版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
IncollaborationwithMEXTTechnologyCenterUnlockingValuefromArtificialIntelligenceinManufacturingWHITEPAPERDECEMBER 2022Cover:JianFan,GettyImages–Inside:GettyImagesContentsForewordExecutivesummaryIntroduction1UnlockingvalueinmanufacturingthroughAI2SheddinglightoncommonbarrierstoindustrialAIadoption3AcollectionofAIapplicationsinmanufacturing4Astep-by-stepapproachtoimplementingscalableindustrialAIapplicationsConclusionContributorsEndnotesDisclaimerThisdocumentispublishedbytheWorldEconomicForumasacontributiontoaproject,insightareaorinteraction.Thefindings,interpretationsandconclusionsexpressedhereinarearesultofacollaborativeprocessfacilitatedandendorsedbytheWorldEconomicForumbutwhoseresultsdonotnecessarilyrepresenttheviewsoftheWorldEconomicForum,northeentiretyofitsMembers,Partnersorotherstakeholders.?2022WorldEconomicForum.Allrightsreserved.Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,includingphotocopyingandrecording,orbyanyinformationstorageandretrievalsystem.UnlockingValuefromArtificialIntelligenceinManufacturing 2December2022 UnlockingValuefromArtificialIntelligenceinManufacturingForeword?zgürBurakAkkolChairman,TurkishEmployers’AssociationofMetalIndustriesTürkiyehasestablisheditselfasakeyglobalplayerinadvancedmanufacturingandaimstoboostitspositionthroughFourthIndustrialRevolutiontechnologies.Inrecentdecades,thecountryhasmadesignificanteffortstopositionitselfasaglobalinnovationhub,excellingindevelopingstate-of-the-arttechnologiesinground-breakingcompaniesinvariousfields.Artificialintelligence(AI)technologyapplicationsarepartofthiseffort.Inprinciple,AIcouldunlockmorethan$13trillionintheglobaleconomyandboostGDPby2%peryear.1However,companiesstruggletotapintothevaluethatAIapplicationscancreate.ThispaperseekstouncoverthehiddenpotentialofAIinthemanufacturingsectorandtherespectiveend-to-endsystemsbyprovidingpracticalusecasesandcriticalenablerstohelpharnessitspotential.Coupledwiththeenergycrisisandmaterialshortagesfacingtheworld,manufacturingplayersneedtogobeyondtraditionaloperatingmethodstodriveefficiencyandsustainability.Thetwinchallengesoftechnologicalprogressandsocio-politicaldistresscallfornewformsofcooperationthatrespondtoheighteneddemandforlocalizationwhilerecognizingthedriversofconnectivitythatshapeglobalimpact.Acknowledgingthis,theCentrefortheFourthIndustrialRevolutioninTürkiye–mandatedbythe
JeremyJurgensManagingDirector,WorldEconomicForumMinistryofIndustryandTechnologyandestablishedbytheTurkishEmployers’AssociationofMetalIndustries(MESS)–joinedtheWorldEconomicForum’sCentrefortheFourthIndustrialRevolutionNetwork,theforemostplatformhelpingleadersanticipateemergingtechnologiesanddrivetheirinclusiveandsustainableadoption.Thenetworklinkson-the-groundexperienceandactionwithglobalnetwork-basedcollaboration,learningandscaling.ThiswhitepaperisanoutputoftheongoingpartnershipbetweentheForum’sPlatformforShapingtheFutureofAdvancedManufacturingandValueChainsandPlatformforShapingtheFutureofTechnologyGovernance:ArtificialIntelligenceandMachineLearning,theCentrefortheFourthIndustrialRevolutionAffiliateinTürkiyeandMESS.Ithighlightscasestudiesfromorganizationsontheimpact,feasibilityandscalabilityofAIinmanufacturing.Itidentifiesseveralopportunitiesandlessonsfromthecommunityonhowtoincreaseoperationalefficiency,sustainabilityandworkforceengagementinmanufacturingandvaluechainsbyusingAI.Wehopethisreportwillprovidedecision-makerswithabetterunderstandingofhowtounlocktheuntappedpotentialofindustrialartificialintelligence(AI).Welookforwardtocollaboratingwithyoutodeploythesetechnologiesresponsibly.UnlockingValuefromArtificialIntelligenceinManufacturing 