紫外可見分光光度法課件_第1頁
紫外可見分光光度法課件_第2頁
紫外可見分光光度法課件_第3頁
紫外可見分光光度法課件_第4頁
紫外可見分光光度法課件_第5頁
已閱讀5頁,還剩73頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第二章紫外—可見分光光度法

研究物質(zhì)在紫外、可見光區(qū)的分子吸收光譜的分析方法稱為紫外-可見分光光度法。紫外—可見分光光度法是利用某些物質(zhì)的分子吸收200~800nm光譜區(qū)的輻射來進(jìn)行分析測定的方法。這種分子吸收光譜產(chǎn)生于價電子和分子軌道上的電子在電子能級間的躍遷,廣泛用于無機(jī)和有機(jī)物質(zhì)的定性和定量測定。1第二章紫外—可見分光光度法1第一節(jié)紫外—可見吸收光譜一、分子吸收光譜的產(chǎn)生在分子中,除了電子相對于原子核的運(yùn)動外,還有核間相對位移引起的振動和轉(zhuǎn)動。這三種運(yùn)動能量都是量子化的,并對應(yīng)有一定能級。下圖為分子的能級示意圖。

分子中電子能級、振動能級和轉(zhuǎn)動能級示意圖電子能級振動能級轉(zhuǎn)動能級BA2第一節(jié)紫外—可見吸收光譜一、分子吸收光譜的產(chǎn)生電子能級第一節(jié)紫外—可見吸收光譜圖中A和B表示不同能量的電子能級。在每一電子能級上有許多間距較小的振動能級,在每一振動能級上又有許多更小的轉(zhuǎn)動能級。

若用△E電子、△

E振動、△

E轉(zhuǎn)動分別表示電子能級、振動能級轉(zhuǎn)動能級差,即有△

E電子△

E振動△

E轉(zhuǎn)動。處在同一電子能級的分子,可能因其振動能量不同,而處在不同的振動能級上。當(dāng)分子處在同一電子能級和同一振動能級時,它的能量還會因轉(zhuǎn)動能量不同,而處在不同的轉(zhuǎn)動能級上。所以分子的總能量可以認(rèn)為是這三種能量的總和:E分子=E電子+E振動+E轉(zhuǎn)動3第一節(jié)紫外—可見吸收光譜圖中A和B第一節(jié)紫外—可見吸收光譜當(dāng)用頻率為的電磁波照射分子,而該分子的較高能級與較低能級之差△

E恰好等于該電磁波的能量h時,即有

E=h(h為普朗克常數(shù))此時,在微觀上出現(xiàn)分子由較低的能級躍遷到較高的能級;在宏觀上則透射光的強(qiáng)度變小。若用一連續(xù)輻射的電磁波照射分子,將照射前后光強(qiáng)度的變化轉(zhuǎn)變?yōu)殡娦盘?,并記錄下來,然后以波長為橫坐標(biāo),以電信號(吸光度A)為縱坐標(biāo),就可以得到一張光強(qiáng)度變化對波長的關(guān)系曲線圖——分子吸收光譜圖。4第一節(jié)紫外—可見吸收光譜當(dāng)用頻率為的第一節(jié)紫外—可見吸收光譜二、分子吸收光譜類型根據(jù)吸收電磁波的范圍不同,可將分子吸收光譜分為遠(yuǎn)紅外光譜、紅外光譜及紫外、可見光譜三類。分子的轉(zhuǎn)動能級差一般在0.005~0.05eV。產(chǎn)生此能級的躍遷,需吸收波長約為250~25m的遠(yuǎn)紅外光,因此,形成的光譜稱為轉(zhuǎn)動光譜或遠(yuǎn)紅外光譜。分子的振動能級差一般在0.05~1eV,需吸收波長約為25~1.25m的紅外光才能產(chǎn)生躍遷。在分子振動時同時有分子的轉(zhuǎn)動運(yùn)動。這樣,分子振動產(chǎn)生的吸收光譜中,包括轉(zhuǎn)動光譜,故常稱為振-轉(zhuǎn)光譜。由于它吸收的5第一節(jié)紫外—可見吸收光譜二、分子吸收光譜類型5第一節(jié)紫外—可見吸收光譜能量處于紅外光區(qū),故又稱紅外光譜。電子的躍遷能差約為1~20eV,比分子振動能級差要大幾十倍,所吸收光的波長約為12.5~0.06m,主要在真空紫外到可見光區(qū),對應(yīng)形成的光譜,稱為電子光譜或紫外、可見吸收光譜。通常,分子是處在基態(tài)振動能級上。當(dāng)用紫外、可見光照射分子時,電子可以從基態(tài)激發(fā)到激發(fā)態(tài)的任一振動(或不同的轉(zhuǎn)動)能級上。因此,電子能級躍遷產(chǎn)生的吸收光譜,包括了大量譜線,并由于這些譜線的重疊而成為連續(xù)的吸收帶,這就是為什么分子的紫外、可見光譜不是線狀光譜,而是帶狀光譜的原因。又因?yàn)榻^6第一節(jié)紫外—可見吸收光譜能量處于紅外光區(qū),故又稱紅外光第一節(jié)紫外—可見吸收光譜大多數(shù)的分子光譜分析,都是用液體樣品,加之儀器的分辨率有限,因而使記錄所得電子光譜的譜帶變寬。由于氧、氮、二氧化碳、水等在真空紫外區(qū)(60~200nm)均有吸收,因此在測定這一范圍的光譜時,必須將光學(xué)系統(tǒng)抽成真空,然后充以一些惰性氣體,如氦、氖、氬等。鑒于真空紫外吸收光譜的研究需要昂貴的真空紫外分光光度計(jì),故在實(shí)際應(yīng)用中受到一定的限制。我們通常所說的紫外—可見分光光度法,實(shí)際上是指近紫外、可見分光光度法。7第一節(jié)紫外—可見吸收光譜大多數(shù)的分子光譜分析,都是用液第二節(jié)化合物紫外—可見光譜的產(chǎn)生在紫外和可見光譜區(qū)范圍內(nèi),有機(jī)化合物的吸收帶主要由*、*、n*、n*及電荷遷移躍遷產(chǎn)生。無機(jī)化合物的吸收帶主要由電荷遷移和配位場躍遷(即d—d躍遷和f—f躍遷)產(chǎn)生(教材P.23)。各種電子躍遷相應(yīng)的吸收峰和能量示意圖**

