2023屆山東省東營市墾利區(qū)第一中學高一數(shù)學第一學期期末質(zhì)量檢測試題含解析_第1頁
2023屆山東省東營市墾利區(qū)第一中學高一數(shù)學第一學期期末質(zhì)量檢測試題含解析_第2頁
2023屆山東省東營市墾利區(qū)第一中學高一數(shù)學第一學期期末質(zhì)量檢測試題含解析_第3頁
2023屆山東省東營市墾利區(qū)第一中學高一數(shù)學第一學期期末質(zhì)量檢測試題含解析_第4頁
2023屆山東省東營市墾利區(qū)第一中學高一數(shù)學第一學期期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年高一上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.“x>1”是“x>0”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.函數(shù)的部分圖象如圖所示,則的值為()A. B.C. D.3.函數(shù)的圖像的一條對稱軸是()A. B.C. D.4.已知集合,則中元素的個數(shù)為A.1 B.2C.3 D.45.已知圓錐的底面半徑為,且它的側(cè)面開展圖是一個半圓,則這個圓錐的體積為()A. B.C. D.6.已知集合,若,則()A.-1 B.0C.2 D.37.方程的所有實數(shù)根組成的集合為()A. B.C. D.8.已知函數(shù),則是A.最小正周期為的奇函數(shù) B.最小正周期為的偶函數(shù)C.最小正周期為的奇函數(shù) D.最小正周期為的偶函數(shù)9.已知函數(shù),且在上的最大值為,若函數(shù)有四個不同的零點,則實數(shù)a的取值范圍為()A. B.C. D.10.已知函數(shù),則()A.-1 B.2C.1 D.5二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.已知函數(shù),的值域為,則實數(shù)的取值范圍為__________.12.求方程在區(qū)間內(nèi)的實數(shù)根,用“二分法”確定的下一個有根的區(qū)間是____________.13.已知是定義在上的奇函數(shù),當時,,函數(shù)如果對,,使得,則實數(shù)m的取值范圍為______14.冪函數(shù)y=f(x)的圖象過點(2,8),則15.函數(shù)的定義域是____________.(用區(qū)間表示)三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.已知函數(shù).(1)判斷并證明函數(shù)的奇偶性;(2)判斷當時函數(shù)的單調(diào)性,并用定義證明.17.設函數(shù)(1)寫出函數(shù)的最小正周期及單調(diào)遞減區(qū)間;(2)當時,函數(shù)的最大值與最小值的和為,求不等式的解集18.已知函數(shù).(1)求函數(shù)的定義域;(2)若實數(shù),且,求的取值范圍.19.已知集合,集合.(Ⅰ)求、、;(Ⅱ)若集合且,求實數(shù)的取值范圍.20.若實數(shù),,滿足,則稱比遠離.(1)若比遠離,求實數(shù)的取值范圍;(2)若,,試問:與哪一個更遠離,并說明理由.21.已知函數(shù)的定義域為.(1)求;(2)設集合,若,求實數(shù)的取值范圍.

參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、A【解析】根據(jù)充分、必要條件間的推出關(guān)系,判斷“x>1”與“x>0”的關(guān)系.【詳解】“x>1”,則“x>0”,反之不成立.∴“x>1”是“x>0”的充分不必要條件.故選:A.2、C【解析】由函數(shù)的部分圖象得到函數(shù)的最小正周期,求出,代入求出值,則函數(shù)的解析式可求,取可得的值.【詳解】由圖象可得函數(shù)的最小正周期為,則.又,則,則,,則,,,則,,則,.故選:C.【點睛】方法點睛:根據(jù)三角函數(shù)的部分圖象求函數(shù)解析式的方法:(1)求、,;(2)求出函數(shù)的最小正周期,進而得出;(3)取特殊點代入函數(shù)可求得的值.3、C【解析】對稱軸穿過曲線的最高點或最低點,把代入后得到,因而對稱軸為,選.4、A【解析】利用交集定義先求出A∩B,由此能求出A∩B中元素的個數(shù)【詳解】∵集合∴A∩B={3},∴A∩B中元素的個數(shù)為1故選A【點睛】本題考查交集中元素個數(shù)的求法,是基礎題,解題時要認真審題,注意交集定義的合理運用5、A【解析】半徑為的半徑卷成一圓錐,則圓錐的母線長為,設圓錐的底面半徑為,則,即,∴圓錐的高,∴圓錐的體積,所以的選項是正確的6、C【解析】根據(jù)元素與集合的關(guān)系列方程求解即可.【詳解】因為,所以或,而無實數(shù)解,所以.故選:C7、C【解析】首先求出方程的解,再根據(jù)集合的表示方法判斷即可;【詳解】解:由,解得或,所以方程的所有實數(shù)根組成的集合為;故選:C8、B【解析】先求得,再根據(jù)余弦函數(shù)的周期性、奇偶性,判斷各個選項是否正確,從而得出結(jié)論【詳解】∵,∴=,∵,且T=,∴是最小正周期為偶函數(shù),故選B.