的較小值.若動直線y=m與函數(shù)的圖象有三個不同的交點,它們的橫坐標分別為,則的取值范圍是()A. B.C. D.8.下列關(guān)于集合的關(guān)系式正確的是A. B.C. D.9.定義在上的偶函數(shù)滿足當時,,則A. B.C. D.10.一個扇形的弧長與面積都是5,則這個扇形圓心角的弧度數(shù)為A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則的最小值為_______________.12.若,則該函數(shù)定義域為_________13.如果函數(shù)滿足在集合上的值域仍是集合,則把函數(shù)稱為H函數(shù).例如:就是H函數(shù).下列函數(shù):①;②;③;④中,______是H函數(shù)(只需填寫編號)(注:“”表示不超過x的最大整數(shù))14.已知函數(shù),若,使得,則實數(shù)a的取值范圍是___________.15.已知扇形的面積為4,圓心角為2弧度,則該扇形的弧長為_________16.函數(shù)的最小值為______三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知角的頂點與原點重合,始邊與軸的非負半軸重合,它的終邊在直線上.(1)求的值;(2)求值18.已知函數(shù)的最小值為0(1)求a的值:(2)若在區(qū)間上的最大值為4,求m的最小值19.已知全集,集合,集合.(1)若,求;(2)若“”是“”必要不充分條件,求實數(shù)的取值范圍.20.某藥物研究所開發(fā)了一種新藥,根據(jù)大數(shù)據(jù)監(jiān)測顯示,病人按規(guī)定的劑量服藥后,每毫升血液中含藥量y(微克)與時間x(小時)之間的關(guān)系滿足:前1小時內(nèi)成正比例遞增,1小時后按指數(shù)型函數(shù)y=max?1(m,a為常數(shù),且0<a<1)圖象衰減.如圖是病人按規(guī)定的劑量服用該藥物后,每毫升血液中藥物含量隨時間變化的曲線.(1)當a=時,求函數(shù)y=f(x)的解析式,并求使得y≥1的x的取值范圍;(2)研究人員按照M=的值來評估該藥的療效,并測得M≥時此藥有療效.若病人某次服藥后測得x=3時每毫升血液中的含藥量為y=8,求此次服藥有療效的時長.21.定義:若對定義域內(nèi)任意x,都有(a為正常數(shù)),則稱函數(shù)為“a距”增函數(shù)(1)若,(0,),試判斷是否為“1距”增函數(shù),并說明理由;(2)若,R是“a距”增函數(shù),求a的取值范圍;(3)若,(﹣1,),其中kR,且為“2距”增函數(shù),求的最小值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由條件可得直線的斜率的正負,直線在軸上的截距的正負,進而可得直線不經(jīng)過的象限【詳解】解:由且,可得直線斜率為,直線在y軸上的截距,故直線不經(jīng)過第三象限,故選C【點睛】本題主要考查確定直線位置的幾何要素,屬于基礎(chǔ)題2、C【解析】由題意結(jié)合函數(shù)的解析式求解函數(shù)值即可.【詳解】由函數(shù)的解析式可得:,.故選C【點睛】本題考查函數(shù)值的求法,考查函數(shù)性質(zhì)等基礎(chǔ)知識,考查運算求解能力,考查函數(shù)與方程思想,是基礎(chǔ)題3、D【解析】該幾何體為半圓柱,底面為半徑為1的半圓,高為2,因此表面積為,選D.4、D【解析】根據(jù)定義分析,優(yōu)美函數(shù)具備的特征是,函數(shù)關(guān)于圓心(即坐標原點)呈中心對稱.【詳解】對①,中心對稱圖形有無數(shù)個,①正確對②,函數(shù)是偶函數(shù),不關(guān)于原點成中心對稱.②錯誤對③,正弦函數(shù)關(guān)于原點成中心對稱圖形,③正確.