3ExecutivesummaryRecentglobaldevelopmentsandanever-growinglistofshocksanddisruptionshaveputfurtherstrainonalreadyshakenglobalvaluechains.Thecomplexityofcurrentchallengesimpactingmanufacturingandvaluechainscallsfortheneedtogobeyondthetraditionalmeansofdrivingproductivitytouncoverthenextwaveofvalueforbusinesses,theworkforceandtheenvironment.Artificialintelligence(AI)isacrucialenablerofindustrytransformation,openingnewwaystoaddressbusinessproblemsandunlockinnovationwhiledrivingoperationalperformance,sustainabilityandinclusion.EventhoughtheimpactofAIapplicationsonmanufacturingprocessesisknown,thefullopportunityfromtheirdeploymentisstilltobeuncoveredduetoanumberoforganizationalandtechnicalroadblocks.Recognizingthisneed,theCentrefortheFourthIndustrialRevolutionTürkiye,togetherwiththeWorldEconomicForum’sPlatformforShapingtheFutureofAdvancedManufacturingandValueChainsandPlatformforShapingtheFutureofTechnologyGovernance:ArtificialIntelligenceandMachineLearning,convenedindustry,technologyandacademicexpertstoshedlightonthesechallengesandproposeastep-by-stepapproachtoovercomethem.TheconsultationsrevealedsixmainchallengeshinderingtheadoptionandscalingofAIapplicationsinmanufacturing:AmismatchbetweenAIcapabilitiesandoperationalneedsTheabsenceofastrategicapproachandleadershipcommunicationInsufficientskillsattheintersectionofAIandoperationsDataavailabilityandtheabsenceofadatagovernancestructureAlackofexplainableAImodelsinmanufacturingSignificantcustomizationeffortsacrossmanufacturingusecases
Theconsultationsshowthatleadingmanufacturershavesuccessfullyovercomethechallengesmentionedabove,implementingavarietyofAIapplicationsandachievingapositiveimpactonoperationalperformance,sustainabilityandworkforceengagement,mainlyinsixareas:healthandsafety,quality,maintenance,productionprocesses,thesupplychain,andenergymanagement.WhileopportunitiesenabledbyAIinmanufacturingarepromisingandattractingmanyleaders,organizationsarelookingforacommonframeworkthatoutlineshowtoimplementAIsolutionsandensureasuccessfulreturnoninvestment.Basedontheconsultations,thiswhitepaperpresentsonestep-by-stepprocessasanexampleofhowitispossibletoovercomebarriers,usingtheAINavigator2developedbytheINCInventionCenterasareference:Phase0:Initiationtobuildthefundamentals–strategy,dataandworkforcePhase1:Ideationtoidentifypotentialusecasesandconductapre-selectionPhase2:AssessmenttoselectusecasesandidentifyprioritiesviagapanalysisPhase3:FeasibilitytocompleteallrequiredtestsandstudiesPhase4:Implementation,whichrequiresiterationandpilotingusingagileprojectmanagementMovingforward,theWorldEconomicForumandtheCentrefortheFourthIndustrialRevolutionTürkiyewillcontinuetoworkcloselywithstakeholdersintheCentrefortheFourthIndustrialRevolutionNetworkandacrossindustriestoacceleratethejourneytocapturevaluefromAIinmanufacturingglobally.ItwilloffertheTurkishEmployers’AssociationofMetalIndustries(MESS)TechnologyCentreasauniquetestingandcollaborationsystemforbusinessestopilotnewAIapplicationsandfosteracollaborativeapproachamongadiversegroupofstakeholderstoensuretherightAIcapabilitiesarebuiltinmanufacturingandrolledoutworldwide.UnlockingValuefromArtificialIntelligenceinManufacturing 