*n**n*能量*反鍵軌道*反鍵軌道n非鍵軌道反鍵軌道反鍵軌道200300400/nm8第二節(jié)化合物紫外—可見光譜的產(chǎn)生在紫外和可見第二節(jié)化合物紫外—可見光譜的產(chǎn)生由于電子躍遷的類型不同,實(shí)現(xiàn)躍遷需要的能量不同,因此吸收光的波長范圍也不相同。其中*躍遷所需能量最大,n*及配位場躍遷所需能量最小,因此,它們的吸收帶分別落在遠(yuǎn)紫外和可見光區(qū)。從圖中可知,*(電荷遷移)躍遷產(chǎn)生的譜帶強(qiáng)度最大,*、n*、n*躍遷產(chǎn)生的譜帶強(qiáng)度次之,(配位躍遷的譜帶強(qiáng)度最?。?。一、有機(jī)化合物的紫外—可見吸收光譜(一)、躍遷類型基態(tài)有機(jī)化合物的價電子包括成鍵電子、成鍵電子和非鍵電子(以n表示)。分子的空軌道包括反鍵*軌9第二節(jié)化合物紫外—可見光譜的產(chǎn)生由于電子第二節(jié)化合物紫外—可見光譜的產(chǎn)生道和反鍵*軌道,因此,可能的躍遷為*、*、n*n*等。1,*躍遷它需要的能量較高,一般發(fā)生在真空紫外光區(qū)。飽和烴中的—c—c—鍵屬于這類躍遷,例如乙烷的最大吸收波長max為135nm。2,n*躍遷實(shí)現(xiàn)這類躍遷所需要的能量較高,其吸收光譜落于遠(yuǎn)紫外光區(qū)和近紫外光區(qū),如CH3OH和CH3NH2的n*躍遷光譜分別為183nm和213nm。3,*躍遷它需要的能量低于*躍遷,吸收峰一般處于近紫外光區(qū),在200nm左右,其特征是摩爾吸光系數(shù)大,一般max104,為強(qiáng)吸收帶。如乙烯(蒸氣)10第二節(jié)化合物紫外—可見光譜的產(chǎn)生道和反鍵*軌道,因此,第二節(jié)化合物紫外—可見光譜的產(chǎn)生的最大吸收波長max為162

nm。4,n*躍遷這類躍遷發(fā)生在近紫外光區(qū)。它是簡單的生色團(tuán)如羰基、硝基等中的孤對電子向反鍵軌道躍遷。其特點(diǎn)是譜帶強(qiáng)度弱,摩爾吸光系數(shù)小,通常小于100,屬于禁阻躍遷。5,電荷遷移躍遷所謂電荷遷移躍遷是指用電磁輻射照射化合物時,電子從給予體向與接受體相聯(lián)系的軌道上躍遷。因此,電荷遷移躍遷實(shí)質(zhì)是一個內(nèi)氧化—還原的過程,而相應(yīng)的吸收光譜稱為電荷遷移吸收光譜。11第二節(jié)化合物紫外—可見光譜的產(chǎn)生的最大吸收波長max為第二節(jié)化合物紫外—可見光譜的產(chǎn)生例如某些取代芳烴可產(chǎn)生這種分子內(nèi)電荷遷移躍遷吸收帶。電荷遷移吸收帶的譜帶較寬,吸收強(qiáng)度較大,最大波長處的摩爾吸光系數(shù)max可大于104。(二)、常用術(shù)語1,生色團(tuán)

從廣義來說,所謂生色團(tuán),是指分子中可以吸收光子而產(chǎn)生電子躍遷的原子基團(tuán)。但是,人們通常將能吸收紫外、可見光的原子團(tuán)或結(jié)構(gòu)系統(tǒng)定義為生色團(tuán)。下面為某些常見生色團(tuán)的吸收光譜。12第二節(jié)化合物紫外—可見光譜的產(chǎn)生例如某些取代芳烴可產(chǎn)生這第二節(jié)化合物紫外—可見光譜的產(chǎn)生13第二節(jié)化合物紫外—可見光譜的產(chǎn)生13第二節(jié)化合物紫外—可見光譜的產(chǎn)生2,助色團(tuán)助色團(tuán)是指帶有非鍵電子對的基團(tuán),如-OH、-OR、-NHR、-SH、-Cl、-Br、-I等,它們本身不能吸收大于200nm的光,但是當(dāng)它們與生色團(tuán)相連時,會使生色團(tuán)的吸收峰向長波方向移動,并且增加其吸光度。3,紅移與藍(lán)移(紫移)某些有機(jī)化合物經(jīng)取代反應(yīng)引入含有未共享電子對的基團(tuán)(-OH、-OR、-NH2、-SH、-Cl、-Br、-SR、-NR2

)之后,吸收峰的波長將向長波方向移動,這種效應(yīng)稱為紅移效應(yīng)。這種會使某化合物的最大吸收波長向長波方向移動的基團(tuán)稱為向紅基團(tuán)。14第二節(jié)化合物紫外—可見光譜的產(chǎn)生2,助色團(tuán)14第二節(jié)化合物紫外—可見光譜的產(chǎn)生在某些生色團(tuán)如羰基的碳原子一端引入一些取代基之后,吸收峰的波長會向短波方向移動,這種效應(yīng)稱為藍(lán)移(紫移)效應(yīng)。這些會使某化合物的最大吸收波長向短波方向移動的基團(tuán)(如-CH2、-CH2CH3、-OCOCH3)稱為向藍(lán)(紫)基團(tuán)。(三)有機(jī)化合物紫外-可見吸收光譜1,飽和烴及其取代衍生物飽和烴類分子中只含有鍵,因此只能產(chǎn)生*躍遷,即電子從成鍵軌道()躍遷到反鍵軌道(*)。飽和烴的最大吸收峰一般小于150nm,已超出紫外、可見15第二節(jié)化合物紫外—可見光譜的產(chǎn)生在某些生色團(tuán)第二節(jié)化合物紫外—可見光譜的產(chǎn)生分光光度計(jì)的測量范圍。飽和烴的取代衍生物如鹵代烴,其鹵素原子上存在n電子,可產(chǎn)生n*的躍遷。n*的能量低于*。例如,CH3Cl、CH3Br和CH3I的n*躍遷分別出現(xiàn)在173、204和258nm處。這些數(shù)據(jù)不僅說明氯、溴和碘原子引入甲烷后,其相應(yīng)的吸收波長發(fā)生了紅移,顯示了助色團(tuán)的助色作用。直接用烷烴和鹵代烴的紫外吸收光譜分析這些化合物的實(shí)用價值不大。但是它們是測定紫外和(或)可見吸收光譜的良好溶劑。16第二節(jié)化合物紫外—可見光譜的產(chǎn)生分光光度計(jì)的測量范圍。1第二節(jié)化合物紫外—可見光譜的產(chǎn)生