【點睛】本題主要考查誘導公式,余弦函數(shù)的奇偶性、周期性,屬于基礎題9、B【解析】由在上最大值為,討論可求出,從而,若有4個零點,則函數(shù)與有4個交點,畫出圖象,結(jié)合圖象求解即可【詳解】若,則函數(shù)在上單調(diào)遞增,所以的最小值為,不合題意,則,要使函數(shù)在上的最大值為如果,即,則,解得,不合題意;若,即,則解得即,則如圖所示,若有4個零點,則函數(shù)與有4個交點,只有函數(shù)的圖象開口向上,即當與)有一個交點時,方程有一個根,得,此時函數(shù)有二個不同的零點,要使函數(shù)有四個不同的零點,與有兩個交點,則拋物線的圖象開口要比的圖象開口大,可得,所以,即實數(shù)a的取值范圍為故選:B【點睛】關(guān)鍵點點睛:此題考查函數(shù)與方程的綜合應用,考查二次函數(shù)的性質(zhì)的應用,考查數(shù)形結(jié)合的思想,解題的關(guān)鍵是由已知條件求出的值,然后將問題轉(zhuǎn)化為函數(shù)與有4個交點,畫出函數(shù)圖象,結(jié)合圖象求解即可,屬于較難題10、A【解析】求分段函數(shù)的函數(shù)值,將自變量代入相應的函數(shù)解析式可得結(jié)果.【詳解】∵在這個范圍之內(nèi),∴故選:A.【點睛】本題考查分段函數(shù)求函數(shù)值的問題,考查運算求解能力,是簡單題.二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、##【解析】由題意,可令,將原函數(shù)變?yōu)槎魏瘮?shù),通過配方,得到對稱軸,再根據(jù)函數(shù)的定義域和值域確定實數(shù)需要滿足的關(guān)系,列式即可求解.【詳解】設,則,∵,∴必須取到,∴,又時,,,∴,∴.故答案為:12、【解析】根據(jù)二分法的步驟可求得結(jié)果.【詳解】令,因為,,,所以下一個有根的區(qū)間是.故答案為:13、【解析】先求出時,,,然后解不等式,即可求解,得到答案【詳解】由題意,可知時,為增函數(shù),所以,又是上的奇函數(shù),所以時,,又由在上的最大值為,所以,,使得,所以.故答案為【點睛】本題主要考查了函數(shù)的奇偶性的判定與應用,以及函數(shù)的最值的應用,其中解答中轉(zhuǎn)化為是解答的關(guān)鍵,著重考查了轉(zhuǎn)化思想,推理與運算能力,屬于基礎題.14、64【解析】由冪函數(shù)y=f(x)=xα的圖象過點(2,8)【詳解】∵冪函數(shù)y=f(x)=xα的圖象過點∴2α=8∴f(x)=x∴f(4)=故答案為64【點睛】本題考查冪函數(shù)概念,考查運算求解能力,是基礎題15、【解析】函數(shù)定義域為故答案為.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(1)函數(shù)為奇函數(shù),證明見解析(2)在上為增函數(shù),證明見解析【解析】(1)先判斷奇偶性,根據(jù)奇函數(shù)的定義證明即可;(2)先判斷單調(diào)性,根據(jù)函數(shù)單調(diào)性的定義法證明即可.【小問1詳解】函數(shù)為奇函數(shù).證明如下:∵定義域為R,又,∴為奇函數(shù).【小問2詳解】函數(shù)在為單調(diào)增函數(shù).證明如下:任取,則∵,∴,,∴,即,故在上為增函數(shù).17、(1)最小正周期為;遞減區(qū)間為:;(2)【解析】(1)化函數(shù)為正弦型函數(shù),求出它的最小正周期和單調(diào)遞減區(qū)間;(2)根據(jù)時求得的最大值和最小值,由此求得的值,再求不等式的解集【詳解】(1),∴,令,∴,∴函數(shù)的遞減區(qū)間為:(2)由得:,∴,,∴,∴,∴,又,∴不等式的解集為【點睛】方法點睛:三角函數(shù)的一般性質(zhì)研究:1.周期性:根據(jù)公式可求得;2.單調(diào)性:令,解出不等式,即可求出函數(shù)的單調(diào)遞增區(qū)間;令,解出不等式,即可求出函數(shù)的單調(diào)遞減區(qū)間.18、(1);(2).【解析】(1)要使有意義,則即,要使有意義,則即求交集即可求函數(shù)的定義域;(2)實數(shù),且,所以即可得出的取值范圍.試題解析:(1)要使有意義,則即要使有意義,則即所以的定義域.(2)由(1)可得:即所以,故的取值范圍是19、(1),,;(2).【解析】(1)通過解不等式求得,故可求得,.求得,故可得.(2)由可得,結(jié)合數(shù)軸轉(zhuǎn)化為不等式組求解即可試題解析:(1),,∴,,∵,∴.(2)∵,∴,∴,解得.∴實數(shù)的取值范圍為[20、(1);(2)比更遠離,理由見解析.【解析】(1)由絕對值的幾何意義可得,即可求的取值范圍;(2)只需比較大小,討論、分別判斷代數(shù)式的大小關(guān)系,即知與哪一個更遠離.【小問1詳解】由比遠離,則,即.∴或,得:或.∴的取值范圍是.【小問2詳解】因為,有,因為,所以從而,①當時,,即;②當時,,又,則∴,即綜上,,即比更遠離21、(1)A(2)【解析】(1)由函數(shù)的解析式分別令真數(shù)為正數(shù),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論