2022-2023學(xué)年山東省濟(jì)寧市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2022-2023學(xué)年山東省濟(jì)寧市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2022-2023學(xué)年山東省濟(jì)寧市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2022-2023學(xué)年山東省濟(jì)寧市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2022-2023學(xué)年山東省濟(jì)寧市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩32頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022-2023學(xué)年山東省濟(jì)寧市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.A.2/5B.0C.-2/5D.1/2

2.

3.A.-1

B.0

C.

D.1

4.

5.設(shè)y=x2-e2,則y=

A.2x-2e

B.2x-e2

C.2x-e

D.2x

6.

7.

A.x=-2B.x=2C.y=1D.y=-2

8.函數(shù)f(x)在x=x0處連續(xù)是f(x)在x=x0處極限存在的()A.充分非必要條件B.必要非充分條件C.充分必要條件D.既不充分也不必要條件

9.設(shè)y=e-2x,則y'于().A.A.2e-2xB.e-2xC.-2e-2xD.-2e2x

10.

11.設(shè),則函數(shù)f(x)在x=a處().A.A.導(dǎo)數(shù)存在,且有f'(a)=-1B.導(dǎo)數(shù)一定不存在C.f(a)為極大值D.f(a)為極小值12.一端固定,一端為彈性支撐的壓桿,如圖所示,其長(zhǎng)度系數(shù)的范圍為()。

A.μ<0.7B.μ>2C.0.7<μ<2D.不能確定

13.

A.

B.

C.

D.

14.函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是()。A.(-5,5)B.(-∞,0)C.(0,+∞)D.(-∞,+∞)

15.

16.

17.A.-cosxB.-ycosxC.cosxD.ycosx18.A.A.arctanx2

B.2xarctanx

C.2xarctanx2

D.

19.設(shè)y=f(x)在[0,1]上連續(xù),且f(0)>0,f(1)<0,則下列選項(xiàng)正確的是

A.f(x)在[0,1]上可能無(wú)界

B.f(x)在[0,1]上未必有最小值

C.f(x)在[0,1]上未必有最大值

D.方程f(x)=0在(0,1)內(nèi)至少有一個(gè)實(shí)根

20.A.a=-9,b=14B.a=1,b=-6C.a=-2,b=0D.a=12,b=-521.設(shè)有直線

當(dāng)直線l1與l2平行時(shí),λ等于().A.A.1

B.0

C.

D.一1

22.過(guò)點(diǎn)(0,2,4)且平行于平面x+2x=1,y-3x=2的直線方程為

A.x/1=(y-2)/0=(z-4)/-3.

B.x/0=(y-2)/1=(z-4)/-3

C.x/-2=(y-2)/3=(z-4)/1

D.-2x+3(y-2)+z-4=0

23.

A.

B.

C.

D.

24.

25.函數(shù)f(x)=2x3-9x2+12x-3單調(diào)減少的區(qū)間為A.(-∞,1]B.[1,2]C.[2,+∞)D.[1,+∞)

26.微分方程y''-2y'=x的特解應(yīng)設(shè)為

A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+c

27.

28.設(shè)f(x)為連續(xù)函數(shù),則等于().A.A.f(x2)B.x2f(x2)C.xf(x2)D.2xf(x2)

29.設(shè)f(x)在Xo處不連續(xù),則

A.f(x0)必存在

B.f(x0)必不存在

C.

D.

30.

31.方程x2+2y2-z2=0表示的二次曲面是()

A.橢球面B.錐面C.旋轉(zhuǎn)拋物面D.柱面

32.

33.設(shè)函數(shù)f(x)=則f(x)在x=0處()A.可導(dǎo)B.連續(xù)但不可導(dǎo)C.不連續(xù)D.無(wú)定義

34.

35.

36.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是()。A.

B.

C.

D.

37.

38.下列運(yùn)算中正確的有()A.A.

B.

C.

D.

39.當(dāng)x→0時(shí),2x+x2與x2比較是A.A.高階無(wú)窮小B.低階無(wú)窮小C.同階但不等價(jià)無(wú)窮小D.等價(jià)無(wú)窮小

40.

41.

42.

43.

44.

45.由曲線y=1/X,直線y=x,x=2所圍面積為

A.A.

B.B.

C.C.

D.D.

46.

設(shè)f(x)=1+x,則f(x)等于()。A.1

B.

C.

D.

47.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)48.A.A.僅為x=+1B.僅為x=0C.僅為x=-1D.為x=0,±149.A.A.6dx+6dyB.3dx+6dyC.6dx+3dyD.3dx+3ay

50.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理?xiàng)l件的是

A.

B.f(x)=(x-4)2,x∈[-2,4]

C.

D.f(x)=|x|,x∈[-1,1]

二、填空題(20題)51.

52.

53.

54.

55.56.57.廣義積分.

58.

59.函數(shù)的間斷點(diǎn)為______.60.61.62.冪級(jí)數(shù)的收斂半徑為______.63.

64.設(shè)函數(shù)f(x)=x-1/x,則f'(x)=________.

65.

66.

67.

68.

69.

70.設(shè)區(qū)域D由曲線y=x2,y=x圍成,則二重積分三、計(jì)算題(20題)71.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.72.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.73.74.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

75.求微分方程y"-4y'+4y=e-2x的通解.

76.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.77.

78.

79.

80.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

81.證明:82.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.83.84.求微分方程的通解.85.86.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

87.