2,不飽和烴及共軛烯烴

在不飽和烴類分子中,除含有鍵外,還含有鍵,它們可以產(chǎn)生*和*兩種躍遷。*躍遷的能量小于*躍遷。例如,在乙烯分子中,*躍遷最大吸收波長為180nm

在不飽和烴類分子中,當(dāng)有兩個以上的雙鍵共軛時,隨著共軛系統(tǒng)的延長,*躍遷的吸收帶將明顯向長波方向移動,吸收強(qiáng)度也隨之增強(qiáng)。在共軛體系中,*躍遷產(chǎn)生的吸收帶又稱為K帶。17第二節(jié)化合物紫外—可見光譜的產(chǎn)生2,不飽和烴及共軛烯烴第二節(jié)化合物紫外—可見光譜的產(chǎn)生18第二節(jié)化合物紫外—可見光譜的產(chǎn)生18第二節(jié)化合物紫外—可見光譜的產(chǎn)生3,羰基化合物羰基化合物含有C=O基團(tuán)。C=O基團(tuán)主要可產(chǎn)生*、n*、n*三個吸收帶,n*吸收帶又稱R帶,落于近紫外或紫外光區(qū)。醛、酮、羧酸及羧酸的衍生物,如酯、酰胺等,都含有羰基。由于醛酮這類物質(zhì)與羧酸及羧酸的衍生物在結(jié)構(gòu)上的差異,因此它們n*吸收帶的光區(qū)稍有不同。羧酸及羧酸的衍生物雖然也有n*吸收帶,但是,羧酸及羧酸的衍生物的羰基上的碳原子直接連結(jié)含有未共用電子對的助色團(tuán),如-OH、-Cl、-OR等,由于這些助色團(tuán)上的n電子與羰基雙鍵的電子產(chǎn)生n共軛,導(dǎo)致19第二節(jié)化合物紫外—可見光譜的產(chǎn)生3,羰基化合物19第二節(jié)化合物紫外—可見光譜的產(chǎn)生*軌道的能級有所提高,但這種共軛作用并不能改變n軌道的能級,因此實(shí)現(xiàn)n*躍遷所需的能量變大,使n*吸收帶藍(lán)移至210nm左右。4,苯及其衍生物苯有三個吸收帶,它們都是由*躍遷引起的。E1帶出現(xiàn)在180nm(MAX=60,000);E2帶出現(xiàn)在204nm(MAX=8,000);B帶出現(xiàn)在255nm(MAX=200)。在氣態(tài)或非極性溶劑中,苯及其許多同系物的B譜帶有許多的精細(xì)結(jié)構(gòu),這是由于振動躍遷在基態(tài)電子上的躍遷上的疊加而引起的。在極性溶劑中,這些精細(xì)結(jié)構(gòu)消失。20第二節(jié)化合物紫外—可見光譜的產(chǎn)生*軌道的能級有所提高,第二節(jié)化合物紫外—可見光譜的產(chǎn)生當(dāng)苯環(huán)上有取代基時,苯的三個特征譜帶都會發(fā)生顯著的變化,其中影響較大的是E2帶和B譜帶。5,稠環(huán)芳烴及雜環(huán)化合物稠環(huán)芳烴,如奈、蒽、芘等,均顯示苯的三個吸收帶,但是與苯本身相比較,這三個吸收帶均發(fā)生紅移,且強(qiáng)度增加。隨著苯環(huán)數(shù)目的增多,吸收波長紅移越多,吸收強(qiáng)度也相應(yīng)增加。當(dāng)芳環(huán)上的-CH基團(tuán)被氮原子取代后,則相應(yīng)的氮雜環(huán)化合物(如吡啶、喹啉)的吸收光譜,與相應(yīng)的碳化合物極為相似,即吡啶與苯相似,喹啉與奈相似。此外,21第二節(jié)化合物紫外—可見光譜的產(chǎn)生當(dāng)苯環(huán)上有第二節(jié)化合物紫外—可見光譜的產(chǎn)生由于引入含有n電子的N原子的,這類雜環(huán)化合物還可能產(chǎn)生n*吸收帶。二、無機(jī)化合物的紫外-可見吸收光譜產(chǎn)生無機(jī)化合物紫外、可見吸收光譜的電子躍遷形式,一般分為兩大類:電荷遷移躍遷和配位場躍遷。(一)電荷遷移躍遷無機(jī)配合物有電荷遷移躍遷產(chǎn)生的電荷遷移吸收光譜。在配合物的中心離子和配位體中,當(dāng)一個電子由配體的軌道躍遷到與中心離子相關(guān)的軌道上時,可產(chǎn)生電22第二節(jié)化合物紫外—可見光譜的產(chǎn)生由于引入含有n電子的N原第二節(jié)化合物紫外—可見光譜的產(chǎn)生荷遷移吸收光譜。不少過度金屬離子與含生色團(tuán)的試劑反應(yīng)所生成的配合物以及許多水合無機(jī)離子,均可產(chǎn)生電荷遷移躍遷。此外,一些具有d10電子結(jié)構(gòu)的過度元素形成的鹵化物及硫化物,如AgBr、HgS等,也是由于這類躍遷而產(chǎn)生顏色。電荷遷移吸收光譜出現(xiàn)的波長位置,取決于電子給予體和電子接受體相應(yīng)電子軌道的能量差。23第二節(jié)化合物紫外—可見光譜的產(chǎn)生荷遷移吸收光譜。23第二節(jié)化合物紫外—可見光譜的產(chǎn)生(二)配位場躍遷配位場躍遷包括d-d躍遷和f-f躍遷。元素周期表中第四、五周期的過度金屬元素分別含有3d和4d軌道,鑭系和錒系元素分別含有4f和5f軌道。在配體的存在下,過度元素五個能量相等的d軌道和鑭系元素七個能量相等的f軌道分別分裂成幾組能量不等的d軌道和f軌道。當(dāng)它們的離子吸收光能后,低能態(tài)的d電子或f電子可以分別躍遷至高能態(tài)的d或f軌道,這兩類躍遷分別稱為d-d躍遷和f-f躍遷。由于這兩類躍遷必須在配體的配位場作用下才可能發(fā)生,因此又稱為配位場躍遷。24第二節(jié)化合物紫外—可見光譜的產(chǎn)生(二)配位場躍遷24第二節(jié)化合物紫外—可見光譜的產(chǎn)生三、溶劑對紫外、可見吸收光譜的影響溶劑對紫外—可見光譜的影響較為復(fù)雜。改變?nèi)軇┑臉O性,會引起吸收帶形狀的變化。例如,當(dāng)溶劑的極性由非極性改變到極性時,精細(xì)結(jié)構(gòu)消失,吸收帶變向平滑。改變?nèi)軇┑臉O性,還會使吸收帶的最大吸收波長發(fā)生變化。下表為溶劑對亞異丙酮紫外吸收光譜的影響。正己烷CHCl3CH3OHH2O

*max/nm230238237243n

*max/nm32931530930525第二節(jié)化合物紫外—可見光譜的產(chǎn)生三、溶劑對紫外、可見吸收第二節(jié)化合物紫外—可見光譜的產(chǎn)生由上表可以看出,當(dāng)溶劑的極性增大時,由n