4IntroductionCompaniesacrossvaluechainsarenowfacinganenergycrisisandmaterialandkeycomponentshortages,evenastheyarestillrecoveringfromandadaptingtoCOVID-19impacts.Thecomplexityofthechallengesimpactingoperationscallsfortheneedtogobeyondthetraditionalmeansofdrivingproductivitytouncoverthenextwaveofvalueandaddresssustainabilityandworkforcechallenges.Artificialintelligence(AI)canenableanewerainthedigitaltransformationjourney,offeringtremendouspotentialtotransformindustriestogaingreaterefficiency,sustainabilityandworkforceengagementbygeneratingnewinsightsfromlargeamountsofdata.However,despitethispromisingvaluecreationpotential,thedeploymentofAIinmanufacturingandvaluechainsisstillbelowexpectedlevels.Basedonaglobalsurveyconductedoverthelastfouryearsofmorethan3,000companiesacrossindustriesandgeographies,agrowingnumberofcompaniesrecognizethebusinessimperativetoimprovetheirAIcompetencies:–70%ofrespondentsunderstandhowAIcangeneratebusinessvalue–59%haveanAIstrategyinplace–57%affirmthattheircompaniesarepilotingordeployingAI.Despitethesetrends,only1in10companiesbelievetheygeneratesignificantfinancialbenefitswithAI.3
WhilemanufacturersacknowledgetheimportanceandurgencyofembeddingAIintheirprocessesandwhileleadingcompanieshavealreadyinternalizeditintheirbusinessprocesses,manyarebecomingdisillusionedwiththeireffortstocapturevaluefromitandlagindevelopingtherightAIcapabilities.UnderstandingthepurposeandroleofAIiskeytosolvingmanufacturingchallenges.Withaproblem-orientedapproach,AIeffortscanbelinkedtoclearbusinesstargets,givingbusinessunitsandbusinessfunctionsajointinterestinmakingthetransformationsuccessful.4ThiswhitepapershedslightonthebenefitsthatcanbeachievedthroughindustrialAIandthesuccessfulAIapplicationsimplementedacrossindustries,lessonslearnedandtangibleimpacts.ConsultationsconductedwiththemultistakeholderinitiativecommunityfindthatindustrialAIhelpspeopleworkinasmarter,saferandmoreefficientway.However,tounlockitsfullpotential,companiesrequireanunderstandingofcurrentbarrierstoadoptionandastructuredapproachtoovercomethem.Therefore,thispaperalsopresentsoneexampleofastep-by-stepguidetosuccessfullyimplementingscalableindustrialAIusecases.UnlockingValuefromArtificialIntelligenceinManufacturing 5UnlockingvalueinmanufacturingthroughAIAIapplicationsinmanufacturinghelpincreaseoperationalperformance,drivethesustainabilityagendaandempowertheworkforce.Theartificialintelligence(AI)revolutionallowstheconversionoflargeamountsofdataintoactionableinsightsandpredictionsthatcanprovideimpetustodata-drivenprocesses.ManufacturingcompaniescapturevaluefromAIusingdifferentmechanisms,themostcommonbeingeliminatingredundantwork,solvingexistingproblemsandrevealinghiddenvaluebyanalysingandrecognizingpatternsindata.AIisappliedtoaugmenttaskssuchasclassification,continuousestimation,clustering,optimization,anomalydetection,rankings,recommendationsanddatagenerationtosolveindustrialproblems.5ConsultationswithseniorexecutivesfromtheWorldEconomicForum’sPlatformforShapingtheFutureofAdvancedManufacturingandValueChainsandPlatformforShapingtheFutureofTechnologyGovernance:ArtificialIntelligenceandMachineLearning,aswellasmembersandpartnersoftheCentrefortheFourthIndustrialRevolution
Türkiye,findthatAIcanhelpdriveastep-changeinmanufacturing,yieldingsignificantbenefitsinthreecategories(figure1):–Operationalperformancebyautomatingandoptimizingroutineprocessesandtasks,increasingproductivityandoperationalefficiencies,improvingquality(e.g.reducingdefects,forecastingunwantedfailures)andoptimizingproductionparameters–Sustainabilitybyoptimizingmaterialandenergyusage,increasingenergyefficiencies,reducingscrapratesandextendingmachinelifespans–Workforceaugmentationbyguidingthedecision-makingprocessandparametersetting,enhancingtheaccuracyofpredictionsandforecasting,reducingrepetitivetasksandincreasinghuman-robotinteractionsUnlockingValuefromArtificialIntelligenceinManufacturing 6FIGURE1 