88.將f(x)=e-2X展開為x的冪級(jí)數(shù).89.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則90.求曲線在點(diǎn)(1,3)處的切線方程.四、解答題(10題)91.求y"-2y'=2x的通解.

92.設(shè)D是由曲線x=1-y2與x軸、y軸,在第一象限圍成的有界區(qū)域.求:(1)D的面積S;(2)D繞x軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積V.

93.

94.

95.

96.

97.

98.證明:當(dāng)時(shí),sinx+tanx≥2x.

99.

100.

五、高等數(shù)學(xué)(0題)101.求極限

六、解答題(0題)102.

參考答案

1.A本題考查了定積分的性質(zhì)的知識(shí)點(diǎn)

2.D解析:

3.C

4.C

5.D

6.C

7.C解析:

8.A函數(shù)f(x)在x=x0處連續(xù),則f(x)在x=x0處極限存在.但反過(guò)來(lái)卻不行,如函數(shù)f(x)=故選A。

9.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo).

可知應(yīng)選C.

10.D

11.A本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.

由于,可知f'(a)=-1,因此選A.

由于f'(a)=-1≠0,因此f(a)不可能是f(x)的極值,可知C,D都不正確.

12.D

13.D本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)運(yùn)算.

因此選D.

14.C本題考查的知識(shí)點(diǎn)為判定函數(shù)的單調(diào)性。

y=ln(1+x2)的定義域?yàn)?-∞,+∞)。

當(dāng)x>0時(shí),y'>0,y為單調(diào)增加函數(shù),

當(dāng)x<0時(shí),y'<0,y為單調(diào)減少函數(shù)。

可知函數(shù)y=ln(1+x2)的單調(diào)增加區(qū)間是(0,+∞),故應(yīng)選C。

15.D

16.A

17.C本題考查的知識(shí)點(diǎn)為二階偏導(dǎo)數(shù)。由于z=y(tǒng)sinx,因此可知應(yīng)選C。

18.C

19.D

20.B

21.C本題考查的知識(shí)點(diǎn)為直線間的關(guān)系.

22.C本題考查了直線方程的知識(shí)點(diǎn).

23.B本題考查的知識(shí)點(diǎn)為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。

24.B

25.Bf(x)=2x3-9x2+12x-3的定義域?yàn)?-∞,+∞)

f'(x)=6x2-18x+12=6(x23x+2)=6(x-1)(x-2)。

令f'(x)=0得駐點(diǎn)x1=1,x2=2。

當(dāng)x<1時(shí),f'(x)>0,f(x)單調(diào)增加。

當(dāng)1<x<2時(shí),f'(x)<0,f(x)單調(diào)減少。

當(dāng)x>2時(shí),f'(x)>0,f(x)單調(diào)增加。因此知應(yīng)選B。

26.C本題考查了二階常系數(shù)微分方程的特解的知識(shí)點(diǎn)。

因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.

27.C解析:

28.D解析:

29.B

30.A

31.B對(duì)照二次曲面的標(biāo)準(zhǔn)方程,可知所給曲面為錐面,故選B。

32.B

33.A因?yàn)閒"(x)=故選A。

34.B

35.B

36.C

37.C

38.C本題考查的知識(shí)點(diǎn)為重要極限公式.

所給各極限與的形式相類似.注意到上述重要極限結(jié)構(gòu)形式為

將四個(gè)選項(xiàng)與其對(duì)照。可以知道應(yīng)該選C.

39.B

40.B

41.D

42.A

43.C解析:

44.C

45.B本題考查了曲線所圍成的面積的知識(shí)點(diǎn),

曲線y=1/X與直線y=x,x=2所圍成的區(qū)域D如下圖所示,

46.C本題考查的知識(shí)點(diǎn)為不定積分的性質(zhì)??芍獞?yīng)選C。

47.A本題考查的知識(shí)點(diǎn)為無(wú)窮級(jí)數(shù)的收斂性。

48.C

49.C

50.C

51.f(x)+Cf(x)+C解析:

52.(-35)(-3,5)解析:

53.1

54.1/4

55.

56.57.1本題考查的知識(shí)點(diǎn)為廣義積分,應(yīng)依廣義積分定義求解.

58.59.本題考查的知識(shí)點(diǎn)為判定函數(shù)的間斷點(diǎn).

僅當(dāng),即x=±1時(shí),函數(shù)沒有定義,因此x=±1為函數(shù)的間斷點(diǎn)。

60.

本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.

若利用極限公式

如果利用無(wú)窮大量與無(wú)窮小量關(guān)系,直接推導(dǎo),可得

61.

本題考查的知識(shí)點(diǎn)為直線的方程和直線與直線的關(guān)系.

由于兩條直線平行的充分必要條件為它們的方向向量平行,因此可取所求直線的方向向量為(2,1,-1).由直線的點(diǎn)向式方程可知所求直線方程為

62.

;

63.

64.1+1/x265.本題考查的知識(shí)點(diǎn)為重要極限公式。

66.0

67.

68.12x

69.70.本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.積分區(qū)域D可以表示為:0≤x≤1,x2≤y≤x,因此

71.

72.

73.

74.

75.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

76.函數(shù)的定義域?yàn)?/p>

注意

77.由一階線性微分方程通解公式有

78.

79.

80.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

81.

82.由二重積分物理意義知

83.

84.

85.

86.

列表:

說(shuō)明

87.

88.89.由等價(jià)無(wú)窮小量的定義可知90.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論