*躍遷產(chǎn)生的吸收帶發(fā)生藍(lán)移,而由*躍遷產(chǎn)生的吸收帶發(fā)生紅移。因此,在測定紫外、可見吸收光譜時,應(yīng)注明在何種溶劑中測定。由于溶劑對電子光譜圖影響很大,因此,在吸收光譜圖上或數(shù)據(jù)表中必須注明所用的溶劑。與已知化合物紫外光譜作對照時也應(yīng)注明所用的溶劑是否相同。在進(jìn)行紫外光譜法分析時,必須正確選擇溶劑。選擇溶劑時注意下列幾點(diǎn):(1)溶劑應(yīng)能很好地溶解被測試樣,溶劑對溶質(zhì)應(yīng)該是26第二節(jié)化合物紫外—可見光譜的產(chǎn)生由上表可以看出第二節(jié)化合物紫外—可見光譜的產(chǎn)生惰性的。即所成溶液應(yīng)具有良好的化學(xué)和光化學(xué)穩(wěn)定性。(2)在溶解度允許的范圍內(nèi),盡量選擇極性較小的溶劑。(3)溶劑在樣品的吸收光譜區(qū)應(yīng)無明顯吸收。27第二節(jié)化合物紫外—可見光譜的產(chǎn)生惰性的。即所第三節(jié)紫外-可見分光光度計(jì)一、組成部件紫外-可見分光光度計(jì)的基本結(jié)構(gòu)是由五個部分組成:即光源、單色器、吸收池、檢測器和信號指示系統(tǒng)。(一)光源對光源的基本要求是應(yīng)在儀器操作所需的光譜區(qū)域內(nèi)能夠發(fā)射連續(xù)輻射,有足夠的輻射強(qiáng)度和良好的穩(wěn)定性,而且輻射能量隨波長的變化應(yīng)盡可能小。分光光度計(jì)中常用的光源有熱輻射光源和氣體放電光源兩類。熱輻射光源用于可見光區(qū),如鎢絲燈和鹵鎢燈;氣體28第三節(jié)紫外-可見分光光度計(jì)一、組成部件28第三節(jié)紫外-可見分光光度計(jì)放電光源用于紫外光區(qū),如氫燈和氘燈。鎢燈和碘鎢燈可使用的范圍在340~2500nm。這類光源的輻射能量與施加的外加電壓有關(guān),在可見光區(qū),輻射的能量與工作電壓4次方成正比。光電流與燈絲電壓的n次方(n1)成正比。因此必須嚴(yán)格控制燈絲電壓,儀器必須配有穩(wěn)壓裝置。在近紫外區(qū)測定時常用氫燈和氘燈。它們可在160~375nm范圍內(nèi)產(chǎn)生連續(xù)光源。氘燈的燈管內(nèi)充有氫的同位素氘,它是紫外光區(qū)應(yīng)用最廣泛的一種光源,其光譜分布與氫燈類似,但光強(qiáng)度比相同功率的氫燈要大3~5倍。29第三節(jié)紫外-可見分光光度計(jì)放電光源用于紫外光區(qū),如氫燈第三節(jié)紫外-可見分光光度計(jì)(二)單色器單色器是能從光源輻射的復(fù)合光中分出單色光的光學(xué)裝置,其主要功能:產(chǎn)生光譜純度高的波長且波長在紫外可見區(qū)域內(nèi)任意可調(diào)。單色器一般由入射狹縫、準(zhǔn)光器(透鏡或凹面反射鏡使入射光成平行光)、色散元件、聚焦元件和出射狹縫等幾部分組成。其核心部分是色散元件,起分光的作用。單色器的性能直接影響入射光的單色性,從而也影響到測定的靈敏度度、選擇性及校準(zhǔn)曲線的線性關(guān)系等。能起分光作用的色散元件主要是棱鏡和光柵。30第三節(jié)紫外-可見分光光度計(jì)(二)單色器30第三節(jié)紫外-可見分光光度計(jì)棱鏡有玻璃和石英兩種材料。它們的色散原理是依據(jù)不同的波長光通過棱鏡時有不同的折射率而將不同波長的光分開。由于玻璃可吸收紫外光,所以玻璃棱鏡只能用于350~3200nm的波長范圍,即只能用于可見光域內(nèi)。石英棱鏡可使用的波長范圍較寬,可從185~4000nm,即可用于紫外、可見和近紅外三個光域。光柵是利用光的衍射與干涉作用制成的,它可用于紫外、可見及紅外光域,而且在整個波長區(qū)具有良好的、幾乎均勻一致的分辨能力。它具有色散波長范圍寬、分辨本領(lǐng)高、成本低、便于保存和易于制備等優(yōu)點(diǎn)。缺點(diǎn)是各級光譜會重疊而產(chǎn)生干擾。31第三節(jié)紫外-可見分光光度計(jì)棱鏡有玻璃和第三節(jié)紫外-可見分光光度計(jì)入射、出射狹縫,透鏡及準(zhǔn)光鏡等光學(xué)元件中狹縫在決定單色器性能上起重要作用。狹縫的大小直接影響單色光純度,但過小的狹縫又會減弱光強(qiáng)。(三)吸收池吸收池用于盛放分析試樣,一般有石英和玻璃材料兩種。石英池適用于可見光區(qū)及紫外光區(qū),玻璃吸收池只能用于可見光區(qū)。為減少光的損失,吸收池的光學(xué)面必須完全垂直于光束方向。在高精度的分析測定中(紫外區(qū)尤其重要),吸收池要挑選配對。因?yàn)槲粘夭牧系谋旧砦馓卣饕约拔粘氐墓獬涕L度的精度等對分析結(jié)果都有影響。32第三節(jié)紫外-可見分光光度計(jì)入射、出射狹縫,透鏡及準(zhǔn)光鏡第三節(jié)紫外-可見分光光度計(jì)(四)檢測器檢測器的功能是檢測信號、測量單色光透過溶液后光強(qiáng)度變化的一種裝置。常用的檢測器有光電池、光電管和光電倍增管等。硒光電池對光的敏感范圍為300~800nm,其中又以500~600nm最為靈敏。這種光電池的特點(diǎn)是能產(chǎn)生可直接推動微安表或檢流計(jì)的光電流,但由于容易出現(xiàn)疲勞效應(yīng)而只能用于低檔的分光光度計(jì)中。光電管在紫外-可見分光光度計(jì)上應(yīng)用較為廣泛。光電倍增管是檢測微弱光最常用的光電元件,它的33第三節(jié)紫外-可見分光光度計(jì)(四)檢測器33第三節(jié)紫外-可見分光光度計(jì)靈敏度比一般的光電管要高200倍,因此可使用較窄的單色器狹縫,從而對光譜的精細(xì)結(jié)構(gòu)有較好的分辨能力。(五)信號指示系統(tǒng)它的作用是放大信號并以適當(dāng)方式指示或記錄下來。常用的信號指示裝置有直讀檢流計(jì)、電位調(diào)節(jié)指零裝置以及數(shù)字顯示或自動記錄裝置等。很多型號的分光光度計(jì)裝配有微處理機(jī),一方面可對分光光度計(jì)進(jìn)行操作控制,另一方面可進(jìn)行數(shù)據(jù)處理。34第三節(jié)紫外-可見分光光度計(jì)靈敏度比一般的光電管要高20第三節(jié)紫外-可見分光光度計(jì)二、紫外-可見分光光度計(jì)的類型紫外-可見分光光度計(jì)的類型很多,但可歸納為三種類型,即單光束分光光度計(jì)、雙光束分光光度計(jì)和雙波長分光光度計(jì)。1,單光束分光光度計(jì)