DimensionsofvaluecreationwithAIinmanufacturingOperationalperformancePerformance(e.g.yieldoptimization)Throughput(e.g.fewerunwantedbreakdowns,decreasedleadtime)Quality(e.g.fewerprocessdefectsandfailurerates)Businessuptime(ductivetimeandcapacity)WorkforceaugmentationDecision-makingandplanningsupportCollaborationPredictionandforecastingaccuracyTaskautomationRisk(e.g.feedbackmechanismtoavoidincidentsandalarms)SustainabilityMaterialefficiencyEnergyefficiency(e.g.energysavingsandthermalefficiency)MachinelifetimeScraprateandusedmaterialUnlockingValuefromArtificialIntelligenceinManufacturing 7SheddinglightoncommonbarrierstoindustrialAIadoptionImplementingAIsolutionsrequirescontinuousprojectmanagementefforts,expectationmanagementandthenecessaryresources.Despitethispotential,companieshavenotyetfullyrealizedthevisionofAI-poweredmanufacturingsystems.TounlocktheuntappedvalueofindustrialAI,pinpointingthesourceofacompany’sstrugglesanddefiningtheroadblocksopenanewpathtothinkthroughandderivetherightsolutionstoovercomethem.AsthebarrierstoAIadoptionstemmainlyfromorganizational,strategicandtechnicalFIGURE2 BarrierstoAIadoptioninmanufacturing
components,understandingthemwillhelpidentifyapathwaytoimplementscalableAIapplications.Consultationswiththecommunityofover35senioroperationsexecutives,technologyexpertsandacademicshaveidentifiedsixchallengeshinderingtheadoptionofAIinmanufacturingandvaluechains(figure2).MismatchbetweenAIAbsenceofastrategicInsufficientskillsatthecapabilitiesandoperationalapproachandleadershipintersectionofAIandneedscommunicationoperationsDataavailabilityandLackofexplainableAISignificantcustomizationabsenceofadatamodelsinmanufacturingeffortsacrossgovernancestructuremanufacturingusecasesUnlockingValuefromArtificialIntelligenceinManufacturing 8MismatchbetweenAIcapabilitiesandoperationalneedsManufacturershaveoftenselectedAIprojectsbasedonexistingtechnicalcapabilitiesinsteadoffocusingontheimpactonbusinessoperations.ThematchbetweenbusinesspainpointsandAItechnologiesisnotalwaysthoroughlyconsidered.Therefore,AIsolutionsmaybetechnicallyfeasiblebutfailtosolvearelevant,impactfulproblemin
operations.Thiscausesamismatchofexpectationsandhinderstheirwideradoptioninmanufacturing.Buildingasolidbusinesscasewithaproblem-orientedapproachthatclearlydefinesbusinessneedsandevaluatingthevalueofanAIsolutioncomparedtoalternativesolutionsarethefirststepsinovercomingthatbarriertoadoptionandscale.AbsenceofastrategicapproachandleadershipcommunicationAclearcompany-wideAIstrategyandcommunicationplanareoftenignored.Withouttherightsponsorsandcommittedleaderstostartthedialogueandcollectthebuy-infromend-users,theonboardingofAIapplicationsacrossthecompanycan’toccurdue
toworkforcereluctance.AsAIischangingthewaysofworking,communicatingthestrategicapproach,benefitsandnewprocessescanhelpincreaseend-users’willingnesstoembraceitintheirroutines.InsufficientskillsattheintersectionofAIandoperationsExternalconsultantsorinformationtechnology(IT)expertswhohavealimitedunderstandingofthemanufacturingrequirementsontheshopflooroftenleadAIprojects.However,tobesuccessful,AIapplicationsrequiredevelopment
andimplementationbycross-functionalteamswithdiverseexpertiseattheconvergenceofIT,operationaltechnology(OT),dataandAItechnologies.Thisrequiresupskillingtheworkforceandattractingnewtalentinmanufacturing.UnlockingValuefromArtificialIntelligenceinManufacturing 9DataavailabilityandtheabsenceofadatagovernancestructureApplyingmachinelearningmodelsrequirestrainingonlargeamountsofdatatorecognizepatternsandrelationships.6However,manufacturingcompaniesoftenrelyonsmalldatasetsandfragmenteddata,hinderingtheaccuracyoftheresultinginsights.Evenwhenavailable,thesedatasetsmaynotrepresentappropriatefailurecasesorrelevantprocesssituationsandaremostlynotinteroperable.
