下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,若輸入,,則輸出的()A.4 B.5 C.6 D.72.已知直線過圓的圓心,則的最小值為()A.1 B.2 C.3 D.43.已知函數(shù)的定義域為,且,當時,.若,則函數(shù)在上的最大值為()A.4 B.6 C.3 D.84.函數(shù)的定義域為()A. B. C. D.5.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長為1),則這個幾何體的體積是()A. B. C.16 D.326.直線l過拋物線的焦點且與拋物線交于A,B兩點,則的最小值是A.10 B.9 C.8 D.77.如圖,在棱長為4的正方體中,E,F(xiàn),G分別為棱AB,BC,的中點,M為棱AD的中點,設(shè)P,Q為底面ABCD內(nèi)的兩個動點,滿足平面EFG,,則的最小值為()A. B. C. D.8.已知集合M={y|y=2x,x>0},N={x|y=lg(2x-xA.(1,+∞) B.(1,2) C.[2,+∞) D.[1,+∞)9.某幾何體的三視圖如圖所示,則此幾何體的體積為()A. B.1 C. D.10.已知,,,則,,的大小關(guān)系為()A. B. C. D.11.己知函數(shù)若函數(shù)的圖象上關(guān)于原點對稱的點有2對,則實數(shù)的取值范圍是()A. B. C. D.12.若直線與圓相交所得弦長為,則()A.1 B.2 C. D.3二、填空題:本題共4小題,每小題5分,共20分。13.在正方體中,為棱的中點,是棱上的點,且,則異面直線與所成角的余弦值為__________.14.函數(shù)的值域為_________.15.如圖,已知圓內(nèi)接四邊形ABCD,其中,,,,則__________.16.在的展開式中,的系數(shù)等于__.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(為常數(shù))(Ⅰ)當時,求的單調(diào)區(qū)間;(Ⅱ)若為增函數(shù),求實數(shù)的取值范圍.18.(12分)山東省2020年高考將實施新的高考改革方案.考生的高考總成績將由3門統(tǒng)一高考科目成績和自主選擇的3門普通高中學(xué)業(yè)水平等級考試科目成績組成,總分為750分.其中,統(tǒng)一高考科目為語文、數(shù)學(xué)、外語,自主選擇的3門普通高中學(xué)業(yè)水平等級考試科目是從物理、化學(xué)、生物、歷史、政治、地理6科中選擇3門作為選考科目,語、數(shù)、外三科各占150分,選考科目成績采用“賦分制”,即原始分數(shù)不直接用,而是按照學(xué)生分數(shù)在本科目考試的排名來劃分等級并以此打分得到最后得分.根據(jù)高考綜合改革方案,將每門等級考試科目中考生的原始成績從高到低分為A、B+、B、C+、C、D+、D、E共8個等級。參照正態(tài)分布原則,確定各等級人數(shù)所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.等級考試科目成績計入考生總成績時,將A至E等級內(nèi)的考生原始成績,依照等比例轉(zhuǎn)換法則,分別轉(zhuǎn)換到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八個分數(shù)區(qū)間,得到考生的等級成績.舉例說明.某同學(xué)化學(xué)學(xué)科原始分為65分,該學(xué)科C+等級的原始分分布區(qū)間為58~69,則該同學(xué)化學(xué)學(xué)科的原始成績屬C+等級.而C+等級的轉(zhuǎn)換分區(qū)間為61~70,那么該同學(xué)化學(xué)學(xué)科的轉(zhuǎn)換分為:設(shè)該同學(xué)化學(xué)科的轉(zhuǎn)換等級分為x,69-6565-58=70-x四舍五入后該同學(xué)化學(xué)學(xué)科賦分成績?yōu)?7.