對④,充要條件應(yīng)該是關(guān)于原點成中心對稱圖形,④錯誤故選D【點睛】仔細閱讀新定義問題,理解定義中優(yōu)美函數(shù)的含義,找到中心對稱圖形,即可判斷各項正誤.5、B【解析】由已知及一元二次不等式的性質(zhì)可得,討論a結(jié)合原不等式整數(shù)解的個數(shù)求的范圍,【詳解】由恰有2個整數(shù)解,即恰有2個整數(shù)解,所以,解得或,①當時,不等式解集為,因為,故2個整數(shù)解為1和2,則,即,解得;②當時,不等式解集為,因為,故2個整數(shù)解為,則,即,解得.綜上所述,實數(shù)的取值范圍為或.故選:B.6、D【解析】分析:將化為,令,可得關(guān)于t的二次函數(shù),根據(jù)t的取值范圍,求二次函數(shù)的最值即可.詳解:利用同角三角函數(shù)關(guān)系化簡,設(shè),則,根據(jù)二次函數(shù)性質(zhì)當時,y取最大值2,當時,y取最小值.故選D.點睛:本題考查三角函數(shù)有關(guān)的最值問題,此類問題一般分為兩類,一種是解析式化為的形式,用換元法求解;另一種是將解析式化為的形式,根據(jù)角的范圍求解.7、C【解析】如圖,作出函數(shù)的圖象,其中,設(shè)與動直線的交點的橫坐標為,∵圖像關(guān)于對稱∴∵∴∴故選C點睛:本題首先考查新定義問題,首先從新定義理解函數(shù),為此解方程,確定分界點,從而得函數(shù)的具體表達式,畫出函數(shù)圖象,通過圖象確定三個數(shù)中具有對稱關(guān)系,,因此只要確定的范圍就能得到的范圍.8、A【解析】因為{0}是含有一個元素的集合,所以{0}≠,故B不正確;元素與集合間不能劃等號,故C不正確;顯然相等,故D不正確.故選:A9、B【解析】分析:先根據(jù)得周期為2,由時單調(diào)性得單調(diào)性,再根據(jù)偶函數(shù)得單調(diào)性,最后根據(jù)單調(diào)性判斷選項正誤.詳解:因為,所以周期為2,因為當時,單調(diào)遞增,所以單調(diào)遞增,因為,所以單調(diào)遞減,因為,,所以,,,,選B.點睛:利用函數(shù)性質(zhì)比較兩個函數(shù)值或兩個自變量的大小,首先根據(jù)函數(shù)的奇偶性轉(zhuǎn)化為單調(diào)區(qū)間上函數(shù)值,最后根據(jù)單調(diào)性比較大小,要注意轉(zhuǎn)化在定義域內(nèi)進行.10、D【解析】,又,故選D考點:扇形弧長公式二、填空題:本大題共6小題,每小題5分,共30分。11、##225【解析】利用基本不等式中“1”的妙用即可求解.【詳解】解:因為,所以,當且僅當,即時等號成立,所以的最小值為.故答案為:.12、【解析】由,即可求出結(jié)果.【詳解】因為,所以,解得,所以該函數(shù)定義域為.故答案為【點睛】本題主要考查函數(shù)的定義域,根據(jù)正切函數(shù)的定義域,即可得出結(jié)果,屬于基礎(chǔ)題型.13、③④【解析】根據(jù)新定義進行判斷.【詳解】根據(jù)定義可以判斷①②在集合上的值域不是集合,顯然不是H函數(shù).③④是H函數(shù).③是H函數(shù),證明如下:顯然,不妨設(shè),可得,即,恒有成立,滿足,總存在滿足是H函數(shù).④是H函數(shù),證明如下:顯然,不妨設(shè),可得,即,恒有成立,滿足,總存在滿足H函數(shù).故答案為:③④14、【解析】將“對,使得,”轉(zhuǎn)化為,再根據(jù)二次函數(shù)的性質(zhì)和指數(shù)函數(shù)的單調(diào)性求得最值代入即可解得結(jié)果.【詳解】當時,,∴當時,,當時,為增函數(shù),所以時,取得最大值,∵對,使得,∴,∴,解得.故答案為:.15、4【解析】設(shè)扇形半徑為,弧長為,則,解得考點:角的概念,弧度的概念16、【解析】根據(jù),并結(jié)合基本不等式“1”的用法求解即可.【詳解】解:因為,所以,當且僅當時,等號成立故函數(shù)的最小值為.故答案為:三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2)或;【解析】(1)在直線上任取一點,由已知角的終邊過點,利用誘導公式與三角函數(shù)定義即可求解,要注意分類討論m的正負.