Creatingasinglesourceofinformationensuresthatbusinessesoperatebasedonstandardized,relevantdataacrosstheorganization.Toovercomethischallenge,sharingdataacrosscompanies’boundariescansupportjointeffortstoadoptartificialintelligencetechniquesinthemanufacturingsectorandrely,inturn,onasetoforganizationalandtechnologicalsuccessfactors.7LackofexplainableAImodelsinmanufacturingTheperceptionofAImodelsascomplex,non-transparentanduninterpretablesystemshinderstheirdeployment.ManufacturersneedAImodelsthatareeitheropenandtransparenttobuildtrustinthepredictionsandspecificresultsorinterpretablefordomainexpertstoacceptthem.AI-providedpredictionsneedtobemeaningful,explainable
andaccurateandhaveawarningmechanisminplacetominimizerisks.ExplainableAItoolsandtechniquesallowexpertstoobtainjustificationsfortheirresultsinaformatthatmanufacturinguserscanunderstand.ThegreatertheconfidenceintheAI-poweredoutput,thefasterandmorewidelyAIdeploymentcanhappen.SignificantcustomizationeffortsacrossmanufacturingusecasesFactoriesarecomplexengineeredsystemsandAImodelsneedconfigurationtobeadaptedtoeachprocessandconformtoitsconstraints.Hence,itisnotpossibletosimplyapplytrainedAImodelsorpipelinesfromonemanufacturingusecasetoanother.Thedesignofthemachinelearningpipelineandthepre-processing,trainingand
testingofAImodelsstillneedmanualinterventionforcustomization,whichisnotyetfullyautomated.Additionally,industrialcompaniesstruggletofindcommerciallyavailablehardwareandsoftwarewithoff-the-shelfAIfeaturesthatrequireminorcustomization.Sheddinglightonthesechallengesandunderstandingthemcanhelpidentifytherightsolutionsandapproachestoovercomethem.UnlockingValuefromArtificialIntelligenceinManufacturing 10AcollectionofAIapplicationsinmanufacturingAIapplicationscanboostoperationalperformanceandleadtoapositiveimpactonsustainabilityandworkforceengagement.Consultationswithover35senioroperationsexecutivesandtechnologyexpertsfindthatleadingmanufacturingcompanieshavesuccessfullymanagedtoapproachandovercomethechallengesmentionedabovebystartingwiththeirbusinessneeds,outliningaclearstrategy,buildingcross-functionalcapabilitiesandputtingastrongerfocusondatagovernance,andselectingAImodelsthatmeettheirneeds.TheyhaveimplementedavarietyofAIapplicationsthathaveboostedtheiroperationalperformanceandledtoapositiveimpactonsustainabilityandworkforceengagement.