(1)某校高一年級共2000人,為給高一學(xué)生合理選科提供依據(jù),對六個選考科目進行測試,其中物理考試原始成績基本服從正態(tài)分布ξ~N(60,12(i)若小明同學(xué)在這次考試中物理原始分為84分,等級為B+,其所在原始分分布區(qū)間為82~93,求小明轉(zhuǎn)換后的物理成績;(ii)求物理原始分在區(qū)間(72,84)的人數(shù);(2)按高考改革方案,若從全省考生中隨機抽取4人,記X表示這4人中等級成績在區(qū)間[61,80]的人數(shù),求X的分布列和數(shù)學(xué)期望.(附:若隨機變量ξ~N(μ,σ2),則Pμ-σ<ξ<μ+σ=0.68219.(12分)已知函數(shù).(Ⅰ)求函數(shù)的單調(diào)區(qū)間;(Ⅱ)當時,求函數(shù)在上最小值.20.(12分)如圖,在四棱錐中,平面,,為的中點.(1)求證:平面;(2)求二面角的余弦值.21.(12分)在三角形中,角,,的對邊分別為,,,若.(Ⅰ)求角;(Ⅱ)若,,求.22.(10分)隨著電子閱讀的普及,傳統(tǒng)紙質(zhì)媒體遭受到了強烈的沖擊.某雜志社近9年來的紙質(zhì)廣告收入如下表所示:根據(jù)這9年的數(shù)據(jù),對和作線性相關(guān)性檢驗,求得樣本相關(guān)系數(shù)的絕對值為0.243;根據(jù)后5年的數(shù)據(jù),對和作線性相關(guān)性檢驗,求得樣本相關(guān)系數(shù)的絕對值為0.984.(1)如果要用線性回歸方程預(yù)測該雜志社2019年的紙質(zhì)廣告收入,現(xiàn)在有兩個方案,方案一:選取這9年數(shù)據(jù)進行預(yù)測,方案二:選取后5年數(shù)據(jù)進行預(yù)測.從實際生活背景以及線性相關(guān)性檢驗的角度分析,你覺得哪個方案更合適?附:相關(guān)性檢驗的臨界值表:(2)某購物網(wǎng)站同時銷售某本暢銷書籍的紙質(zhì)版本和電子書,據(jù)統(tǒng)計,在該網(wǎng)站購買該書籍的大量讀者中,只購買電子書的讀者比例為,紙質(zhì)版本和電子書同時購買的讀者比例為,現(xiàn)用此統(tǒng)計結(jié)果作為概率,若從上述讀者中隨機調(diào)查了3位,求購買電子書人數(shù)多于只購買紙質(zhì)版本人數(shù)的概率.
2023學(xué)年模擬測試卷參考答案(含詳細解析)一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【答案解析】
根據(jù)程序框圖程序運算即可得.【題目詳解】依程序運算可得:,故選:C【答案點睛】本題主要考查了程序框圖的計算,解題的關(guān)鍵是理解程序框圖運行的過程.2.D【答案解析】
圓心坐標為,代入直線方程,再由乘1法和基本不等式,展開計算即可得到所求最小值.【題目詳解】圓的圓心為,由題意可得,即,,,則,當且僅當且即時取等號,故選:.【答案點睛】本題考查最值的求法,注意運用乘1法和基本不等式,注意滿足的條件:一正二定三等,同時考查直線與圓的關(guān)系,考查運算能力,屬于基礎(chǔ)題.3.A【答案解析】
根據(jù)所給函數(shù)解析式滿足的等量關(guān)系及指數(shù)冪運算,可得;利用定義可證明函數(shù)的單調(diào)性,由賦值法即可求得函數(shù)在上的最大值.【題目詳解】函數(shù)的定義域為,且,則;任取,且,則,故,令,,則,即,故函數(shù)在上單調(diào)遞增,故,令,,故,故函數(shù)在上的最大值為4.故選:A.【答案點睛】本題考查了指數(shù)冪的運算及化簡,利用定義證明抽象函數(shù)的單調(diào)性,賦值法在抽象函數(shù)求值中的應(yīng)用,屬于中檔題.4.C【答案解析】
函數(shù)的定義域應(yīng)滿足故選C.5.A【答案解析】幾何體為一個三棱錐,高為4,底面為一個等腰直角三角形,直角邊長為4,所以體積是,選A.6.B【答案解析】
根據(jù)拋物線中過焦點的兩段線段關(guān)系,可得;再由基本不等式可求得的最小值.【題目詳解】由拋物線標準方程可知p=2因為直線l過拋物線的焦點,由過拋物線焦點的弦的性質(zhì)可知所以因為為線段長度,都大于0,由基本不等式可知,此時所以選B【答案點睛】本題考查了拋物線的基本性質(zhì)及其簡單應(yīng)用,基本不等式的用法,屬于中檔題.7.C【答案解析】