(2)先利用商的關(guān)系化簡原式為,結(jié)合第一問利用三角函數(shù)定義分別求得與,要注意分類討論m的正負.【詳解】(1)在直線上任取一點,由已知角的終邊過點,,,利用誘導公式與三角函數(shù)定義可得:,當時,;當時,(2)原式同理(1)利用三角函數(shù)定義可得:,當時,,,此時原式;當時,,,此時原式;【點睛】易錯點睛:本題考查三角函數(shù)化簡求值,解本題時要注意的事項:角的終邊在直線上,但未確定在象限,要分類討論,考查學生的轉(zhuǎn)化能力與運算解能力,屬于中檔題.18、(1)2(2)【解析】(1)根據(jù)輔助角公式化簡,由正弦型函數(shù)的最值求解即可;(2)由所給自變量的范圍及函數(shù)由最大值4,確定即可求解.【小問1詳解】,,解得.【小問2詳解】由(1)知,當時,,,,解得,.19、(1)(2)【解析】(1)求出集合,利用補集和交集的定義可求得;(2)分析可知且,可得出關(guān)于實數(shù)的不等式組,由此可解得實數(shù)的取值范圍.【小問1詳解】解:當時,,則或,,因此,.【小問2詳解】解:因為“”是“”必要不充分條件,于是得且,所以,,解得.所以實數(shù)的取值范圍是.20、(1),(2)小時【解析】(1)根據(jù)圖像求出解析式;令直接解出的取值范圍;(2)先求出,得到,根據(jù)單調(diào)性計算出解集即可.【小問1詳解】當時,與成正比例,設(shè)為,則;所以,當時,故當時,令解得:,當時,令得:,綜上所述,使得的的取值范圍為:【小問2詳解】當時,,解得所以,則令,解得,由單調(diào)性可知的解集為,所以此次服藥產(chǎn)生療效的時長為小時21、(1)見解析;(2);(3).【解析】(1)利用“1距”增函數(shù)的定義證明即可;(2)由“a距”增函數(shù)的定義得到在上恒成立,求出a的取值范圍即可;(3)由為“2距”增函數(shù)可得到在恒成立,從而得到恒成立,分類討論可得到的取值范圍,再由,可討論出的最小值【詳解】(1)任意,,因為,,所以,所以,即是“1距”增函數(shù)(2).因為是“
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年中圖版選修3物理上冊月考試卷含答案
- 2024-2025學年姜堰市三上數(shù)學期末達標檢測模擬試題含解析
- 以創(chuàng)新為導向的小學數(shù)學教學方法實踐與反思
- 2024年科研機構(gòu)博士后招聘及科研合作合同3篇
- 2025中國鐵塔甘肅分公司社會招聘60人高頻重點提升(共500題)附帶答案詳解
- 2025中國移動四川公司招聘高頻重點提升(共500題)附帶答案詳解
- 2025中國石化茂名石化分公司畢業(yè)生招聘42人高頻重點提升(共500題)附帶答案詳解
- 2025中國農(nóng)業(yè)科學院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所公開招聘1人高頻重點提升(共500題)附帶答案詳解
- 2025中南財經(jīng)政法大學學工部(學生資助管理中心)招聘非事業(yè)編制人員1人歷年高頻重點提升(共500題)附帶答案詳解
- 2025東麗紅橋南開事業(yè)單位考試終極預(yù)測之玩轉(zhuǎn)言語高頻重點提升(共500題)附帶答案詳解
- 鄭州2024年河南鄭州市惠濟區(qū)事業(yè)單位80人筆試歷年參考題庫頻考點試題附帶答案詳解
- 深靜脈血栓的手術(shù)預(yù)防
- 死亡醫(yī)學證明管理規(guī)定(3篇)
- 2024-2030年中國三氧化二砷行業(yè)運行狀況及發(fā)展可行性分析報告
- 法律相關(guān)職業(yè)規(guī)劃
- 2024年制造業(yè)代工生產(chǎn)保密協(xié)議樣本版
- 腹腔鏡全胃切除手術(shù)配合
- 學生體質(zhì)健康狀況與體能發(fā)展質(zhì)量的幾個問題課件
- 礦山開發(fā)中介合同范例
- 醫(yī)美整形退款協(xié)議書范本下載
- 國開(天津)2024年秋《傳感器技術(shù)》終結(jié)性考核答案
評論
0/150
提交評論