經(jīng)單色器分光后的一束平行光,輪流通過參比溶液和樣品溶液,以進(jìn)行吸光度的測定。這種簡易型分光光度計(jì)結(jié)構(gòu)簡單,操作方便,維修容易,適用于常規(guī)分析。2,雙光束分光光度計(jì)

經(jīng)單色器分光后經(jīng)反射鏡分解為強(qiáng)度相等的兩束光,35第三節(jié)紫外-可見分光光度計(jì)二、紫外-可見分光光度計(jì)的類第三節(jié)紫外-可見分光光度計(jì)一束通過參比池,一束通過樣品池。光度計(jì)能自動比較兩束光的強(qiáng)度,此比值即為試樣的透射比,經(jīng)對數(shù)變換將它轉(zhuǎn)換成吸光度并作為波長的函數(shù)記錄下來。雙光束分光光度計(jì)一般都能自動記錄吸收光譜曲線。由于兩束光同時分別通過參比池和樣品池,還能自動消除光源強(qiáng)度變化所引起的誤差。3,雙波長分光光度計(jì)由同一光源發(fā)出的光被分成兩束,分別經(jīng)過兩個單色器,得到兩束不同波長(1和2)的單色光;利用切光器使兩束光以一定的頻率交替照射同一吸收池,然后經(jīng)過36第三節(jié)紫外-可見分光光度計(jì)一束通過參比池,一束通過樣品第三節(jié)紫外-可見分光光度計(jì)光電倍增管和電子控制系統(tǒng),最后由顯示器顯示出兩個波長處的吸光度差值ΔA(ΔA=A1-A2)。對于多組分混合物、混濁試樣(如生物組織液)分析,以及存在背景干擾或共存組分吸收干擾的情況下,利用雙波長分光光度法,往往能提高方法的靈敏度和選擇性。利用雙波長分光光度計(jì),能獲得導(dǎo)數(shù)光譜。通過光學(xué)系統(tǒng)轉(zhuǎn)換,使雙波長分光光度計(jì)能很方便地轉(zhuǎn)化為單波長工作方式。如果能在1和2處分別記錄吸光度隨時間變化的曲線,還能進(jìn)行化學(xué)反應(yīng)動力學(xué)研究。37第三節(jié)紫外-可見分光光度計(jì)光電倍增管和電子控制系統(tǒng),最第三節(jié)紫外-可見分光光度計(jì)三、分光光度計(jì)的校正

通常在實(shí)驗(yàn)室工作中,驗(yàn)收新儀器或?qū)嶒?yàn)室使用過一段時間后都要進(jìn)行波長校正和吸光度校正。建議采用下述的較為簡便和實(shí)用的方法來進(jìn)行校正:鐠銣玻璃或鈥玻璃都有若干特征的吸收峰,可用來校正分光光度計(jì)的波長標(biāo)尺,前者用于可見光區(qū),后者則對紫外和可見光區(qū)都適用。也可用K2CrO4標(biāo)準(zhǔn)溶液來校正吸光度標(biāo)度。38第三節(jié)紫外-可見分光光度計(jì)三、分光光度計(jì)的校正38教學(xué)要求了解有機(jī)化合物、無機(jī)化合物紫外、可見吸收光譜產(chǎn)生的基本原理;掌握有機(jī)化合物、無機(jī)化合物中電子躍遷的基本類型。掌握紫外—可見分光光度計(jì)的主要組成部件及各部件的要求。39教學(xué)要求39第二章紫外—可見分光光度法

研究物質(zhì)在紫外、可見光區(qū)的分子吸收光譜的分析方法稱為紫外-可見分光光度法。紫外—可見分光光度法是利用某些物質(zhì)的分子吸收200~800nm光譜區(qū)的輻射來進(jìn)行分析測定的方法。這種分子吸收光譜產(chǎn)生于價電子和分子軌道上的電子在電子能級間的躍遷,廣泛用于無機(jī)和有機(jī)物質(zhì)的定性和定量測定。40第二章紫外—可見分光光度法1第一節(jié)紫外—可見吸收光譜一、分子吸收光譜的產(chǎn)生在分子中,除了電子相對于原子核的運(yùn)動外,還有核間相對位移引起的振動和轉(zhuǎn)動。這三種運(yùn)動能量都是量子化的,并對應(yīng)有一定能級。下圖為分子的能級示意圖。

分子中電子能級、振動能級和轉(zhuǎn)動能級示意圖電子能級振動能級轉(zhuǎn)動能級BA41第一節(jié)紫外—可見吸收光譜一、分子吸收光譜的產(chǎn)生電子能級第一節(jié)紫外—可見吸收光譜圖中A和B表示不同能量的電子能級。在每一電子能級上有許多間距較小的振動能級,在每一振動能級上又有許多更小的轉(zhuǎn)動能級。

若用△E電子、△

E振動、△

E轉(zhuǎn)動分別表示電子能級、振動能級轉(zhuǎn)動能級差,即有△

E電子△

E振動△

E轉(zhuǎn)動。處在同一電子能級的分子,可能因其振動能量不同,而處在不同的振動能級上。當(dāng)分子處在同一電子能級和同一振動能級時,它的能量還會因轉(zhuǎn)動能量不同,而處在不同的轉(zhuǎn)動能級上。所以分子的總能量可以認(rèn)為是這三種能量的總和:E分子=E電子+E振動+E轉(zhuǎn)動42第一節(jié)紫外—可見吸收光譜圖中A和B第一節(jié)紫外—可見吸收光譜當(dāng)用頻率為的電磁波照射分子,而該分子的較高能級與較低能級之差△

