版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
STATICS
TUTORIAL1&2–
UNIT1:ForceandEquilibrium
Chapter2:ForceVectorsIrDrKanesan
MuthusamyEBXS3103StaticsJan20051PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysiaSEQUENCEOFCHAPTER2IntroductionObjectives2.1Forceinaplane 2.1.1Resultantof2forcesactingonaparticle2.2Vectors2.3Vectoroperations
2.3.1Additionofvectors
2.3.2Vectorsubtraction
2.3.3Resolutionofvector2.4Additionofasystemofcoplanarforces
2.4.1Scalarnotation
2.4.2Cartesianvectornotation
2.4.3Coplanarforceresultants2.5Cartesianvectors
2.5.1Right-handedcoordinatesystem
2.5.2Cartesianunitvectors
2.5.3Cartesianvectorrepresentation
2.5.4Magnitudeofacartesianvector
2.5.5Directionofacartesianvector2.6Additionandsubtractionofcartesianvectors
2.6.1Concurrentforcesystems2.7Positionvectors
2.7.1x,y,zcoordinates
2.7.2Positionvector2.8Forcevectordirectedalongaline2.9DotproductSummary2PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysiaIntroductionThefirstphaseofthechapterfocusesonresultantforces,i.e.thecombinedforces(twoormoreforces)actingonparticleshavingthesameeffectastheoriginalforces.Thisresultantforceissingleforceactingontheparticle.Alltheforcesactingonagivenbodyisassumedtobeappliedatthesamepoint.3PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysiaObjectivesExplaintheeffectofforcesactingonparticles;andApplyforcevectorsknowledgeinsolvingproblemsrelatedtostatics.4PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysia2.1.1Resultantof2forcesactingonaparticleAforcerepresentstheactionofonebodyonanotherandisnormallycharacterizedbyitspointofapplication,itsmagnitudeanditsdirection.Thedirectionoftheforceisalsocharacterizedbythesenseoftheforce.Forexample,asshowninFigure2.1(a)and2.1(b),twoforceshavingthesamemagnitudeandpointofapplicationbutoppositesenseofdirectionwillhavedirectlyoppositeeffectsontheparticle.
(b)Figure2.12.1ForcesinaPlane5PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysia2.1.1Resultantof2forcesactingonaparticleTwoforcesPandQactingonaparticleA,Figure2.2(a)canbereplacedbyasingleforceRwhichhasthesameeffectontheparticle,Figure2.2(c).ThisforceRiscalledtheresultantoftheforcesPandQandthismethodforfindingtheresultantoftheforceiscalledtheparallelogramlawfortheadditionoftwoforces.2.1ForcesinaPlane(b) (c)Figure2.26PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysiaVectorsaredefinedasmathematicalexpressionspossessingmagnitudeanddirection,whichaddaccordingtotheparallelogramlaw.Itwilldistinguishfromscalarquantitiesinthismodulethroughtheuseofboldfacetype(P).Twovectorswithsamemagnitudeandthesamedirectionaresaidtobeequal,whetherornottheyhavethesamepointofapplication(Figure2.3).ThenegativevectorofagivenvectorPisthedefinedasavectorhavingthesamemagnitudeasPandadirectionoppositetothatofP
(Figure2.4).Figure2.3Figure2.4P+(-P)=02.2Vectors7PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysia2.3.1AdditionofVectorsThesumoftwovectorsPandQcanbeobtainedbyattachingthetwovectorstothesamepointAandconstructingaparallelogram,usingPandQastwosidesoftheparallelogram(Figure2.5and2.6)
Figure2.5Figure2.6R=A+B=B+A
2.3VectorOperations8PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysia2.3VectorOperations
2.3.2VectorSubtractionThevectorsubtractionisdefinedastheadditionofthecorrespondingnegativevector.(Figure2.7)ThevectorP–QrepresentsthedifferencebetweenthevectorsPandQ.