ToillustratethepotentialandfeasibilityofAIinmanufacturing,thecreationofanindustrialAIusecaselibrarywithinputfromthecommunityhasstarted.The23usecasescollectedacrossdifferentindustriescoversixmainapplicationareas:healthandsafety,quality,maintenance,productionprocess,supplychains,andenergymanagement(figure3).UnlockingValuefromArtificialIntelligenceinManufacturing 11FIGURE3 LeadingmanufacturersareimplementingavarietyofAIapplications1AIinmanufacturingusecases65Source:CompanyinterviewsEnergymanagementSupplychains–Energyoptimization–Futuredemandandprice–Electricitydemandforecastingforecasting–Heatingandcoolingoptimization–Supplychaincontroltower–Warrantyandservicemanagement
234Productionprocess–Processoptimization–Linebalancing–Productdesignanddevelopment–Processparameteroptimization–Productionplanning/decisionsupport
Healthandsafety–Employeehealth&safety:incidentprevention–Processsafety:advancedalarmanalyticsQuality–Qualityinspectioninassembly–Qualityassurance/defectinspection–Qualitytesting–QualitypredictionMaintenance–Machinehealthmonitoring:predictivemaintenance–MaintenanceplanningTheusecasescollectedprovidevaluableinsightsindicatingthebusinessneed,thesolutionimplementedandtheimpactachieved.Theapplicationsshowthatthereturnoninvestment(ROI)ispositiveandthepaybackperiodofthe
investmentsisusuallytangiblewithin1-2years.AfterpilotingtheAIapplicationsinonedivision,manufacturingcompanieseitherhavealreadydeployedtomultipledivisionsorhavethevisiontoscale.UnlockingValuefromArtificialIntelligenceinManufacturing 12TABLE1AcollectionofAIinmanufacturingusecasesUsecaseCompanySectorAIapplicationImpactModeldesignedasanexperiencedoperator/engineer–Totaltimeofalarmfloodsincontinuousestimationanddecreasedby40%classificationofalarms,detection–Numberofalarmsofnuisancealarms,alarmfloodProcesssafety:decreasedby50%Tüpra?,analysisandrecommendationadvancedEnergy–Timeefficiency:AlarmTürkiyeofbetterconfigurations.Rootalarmanalyticsrationalizationmeetingscauses,next-bestactionsandshortenedfrom4hourssafetysetpointsextractedfromtheto30minuteshistoricaldatathroughbasic&descriptiveanalyticsanddatasciencepre-processtechniquesHealthImagerecognitionbymonitoring–UnsafesituationsandEmployeetheshopfloorwithexistingactionsreducedby70-cameras,receivingreal-time80%health&Intenseye,Manufacturingalertnotificationsandenhancingsafety:incidentUSA–Withasaferenvironment,employeehealthandsafetypreventionamoreproductive(EHS)toeliminatelife-alteringworkforcewithincreasedinjuriesbusinessuptimecreatedExaminingtheeffective–Upto40%savingsachievedinenergyuseparametersontheframes–ScrapratereducedwhileReal-timespotMarturbeingweldedinroboticspotensuringsustainabilityinweldqualityFompak,Automotiveweldstations(weldquality)productionpredictionTürkiyeandpredictingthespotnugget–Costsreducedby60%diameterrealizedinlineinrealbypreventingtheuseoftimeexcessweldingmaterialsVisualinspectiontoensure–ProductivityincreasedDetectionofthecoatingqualityisgoodbyby11%Bosch,checkingpartsandsearchingfor–15millionpartscheckedcarboncoatingAutomotiveTürkiyecoatingdefectsinfourdifferenthadnoincidentsdefectsclasses:scratches,damages,blackinblack,silverQualityOptimizingqualityinspectionofcustomizedproductsbyQualitydeployingcloudservicesand–ProductivityincreasedbyassuranceafederatedlearningapproachHuawei,30-40%withfederatedProduction(localdatacollected,globalChina–Leadtimereducedlearninginoptimuminterpolatedandinturncontrolsharedbacktoalllocalfacilitieswithoutdisclosingsensibleproductorprocessdata)ExplainablecomputervisionmethodsusedtosupportfactoryQualityworkersindetectingassemblyinspectionEthonAI,ElectronicserrorsonprintedcircuitboardsinassemblySwitzerland(e.g.missing,faulty,orwrongverificationcomponents)viaahuman-AIinterface(camerasystemwithlivefeedback)