把截面畫完整,可得在上,由知在以為圓心1為半徑的四分之一圓上,利用對稱性可得的最小值.【題目詳解】如圖,分別取的中點,連接,易證共面,即平面為截面,連接,由中位線定理可得,平面,平面,則平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,∴.正方體中平面,從而有,∴,∴在以為圓心1為半徑的四分之一圓(圓在正方形內(nèi)的部分)上,顯然關(guān)于直線的對稱點為,,當且僅當共線時取等號,∴所求最小值為.故選:C.【答案點睛】本題考查空間距離的最小值問題,解題時作出正方體的完整截面求出點軌跡是第一個難點,第二個難點是求出點軌跡,第三個難點是利用對稱性及圓的性質(zhì)求得最小值.8.B【答案解析】M=y|y=N==x|∴M∩N=(1,2).故選B.9.C【答案解析】該幾何體為三棱錐,其直觀圖如圖所示,體積.故選.10.D【答案解析】
構(gòu)造函數(shù),利用導(dǎo)數(shù)求得的單調(diào)區(qū)間,由此判斷出的大小關(guān)系.【題目詳解】依題意,得,,.令,所以.所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.所以,且,即,所以.故選:D.【答案點睛】本小題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查對數(shù)式比較大小,屬于中檔題.11.B【答案解析】
考慮當時,有兩個不同的實數(shù)解,令,則有兩個不同的零點,利用導(dǎo)數(shù)和零點存在定理可得實數(shù)的取值范圍.【題目詳解】因為的圖象上關(guān)于原點對稱的點有2對,所以時,有兩個不同的實數(shù)解.令,則在有兩個不同的零點.又,當時,,故在上為增函數(shù),在上至多一個零點,舍.當時,若,則,在上為增函數(shù);若,則,在上為減函數(shù);故,因為有兩個不同的零點,所以,解得.又當時,且,故在上存在一個零點.又,其中.令,則,當時,,故為減函數(shù),所以即.因為,所以在上也存在一個零點.綜上,當時,有兩個不同的零點.故選:B.【答案點睛】本題考查函數(shù)的零點,一般地,較為復(fù)雜的函數(shù)的零點,必須先利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,再結(jié)合零點存在定理說明零點的存在性,本題屬于難題.12.A【答案解析】
將圓的方程化簡成標準方程,再根據(jù)垂徑定理求解即可.【題目詳解】圓的標準方程,圓心坐標為,半徑為,因為直線與圓相交所得弦長為,所以直線過圓心,得,即.故選:A【答案點睛】本題考查了根據(jù)垂徑定理求解直線中參數(shù)的方法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【答案解析】
根據(jù)題意畫出幾何題,建立空間直角坐標系,寫個各個點的坐標,并求得.由空間向量的夾角求法即可求得異面直線與所成角的余弦值.【題目詳解】根據(jù)題意畫出幾何圖形,以為原點建立空間直角坐標系:設(shè)正方體的棱長為1,則所以所以,所以異面直線與所成角的余弦值為,故答案為:.【答案點睛】本題考查了異面直線夾角的求法,利用空間向量求異面直線夾角,屬于中檔題.14.【答案解析】
利用換元法,得到,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最值,即可得到函數(shù)的值域,得到答案.【題目詳解】由題意,可得,令,,即,則,當時,,當時,,即在為增函數(shù),在為減函數(shù),又,,,故函數(shù)的值域為:.【答案點睛】本題主要考查了三角函數(shù)的最值,以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,其中解答中合理利用換元法得到函數(shù),再利用導(dǎo)數(shù)求解函數(shù)的單調(diào)性與最值是解答的關(guān)鍵,著重考查了推理與預(yù)算能力,屬于基礎(chǔ)題.15.【答案解析】