Figure2.7P–Q=P+(-Q)9PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysia2.3VectorOperations2.3.3ResolutionofVectorAvectormayberesolvedintotwoormore“components”havingknownlinesofactionbyusingtheparallelogramlaw(Figure2.8)
Figure2.810PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysiaExample2.1ThetwoforcesPandQactsonaboltAasshowninFigure2.9(a).Determinetheresultants.Thetriangleisused.Twosidesandtheincludedangleareknown.Wecanapplythelawofcosines.
(b)
Figure2.911PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysiaExample2.112PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysiaWhenthesystemofmorethantwoforceshastobeobtained,itismuchmoreconvenientandeasiertofindthecomponentsofeachforcealongthespecifiedaxes,addthesecomponentsalgebraicallyandthenformtheresultantAlthoughtheaxesarehorizontalandvertical,theymaybedirectedatanyinclination,aslongastheyremainperpendiculartooneanother
Figure2.10Figure2.11Figure2.12(a)Figure2.12(b)2.4Additionofasystemofcoplanar forces13PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysia2.4Additionofasystemofcoplanar forces2.4.1.ScalarNotationAxesxandyinFigure2.12(a)and(b)havebeendesignatedpositiveandnegativedirections.Therefore,themagnitudeanddirectionalsenseoftherectangularcomponentsofaforcecanbeexpressedintermsofalgebraicscalars.ThecomponentsFinFigure2.12(a)canberepresentedbytwopositivescalarsFxandFysincetheirsenseofdirectionisalongthepositivexandyaxisrespectively.Inasimilarway,thecomponentsofF’inFigure2.12(b)canberepresentedbyFx’and–Fy’.Thisscalarnotationistobeusedforcomputationalpurposesonly,notforgraphicalrepresentationinfigures
14PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysia2.4Additionofasystemofcoplanar forces2.4.2.CartesianVectorNotationTwovectorsofunitmagnitudecalledCartesianunitvectors
i
and
j
andaredirectedalongthexandyaxesrespectively.Thesevectorsarecalledunitvectorsandaredenotedbyiandjrespectively(Figure2.13)WecannotethattherectangularcomponentsFx
andFyofaforceFmaybeobtainedbymultiplyingrespectivelytheunitvectors
i
and
jbyappropriatescalars,Figure2.14
Figure2.13Figure2.14Fx=Fxi
and
Fy=FyjandF=Fxi
+Fyj15PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysia2.4Additionofasystemofcoplanar forces2.4.2.CartesianVectorNotationThescalarsFx
and
Fy
arecalledthescalarcomponentsoftheforceFwhiletheactualcomponentforcesFxandFymustbereferredtoasthevectorcomponentsofF.WenotethatthescalarcomponentFxispositivewhenthevector
componentFxhasthesamesenseastheunitvector
i.DenotingbyFthemagnitudeoftheforceFandbytheanglebetweenF
andthexaxis,measuredcounterclockwisefromthepositivexaxis(Figure2.14),wemayexpressthescalarcomponentsofFas:
Fx=F
cos
Fy=Fsin
16PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysia
Example2.2Aforceof800NisexertedonaboltAasshowinFigure(a).Determinethehorizontalandverticalcomponentsoftheforce.17PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysia
Example2.2ByinspectingthesignsofFxandFy(Figureb)andutilisingthetrigonometricfunctionsoftheangle,wecanwrite,ThevectorcomponentsofFarethus,
andwecanwriteFintheform18PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysia2.4Additionofasystemofcoplanar forces2.4.3.CoplanarForceResultantsInordertodeterminetheresultantofseveralcoplanarforces,eachforceisfirstresolvedintoitsxandycomponents.Then,therespectivecomponentsareaddedusingscalaralgebrasincetheyarecollinear.Theresultantforcecanbethenformedbyaddingtheresultantsofxandycomponentsusingtheparallelogramlaw.Consider,forinstance,threeforces,F1,F2andF3actingonaparticleshowninFigure2.17(a).ThesethreeforceshavetheirrespectivecomponentsasshowninFigure2.17(b).InordertosolvethisproblemusingCartesianvectornotation,eachforcecanbefirstrepresentedasaCartesianvector,
19PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysiaThevectorresultantistherefore2.4.3.CoplanarForceResultants20PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysiaGenerally,thexandycomponentsoftheresultantofanynumberofcoplanarforcescanberepresentedsymbolicallybythealgebraicsumofthexandycomponentsofalltheforces,Positivecoordinateaxesareconsideredpositivescalars,whereasthosehavingadirectionalsensealongthenegativecoordinateaxesareconsiderednegativescalars.Oncetheresultantcomponentsaredetermined,theymaybesketchedalongthexandyaxesintheirproperdirectionsandtheresultantforcecanbedeterminedfromvectoraddition,asshowninFigure2.17(c).