–10xlessimplementationeffortexpended–TrustworthinessofthesystemincreasedwiththeexplainablemodelUnlockingValuefromArtificialIntelligenceinManufacturing 13UsecaseCompanySectorAIapplicationImpactVisualinspectionoffibreratioin–ReportpreparationtimeforcustomercomplaintsyarncontentusingmicroscopicKarsu,andanalysisexpectedtoQualitytestingTextileimagestocheckproductionTürkiyedecreaseby90%qualityandtoanalysecustomer–ExpertrequirementcomplaintsforthesubjectwillbeeliminatedQuality
VisualinspectionofthequalityQualityK?rberofpharmaceuticalswhileAIinspectionrecognizespatternsinsteadofDigital,Pharmaceuticalsindrug-andmeasuringphysicalimagevalues,Germanypatientsafetywhichdecreasesthefalse-rejectofproducts
–Reductionoffalse-rejectratebyanaverageof88%–Detectionrateincreasedbyanaverageof38%–Approximately2xfastertime-to-marketachieved(transferability)invisionsetupAnAIenginethatpredictsthe–MachinecapacityPredictiveSchneiderdemagnetizationvoltagetoincreasedElectric,Electronicsreducethenumberofiterations–CapexinvestmentreducedqualityFranceduringrelaytestsinresidual–RejectionsreducedcurrentdeviceproductrangeThroughcombinationofdigitaltwinandinnovativeAI,processObeikananomalyconditionsanddriversQualityDigitalChemicalsdetectedpredictionSolutions,SaudiArabiaStatisticalprocesscontrolalgorithm,aprovenapproachofqualitycontrol,used
–Productivityandqualitysustainabilityincreased–OverallequipmenteffectivenessinPETlinesimprovedby20%–CustomercomplaintsreducedProductionprocess
Providingautomatedsoftwareto–Alloyusereducedby9%takepreventiveactionsearlyintheatsteelmillsProcessFeroLabs,SteelproductionprocesswithexplainableoptimizationUSAAImodelstoreducerawmaterial–FailurerateeliminateduseandminimizecostsandemissionsduringsteelproductionAI-basedvideoanalyticstolabel–Productivityincreasedby25%theactionsofmanualtasks–ByincreasingqualityandKhenda,toeliminateoperator-relatedLinebalancingAutomotiveefficiency,errorcostsTürkiyeerrorsandimprovemanualeliminatedandwastemanufacturingprocessesandanddefectiveproductsoptimizelinebalancingavoidedGeneratinginsightsintothecomplexinteractionsbetweenhundredsofprocessparametersProductionDataprophet,andtheirimpactonfinalqualityparameterFoundrybyusingdeeplearningalgorithmsSouthAfricaoptimizationApplicationthenprescribesnext-beststeptooptimizeproductionwithoutpoorquality
–Defectsreducedto0%froma6%ofhistoricaldefectrate–Numberofqualitystopsreducedfrom81to20perweekUnlockingValuefromArtificialIntelligenceinManufacturing 14UsecaseCompanySectorAIapplicationImpactProductionprocess
AdvanceddecisionsupportAr?elik,HomeAppliancesystemonTürkiyeperformancetestProcessGEP,USAChemicalsmanagement
Improvingcoolingtestperformanceindifferentanddynamicallychangingclimaticconditionstoshortenthetestdurationbyanin-housedecision-makingsystembasedonAIandmachinelearning(ML)ImplementingAI-enabledprocesscontrolstomanagecatalystingestionbasedonpressureandtemperaturechangesinthereactorandtomanagethetransferrates
–Servicecallrateimprovedby15.3%.–17.8%oftestcapacityincreasedbydecreas
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025湖北省安全員-A證考試題庫及答案
- 2025年山東建筑安全員C證考試題庫
- 2025年云南省安全員-B證(項目經(jīng)理)考試題庫
- 【課件】搜索引擎營銷的部分問題探討
- DB14T-紅地球葡萄主要病蟲害綜合防控技術(shù)規(guī)程編制說明
- 單位人力資源管理制度集合大全十篇
- 單位管理制度展示大全人員管理十篇
- 2024年土地登記代理人題庫附參考答案(鞏固)
- 2025年社會服務行業(yè)尋找彈性與韌性中的結(jié)構(gòu)機會
- 單位管理制度展示大合集人員管理十篇
- 實習終止及解除協(xié)議書
- 中國冠心病康復循證實踐指南(2024版)解讀
- 2024-2030年中國再生水行業(yè)發(fā)展前景預測規(guī)劃分析報告
- 城市公益性公墓建設(shè)項目施工組織設(shè)計
- 2022-2024年江蘇中考語文試題匯編:名著閱讀(教師版)
- 2024年秋季新人教版七年級上冊數(shù)學全冊教案
- 安全員年終總結(jié)報告
- 《客房服務與管理》課程標準課程內(nèi)容與要求
- GB/T 44823-2024綠色礦山評價通則
- 營銷中心建設(shè)實施方案
- 工程竣工驗收(消防查驗)報告
評論
0/150
提交評論