由題意可知,,在和中,利用余弦定理建立方程求,同理求,求,代入求值.【題目詳解】由圓內(nèi)接四邊形的性質(zhì)可得,.連接BD,在中,有.在中,.所以,則,所以.連接AC,同理可得,所以.所以.故答案為:【答案點睛】本題考查余弦定理解三角形,同角三角函數(shù)基本關(guān)系,意在考查方程思想,計算能力,屬于中檔題型,本題的關(guān)鍵是熟悉圓內(nèi)接四邊形的性質(zhì),對角互補.16.7【答案解析】
由題,得,令,即可得到本題答案.【題目詳解】由題,得,令,得x的系數(shù).故答案為:7【答案點睛】本題主要考查二項式定理的應(yīng)用,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ)單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;(Ⅱ).【答案解析】
(Ⅰ)對函數(shù)進行求導(dǎo),利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性即可;(Ⅱ)對函數(shù)進行求導(dǎo),由題意知,為增函數(shù)等價于在區(qū)間恒成立,利用分離參數(shù)法和基本不等式求最值即可求出實數(shù)的取值范圍.【題目詳解】(Ⅰ)由題意知,函數(shù)的定義域為,當時,,令,得,或,所以,隨的變化情況如下表:遞增遞減遞增的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為.(Ⅱ)由題意得在區(qū)間恒成立,即在區(qū)間恒成立.,當且僅當,即時等號成立.所以,所以的取值范圍是.【答案點睛】本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間、利用分離參數(shù)法和基本不等式求最值求參數(shù)的取值范圍;考查運算求解能力和邏輯推理能力;利用導(dǎo)數(shù)把函數(shù)單調(diào)性問題轉(zhuǎn)化為不等式恒成立問題是求解本題的關(guān)鍵;屬于中檔題、常考題型.18.(1)(i)83.;(ii)272.(2)見解析.【答案解析】
(1)根據(jù)原始分數(shù)分布區(qū)間及轉(zhuǎn)換分區(qū)間,結(jié)合所給示例,即可求得小明轉(zhuǎn)換后的物理成績;根據(jù)正態(tài)分布滿足N60,122(2)根據(jù)各等級人數(shù)所占比例可知在區(qū)間61,80內(nèi)的概率為25,由二項分布即可求得X【題目詳解】(1)(i)設(shè)小明轉(zhuǎn)換后的物理等級分為x,93-8484-82求得x≈82.64.小明轉(zhuǎn)換后的物理成績?yōu)?3分;(ii)因為物理考試原始分基本服從正態(tài)分布N60,所以P(72<ξ<84)=P(60<ξ<84)-P(60<ξ<72)===0.136.所以物理原始分在區(qū)間72,84的人數(shù)為2000×0.136=272(人);(2)由題意得,隨機抽取1人,其等級成績在區(qū)間61,80內(nèi)的概率為25隨機抽取4人,則X~B4,PX=0=3PX=2=CPX=4X的分布列為X01234P812162169616數(shù)學(xué)期望EX【答案點睛】本題考查了統(tǒng)計的綜合應(yīng)用,正態(tài)分布下求某區(qū)間概率的方法,分布列及數(shù)學(xué)期望的求法,文字多,數(shù)據(jù)多,需要細心的分析和理解,屬于中檔題。19.(Ⅰ)見解析;(Ⅱ)當時,函數(shù)的最小值是;當時,函數(shù)的最小值是【答案解析】
(1)求出導(dǎo)函數(shù),并且解出它的零點x=,再分區(qū)間討論導(dǎo)數(shù)的正負,即可得到函數(shù)f(x)的單調(diào)區(qū)間;
(2)分三種情況加以討論,結(jié)合函數(shù)的單調(diào)性與函數(shù)值的大小比較,即可得到當0<a<ln2時,函數(shù)f(x)的最小值是-a;當a≥ln2時,函數(shù)f(x)的最小值是ln2-2a.【題目詳解】函數(shù)的定義域
為.