E恰好等于該電磁波的能量h時,即有

E=h(h為普朗克常數(shù))此時,在微觀上出現(xiàn)分子由較低的能級躍遷到較高的能級;在宏觀上則透射光的強(qiáng)度變小。若用一連續(xù)輻射的電磁波照射分子,將照射前后光強(qiáng)度的變化轉(zhuǎn)變?yōu)殡娦盘?,并記錄下來,然后以波長為橫坐標(biāo),以電信號(吸光度A)為縱坐標(biāo),就可以得到一張光強(qiáng)度變化對波長的關(guān)系曲線圖——分子吸收光譜圖。43第一節(jié)紫外—可見吸收光譜當(dāng)用頻率為的第一節(jié)紫外—可見吸收光譜二、分子吸收光譜類型根據(jù)吸收電磁波的范圍不同,可將分子吸收光譜分為遠(yuǎn)紅外光譜、紅外光譜及紫外、可見光譜三類。分子的轉(zhuǎn)動能級差一般在0.005~0.05eV。產(chǎn)生此能級的躍遷,需吸收波長約為250~25m的遠(yuǎn)紅外光,因此,形成的光譜稱為轉(zhuǎn)動光譜或遠(yuǎn)紅外光譜。分子的振動能級差一般在0.05~1eV,需吸收波長約為25~1.25m的紅外光才能產(chǎn)生躍遷。在分子振動時同時有分子的轉(zhuǎn)動運(yùn)動。這樣,分子振動產(chǎn)生的吸收光譜中,包括轉(zhuǎn)動光譜,故常稱為振-轉(zhuǎn)光譜。由于它吸收的44第一節(jié)紫外—可見吸收光譜二、分子吸收光譜類型5第一節(jié)紫外—可見吸收光譜能量處于紅外光區(qū),故又稱紅外光譜。電子的躍遷能差約為1~20eV,比分子振動能級差要大幾十倍,所吸收光的波長約為12.5~0.06m,主要在真空紫外到可見光區(qū),對應(yīng)形成的光譜,稱為電子光譜或紫外、可見吸收光譜。通常,分子是處在基態(tài)振動能級上。當(dāng)用紫外、可見光照射分子時,電子可以從基態(tài)激發(fā)到激發(fā)態(tài)的任一振動(或不同的轉(zhuǎn)動)能級上。因此,電子能級躍遷產(chǎn)生的吸收光譜,包括了大量譜線,并由于這些譜線的重疊而成為連續(xù)的吸收帶,這就是為什么分子的紫外、可見光譜不是線狀光譜,而是帶狀光譜的原因。又因?yàn)榻^45第一節(jié)紫外—可見吸收光譜能量處于紅外光區(qū),故又稱紅外光第一節(jié)紫外—可見吸收光譜大多數(shù)的分子光譜分析,都是用液體樣品,加之儀器的分辨率有限,因而使記錄所得電子光譜的譜帶變寬。由于氧、氮、二氧化碳、水等在真空紫外區(qū)(60~200nm)均有吸收,因此在測定這一范圍的光譜時,必須將光學(xué)系統(tǒng)抽成真空,然后充以一些惰性氣體,如氦、氖、氬等。鑒于真空紫外吸收光譜的研究需要昂貴的真空紫外分光光度計(jì),故在實(shí)際應(yīng)用中受到一定的限制。我們通常所說的紫外—可見分光光度法,實(shí)際上是指近紫外、可見分光光度法。46第一節(jié)紫外—可見吸收光譜大多數(shù)的分子光譜分析,都是用液第二節(jié)化合物紫外—可見光譜的產(chǎn)生在紫外和可見光譜區(qū)范圍內(nèi),有機(jī)化合物的吸收帶主要由*、*、n*、n*及電荷遷移躍遷產(chǎn)生。無機(jī)化合物的吸收帶主要由電荷遷移和配位場躍遷(即d—d躍遷和f—f躍遷)產(chǎn)生(教材P.23)。各種電子躍遷相應(yīng)的吸收峰和能量示意圖**

*n**n*能量*反鍵軌道*反鍵軌道n非鍵軌道反鍵軌道反鍵軌道200300400/nm47第二節(jié)化合物紫外—可見光譜的產(chǎn)生在紫外和可見第二節(jié)化合物紫外—可見光譜的產(chǎn)生由于電子躍遷的類型不同,實(shí)現(xiàn)躍遷需要的能量不同,因此吸收光的波長范圍也不相同。其中*躍遷所需能量最大,n*及配位場躍遷所需能量最小,因此,它們的吸收帶分別落在遠(yuǎn)紫外和可見光區(qū)。從圖中可知,*(電荷遷移)躍遷產(chǎn)生的譜帶強(qiáng)度最大,*、n*、n*躍遷產(chǎn)生的譜帶強(qiáng)度次之,(配位躍遷的譜帶強(qiáng)度最?。?。一、有機(jī)化合物的紫外—可見吸收光譜(一)、躍遷類型基態(tài)有機(jī)化合物的價電子包括成鍵電子、成鍵電子和非鍵電子(以n表示)。分子的空軌道包括反鍵*軌48第二節(jié)化合物紫外—可見光譜的產(chǎn)生由于電子第二節(jié)化合物紫外—可見光譜的產(chǎn)生道和反鍵*軌道,因此,可能的躍遷為*、*、n*n*等。1,*躍遷它需要的能量較高,一般發(fā)生在真空紫外光區(qū)。飽和烴中的—c—c—鍵屬于這類躍遷,例如乙烷的最大吸收波長max為135nm。2,n*躍遷實(shí)現(xiàn)這類躍遷所需要的能量較高,其吸收光譜落于遠(yuǎn)紫外光區(qū)和近紫外光區(qū),如CH3OH和CH3NH2的n*躍遷光譜分別為183nm和213nm。3,*躍遷它需要的能量低于*躍遷,吸收峰一般處于近紫外光區(qū),在200nm左右,其特征是摩爾吸光系數(shù)大,一般max104,為強(qiáng)吸收帶。如乙烯(蒸氣)49第二節(jié)化合物紫外—可見光譜的產(chǎn)生道和反鍵*軌道,因此,第二節(jié)化合物紫外—可見光譜的產(chǎn)生的最大吸收波長max為162

nm。4,n*躍遷這類躍遷發(fā)生在近紫外光區(qū)。它是簡單的生色團(tuán)如羰基、硝基等中的孤對電子向反鍵軌道躍遷。其特點(diǎn)是譜帶強(qiáng)度弱,摩爾吸光系數(shù)小,通常小于100,屬于禁阻躍遷。5,電荷遷移躍遷所謂電荷遷移躍遷是指用電磁輻射照射化合物時,電子從給予體向與接受體相聯(lián)系的軌道上躍遷。因此,電荷遷移躍遷實(shí)質(zhì)是一個內(nèi)氧化—還原的過程,而相應(yīng)的吸收光譜稱為電荷遷移吸收光譜。50第二節(jié)化合物紫外—可見光譜的產(chǎn)生的最大吸收波長max為第二節(jié)化合物紫外—可見光譜的產(chǎn)生例如某些取代芳烴可產(chǎn)生這種分子內(nèi)電荷遷移躍遷吸收帶。電荷遷移吸收帶的譜帶較寬,吸收強(qiáng)度較大,最大波長處的摩爾吸光系數(shù)max可大于104。(二)、常用術(shù)語1,生色團(tuán)

從廣義來說,所謂生色團(tuán),是指分子中可以吸收光子而產(chǎn)生電子躍遷的原子基團(tuán)。但是,人們通常將能吸收紫外、可見光的原子團(tuán)或結(jié)構(gòu)系統(tǒng)定義為生色團(tuán)。下面為某些常見生色團(tuán)的吸收光譜。51第二節(jié)化合物紫外—可見光譜的產(chǎn)生例如某些取代芳烴可產(chǎn)生這第二節(jié)化合物紫外—可見光譜的產(chǎn)生52第二節(jié)化合物紫外—可見光譜的產(chǎn)生13第二節(jié)化合物紫外—可見光譜的產(chǎn)生2,助色團(tuán)助色團(tuán)是指帶有非鍵電子對的基團(tuán),如-OH、-OR、-NHR、-SH、-Cl、-Br、-I等,它們本身不能吸收大于200nm的光,但是當(dāng)它們與生色團(tuán)相連時,會使生色團(tuán)的吸收峰向長波方向移動,并且增加其吸光度。3,紅移與藍(lán)移(紫移)某些有機(jī)化合物經(jīng)取代反應(yīng)引入含有未共享電子對的基團(tuán)(-OH、-OR、-NH2、-SH、-Cl、-Br、-SR、-NR2