因為,令,可得;
當時,;當時,,綜上所述:可知函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為當,即時,函數(shù)在區(qū)間上是減函數(shù),
的最小值是當,即時,函數(shù)在區(qū)間上是增函數(shù),的最小值是當,即時,函數(shù)在上是增函數(shù),在上是減函數(shù).
又,
當時,的最小值是;
當時,的最小值為綜上所述,結(jié)論為當時,函數(shù)的最小值是;
當時,函數(shù)的最小值是.【答案點睛】求函數(shù)極值與最值的步驟:(1)確定函數(shù)的定義域;(2)求導(dǎo)數(shù);(3)解方程求出函數(shù)定義域內(nèi)的所有根;(4)列表檢查在的根左右兩側(cè)值的符號,如果左正右負(左增右減),那么在處取極大值,如果左負右正(左減右增),那么在處取極小值.(5)如果只有一個極值點,則在該處即是極值也是最值;(6)如果求閉區(qū)間上的最值還需要比較端點值的函數(shù)值與極值的大小20.(1)見解析;(2)【答案解析】
(1)取的中點,連接,根據(jù)中位線的方法證明四邊形是平行四邊形.再證明與從而證明平面,從而得到平面即可.(2)以所在的直線為軸建立空間直角坐標系,再求得平面的法向量與平面的法向量進而求得二面角的余弦值即可.【題目詳解】(1)證明:如圖,取的中點,連接.又為的中點,則是的中位線.所以且.又且,所以且.所以四邊形是平行四邊形.所以.因為,為的中點,所以.因為,所以.因為平面,所以.又,所以平面.所以.又,所以平面.又,所以平面.(2)易知兩兩互相垂直,所以分別以所在的直線為軸建立如圖所示的空間直角坐標系:因為,所以點.則.設(shè)平面的法向量為,由,得,令,得平面的一個法向量為;顯然平面的一個法向量為;設(shè)二面角的大小為,則.故二面角的余弦值是.【答案點睛】本題主要考查了線面垂直的證明以及建立空間直角坐標系求解二面角的問題,需要用到線線垂直與線面垂直的轉(zhuǎn)換以及法向量的求法等.屬于中檔題.21.(Ⅰ)(Ⅱ)8【答案解析】
(Ⅰ)由余弦定理可得,即可求出A,(Ⅱ)根據(jù)同角的三角函數(shù)的關(guān)系和兩角和的正弦公式和正弦定理即可求出.【題目詳解】(Ⅰ)由余弦定理,所以,所以,即,因為,所以;(Ⅱ)因為,所以,因為,,由正弦定理得,所以.【答案點睛】本題考查利用正弦定理與余弦定理解三角形,屬于簡單題.22.(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司個人原因辭職報告模板匯編7篇
- 短小精悍的演講稿【五篇】
- 中學(xué)生承諾書4篇
- 導(dǎo)游的實習報告模板合集十篇
- 大專護理畢業(yè)自我總結(jié)
- 春節(jié)促銷活動總結(jié)5篇
- 九年級語文上冊 第五單元 探索求知之路 17 中國人失掉自信力了嗎教學(xué)實錄 新人教版
- 信息技術(shù)教學(xué)工作總結(jié)范文匯編4篇
- 活動策劃方案范文錦集4篇
- 七年級信息技術(shù)上冊 第30課 文字的輸入教學(xué)實錄
- 《合規(guī)培訓(xùn)》課件
- DD 2019-11 地-井瞬變電磁法技術(shù)規(guī)程
- 黑龍江省哈爾濱市香坊區(qū)2023-2024學(xué)年八年級上學(xué)期期末數(shù)學(xué)試題
- 老人及兒童合理用藥課件
- 《格林童話》課外閱讀試題及答案
- 重型再生障礙性貧血造血干細胞移植治療課件
- 私立民辦高中學(xué)校項目投資計劃書
- 《電機與電氣控制技術(shù)》教學(xué)設(shè)計及授課計劃表
- “銷售技巧課件-讓你掌握銷售技巧”
- 2019北師大版高中英語選修一UNIT 2 單詞短語句子復(fù)習默寫單
- 房地產(chǎn)項目保密協(xié)議
評論
0/150
提交評論