)之后,吸收峰的波長將向長波方向移動,這種效應(yīng)稱為紅移效應(yīng)。這種會使某化合物的最大吸收波長向長波方向移動的基團(tuán)稱為向紅基團(tuán)。53第二節(jié)化合物紫外—可見光譜的產(chǎn)生2,助色團(tuán)14第二節(jié)化合物紫外—可見光譜的產(chǎn)生在某些生色團(tuán)如羰基的碳原子一端引入一些取代基之后,吸收峰的波長會向短波方向移動,這種效應(yīng)稱為藍(lán)移(紫移)效應(yīng)。這些會使某化合物的最大吸收波長向短波方向移動的基團(tuán)(如-CH2、-CH2CH3、-OCOCH3)稱為向藍(lán)(紫)基團(tuán)。(三)有機(jī)化合物紫外-可見吸收光譜1,飽和烴及其取代衍生物飽和烴類分子中只含有鍵,因此只能產(chǎn)生*躍遷,即電子從成鍵軌道()躍遷到反鍵軌道(*)。飽和烴的最大吸收峰一般小于150nm,已超出紫外、可見54第二節(jié)化合物紫外—可見光譜的產(chǎn)生在某些生色團(tuán)第二節(jié)化合物紫外—可見光譜的產(chǎn)生分光光度計(jì)的測量范圍。飽和烴的取代衍生物如鹵代烴,其鹵素原子上存在n電子,可產(chǎn)生n*的躍遷。n*的能量低于*。例如,CH3Cl、CH3Br和CH3I的n*躍遷分別出現(xiàn)在173、204和258nm處。這些數(shù)據(jù)不僅說明氯、溴和碘原子引入甲烷后,其相應(yīng)的吸收波長發(fā)生了紅移,顯示了助色團(tuán)的助色作用。直接用烷烴和鹵代烴的紫外吸收光譜分析這些化合物的實(shí)用價值不大。但是它們是測定紫外和(或)可見吸收光譜的良好溶劑。55第二節(jié)化合物紫外—可見光譜的產(chǎn)生分光光度計(jì)的測量范圍。1第二節(jié)化合物紫外—可見光譜的產(chǎn)生

2,不飽和烴及共軛烯烴

在不飽和烴類分子中,除含有鍵外,還含有鍵,它們可以產(chǎn)生*和*兩種躍遷。*躍遷的能量小于*躍遷。例如,在乙烯分子中,*躍遷最大吸收波長為180nm

在不飽和烴類分子中,當(dāng)有兩個以上的雙鍵共軛時,隨著共軛系統(tǒng)的延長,*躍遷的吸收帶將明顯向長波方向移動,吸收強(qiáng)度也隨之增強(qiáng)。在共軛體系中,*躍遷產(chǎn)生的吸收帶又稱為K帶。56第二節(jié)化合物紫外—可見光譜的產(chǎn)生2,不飽和烴及共軛烯烴第二節(jié)化合物紫外—可見光譜的產(chǎn)生57第二節(jié)化合物紫外—可見光譜的產(chǎn)生18第二節(jié)化合物紫外—可見光譜的產(chǎn)生3,羰基化合物羰基化合物含有C=O基團(tuán)。C=O基團(tuán)主要可產(chǎn)生*、n*、n*三個吸收帶,n*吸收帶又稱R帶,落于近紫外或紫外光區(qū)。醛、酮、羧酸及羧酸的衍生物,如酯、酰胺等,都含有羰基。由于醛酮這類物質(zhì)與羧酸及羧酸的衍生物在結(jié)構(gòu)上的差異,因此它們n*吸收帶的光區(qū)稍有不同。羧酸及羧酸的衍生物雖然也有n*吸收帶,但是,羧酸及羧酸的衍生物的羰基上的碳原子直接連結(jié)含有未共用電子對的助色團(tuán),如-OH、-Cl、-OR等,由于這些助色團(tuán)上的n電子與羰基雙鍵的電子產(chǎn)生n共軛,導(dǎo)致58第二節(jié)化合物紫外—可見光譜的產(chǎn)生3,羰基化合物19第二節(jié)化合物紫外—可見光譜的產(chǎn)生*軌道的能級有所提高,但這種共軛作用并不能改變n軌道的能級,因此實(shí)現(xiàn)n*躍遷所需的能量變大,使n*吸收帶藍(lán)移至210nm左右。4,苯及其衍生物苯有三個吸收帶,它們都是由*躍遷引起的。E1帶出現(xiàn)在180nm(MAX=60,000);E2帶出現(xiàn)在204nm(MAX=8,000);B帶出現(xiàn)在255nm(MAX=200)。在氣態(tài)或非極性溶劑中,苯及其許多同系物的B譜帶有許多的精細(xì)結(jié)構(gòu),這是由于振動躍遷在基態(tài)電子上的躍遷上的疊加而引起的。在極性溶劑中,這些精細(xì)結(jié)構(gòu)消失。59第二節(jié)化合物紫外—可見光譜的產(chǎn)生*軌道的能級有所提高,第二節(jié)化合物紫外—可見光譜的產(chǎn)生當(dāng)苯環(huán)上有取代基時,苯的三個特征譜帶都會發(fā)生顯著的變化,其中影響較大的是E2帶和B譜帶。5,稠環(huán)芳烴及雜環(huán)化合物稠環(huán)芳烴,如奈、蒽、芘等,均顯示苯的三個吸收帶,但是與苯本身相比較,這三個吸收帶均發(fā)生紅移,且強(qiáng)度增加。隨著苯環(huán)數(shù)目的增多,吸收波長紅移越多,吸收強(qiáng)度也相應(yīng)增加。當(dāng)芳環(huán)上的-CH基團(tuán)被氮原子取代后,則相應(yīng)的氮雜環(huán)化合物(如吡啶、喹啉)的吸收光譜,與相應(yīng)的碳化合物極為相似,即吡啶與苯相似,喹啉與奈相似。此外,60第二節(jié)化合物紫外—可見光譜的產(chǎn)生當(dāng)苯環(huán)上有第二節(jié)化合物紫外—可見光譜的產(chǎn)生由于引入含有n電子的N原子的,這類雜環(huán)化合物還可能產(chǎn)生n*吸收帶。二、無機(jī)化合物的紫外-可見吸收光譜產(chǎn)生無機(jī)化合物紫外、可見吸收光譜的電子躍遷形式,一般分為兩大類:電荷遷移躍遷和配位場躍遷。(一)電荷遷移躍遷無機(jī)配合物有電荷遷移躍遷產(chǎn)生的電荷遷移吸收光譜。在配合物的中心離子和配位體中,當(dāng)一個電子由配體的軌道躍遷到與中心離子相關(guān)的軌道上時,可產(chǎn)生電61第二節(jié)化合物紫外—可見光譜的產(chǎn)生由于引入含有n電子的N原第二節(jié)化合物紫外—可見光譜的產(chǎn)生荷遷移吸收光譜。不少過度金屬離子與含生色團(tuán)的試劑反應(yīng)所生成的配合物以及許多水合無機(jī)離子,均可產(chǎn)生電荷遷移躍遷。此外,一些具有d10電子結(jié)構(gòu)的過度元素形成的鹵化物及硫化物,如AgBr、HgS等,也是由于這類躍遷而產(chǎn)生顏色。電荷遷移吸收光譜出現(xiàn)的波長位置,取決于電子給予體和電子接受體相應(yīng)電子軌道的能量差。62第二節(jié)化合物紫外—可見光譜的產(chǎn)生荷遷移吸收光譜。23第二節(jié)化合物紫外—可見光譜的產(chǎn)生(二)配位場躍遷配位場躍遷包括d-d躍遷和f-f躍遷。元素周期表中第四、五周期的過度金屬元素分別含有3d和4d軌道,鑭系和錒系元素分別含有4f和5f軌道。在配體的存在下,過度元素五個能量相等的d軌道和鑭系元素七個能量相等的f軌道分別分裂成幾組能量不等的d軌道和f軌道。當(dāng)它們的離子吸收光能后,低能態(tài)的d電子或f電子可以分別躍遷至高能態(tài)的d或f軌道,這兩類躍遷分別稱為d-d躍遷和f-f躍遷。由于這兩類躍遷必須在配體的配位場作用下才可能發(fā)生,因此又稱為配位場躍遷。63第二節(jié)化合物紫外—可見光譜的產(chǎn)生(二)配位場躍遷24第二節(jié)化合物紫外—可見光譜的產(chǎn)生三、溶劑對紫外、可見吸收光譜的影響溶劑對紫外—可見光譜的影響較為復(fù)雜。改變?nèi)軇┑臉O性,會引起吸收帶形狀的變化。例如,當(dāng)溶劑的極性由非極性改變到極性時,精細(xì)結(jié)構(gòu)消失,吸收帶變向平滑。改變?nèi)軇┑臉O性,還會使吸收帶的最大吸收波長發(fā)生變化。下表為溶劑對亞異丙酮紫外吸收光譜的影響。正己烷CHCl3CH3OHH2O

*max/nm230238237243n

*max/nm32931530930564第二節(jié)化合物紫外—可見光譜的產(chǎn)生三、溶劑對紫外、可見吸收第二節(jié)化合物紫外—可見光譜的產(chǎn)生由上表可以看出,當(dāng)溶劑的極性增大時,由n

*躍遷產(chǎn)生的吸收帶發(fā)生藍(lán)移,而由*躍遷產(chǎn)生的吸收帶發(fā)生紅移。因此,在測定紫外、可見吸收光譜時,應(yīng)注明在何種溶劑中測定。由于溶劑對電子光譜圖影響很大,因此,在吸收光譜圖上或數(shù)據(jù)表中必須注明所用的溶劑。與已知化合物紫外光譜作對照時也應(yīng)注明所用的溶劑是否相同。在進(jìn)行紫外光譜法分析時,必須正確選擇溶劑。選擇溶劑時注意下列幾點(diǎn):(1)溶劑應(yīng)能很好地溶解被測試樣,溶劑對溶質(zhì)應(yīng)該是65第二節(jié)化合物紫外—可見光譜的產(chǎn)生由上表可以看出第二節(jié)化合物紫外—可見光譜的產(chǎn)生惰性的。即所成溶液應(yīng)具有良好的化學(xué)和光化學(xué)穩(wěn)定性。(2)在溶解度允許的范圍內(nèi),盡量選擇極性較小的溶劑。(3)溶劑在樣品的吸收光譜區(qū)應(yīng)無明顯吸收。66第二節(jié)化合物紫外—可見光譜的產(chǎn)生惰性的。即所第三節(jié)紫外-可見分光光度計(jì)一、組成部件紫外-可見分光光度計(jì)的基本結(jié)構(gòu)是由五個部分組成:即光源、單色器、吸收池、檢測器和信號指示系統(tǒng)。(一)光源對光源的基本要求是應(yīng)在儀器操作所需的光譜區(qū)域內(nèi)能夠發(fā)射連續(xù)輻射,有足夠的輻射強(qiáng)度和良好的穩(wěn)定性,而且輻射能量隨波長的變化應(yīng)盡可能小。分光光度計(jì)中常用的光源有熱輻射光源和氣體放電光源兩類。熱輻射光源用于可見光區(qū),如鎢絲燈和鹵鎢燈;氣體67第三節(jié)紫外-可見分光光度計(jì)一、組成部件28第三節(jié)紫外-可見分光光度計(jì)放電光源用于紫外光區(qū),如氫燈和氘燈。鎢燈和碘鎢燈可使用的范圍在340~2500nm。這類光源的輻射能量與施加的外加電壓有關(guān),在可見光區(qū),輻射的能量與工作電壓4次方成正比。光電流與燈絲電壓的n次方(n1)成正比。因此必須嚴(yán)格控制燈絲電壓,儀器必須配有穩(wěn)壓裝置。在近紫外區(qū)測定時常用氫燈和氘燈。它們可在160~375nm范圍內(nèi)產(chǎn)生連續(xù)光源。氘燈的燈管內(nèi)充有氫的同位素氘,它是紫外光區(qū)應(yīng)用最廣泛的一種光源,其光譜分布與氫燈類似,但光強(qiáng)度比相同功率的氫燈要大3~5倍。68第三節(jié)紫外-可見分光光度計(jì)放電光源用于紫外光區(qū),如氫燈第三節(jié)紫外-可見分光光度計(jì)(二)單色器單色器是能從光源輻射的復(fù)合光中分出單色光的光學(xué)裝置,其主要功能:產(chǎn)生光譜純度高的波長且波長在紫外可見區(qū)域內(nèi)任意可調(diào)。單色器一般由入射狹縫、準(zhǔn)光器(透鏡或凹面反射鏡使入射光成平行光)、色散元件、聚焦元件和出射狹縫等幾部分組成。其核心部分是色散元件,起分光的作用。單色器的性能直接影響入射光的單色性,從而也影響到測定的靈敏度度、選擇性及校準(zhǔn)曲線的線性關(guān)系等。能起分光作用的色散元件主要是棱鏡和光柵。69第三節(jié)紫外-可見分光光度計(jì)(二)單色器30第三節(jié)紫外-可見分光光度計(jì)棱鏡有玻璃和石英兩種材料。它們的色散原理是依據(jù)不同的波長光通過棱鏡時有不同的折射率而將不同波長的光分開。由于玻璃可吸收紫外光,所以玻璃棱鏡只能用于350~3200nm的波長范圍,即只能用于可見光域內(nèi)。石英棱鏡可使用的波長范圍較寬,可從185~40

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論