2.4.3.CoplanarForceResultants21PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysiaFromthisfigure,themagnitudeofFRcanbethenfoundusingthePythagoreantheorem;Thedirectionanglewhichspecifiestheorientationoftheforce,isdeterminedfromthetrigonometry:2.4.3.CoplanarForceResultants22PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysiaExample2.6TheendofboomOinFigure2.20(a)issubjectedtothreeconcurrentandcoplanarforces.Determinethemagnitudeandorientationoftheresultantforce.AnswerEachforceisresolvedintoitsxandycomponents(Figure2.20(b)).Summingthexcomponents,wehave23PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysia
Example2.6Eachforceisresolvedintoitsxandycomponents(Figure2.20(b)).Summingthexcomponents,wehaveThenegativesignindicatesthatFRX
actstotheleft,i.e.tothenegativexdirectionasnotedbythesmallarrow.Summingtheycomponentsyields24PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysiaExample2.6TheresultantforceasshowninFigure2.20(c),hasamagnitudeofFromthevectoradditioninFigure2.20(c),thedirectionangleis:25PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysia2.5.1Right-HandedCoordinateSystemACartesianorrectangularcoordinatesystemissaidtoberighthandedprovidedthethumboftherighthandpointsinthedirectionofthepositivezaxiswhentheright-handfingersarecurledaboutthisaxisanddirectedfromthepositivextowardthepositiveyaxis(Fig2.23).
2.5CartesianVectors26PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysia2.5CartesianVectors2.5.2CartesianUnitVectorsInthreedimensions,thedirectionoftheaxesx,yandzisrepresentedbyCartesianunitvectorsofi,jandkrespectively(Fig.2.24).
27PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysia2.5CartesianVectors2.5.3CartesianVectorRepresentationConsidervectorAasshowninFigure2.25.SincethethreecomponentsofAactinthepositivei,jandkdirectionsrespectively,onecanwriteAinCartesianvectorformas
28PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysia2.5CartesianVectors2.5.4MagnitudeofaCartesianVectorInFigure2.26,fromthestandingdarkcoloredrighttriangle,
andfromthelyingdownshadedrighttriangle,
.Combiningthesetwoequations,weobtainA
=√Ax2+Ay2+Az229PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysia2.5.5DirectionofaCartesianVectorTheorientationofAisdefinedbythecoordinatedirectionangles(alpha),
(beta)and(gamma).,
and
canbedeterminedbyconsideringtheprojectionofAontothex,yandzaxes,
ThesenumbersarecalledthedirectioncosinesofA.
2.5CartesianVectorsAAx__cos
=__AAycos
=__AAzcos
=30PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysia2.5CartesianVectors2.5.5DirectionofaCartesianVectorProvidedAisexpressedinCartesianvectorform,A=Axi+Ayj+Azk,then
Itcanbeseenfromtheaboveequation,thattheiandkcomponentsofuArepresentsthedirectioncosinesofA,i.e.
uA=cos
i
+cos
j+cos
k
uA==i+j+k
A
Ax
Ay
AzAAAA________andA
=√Ax2+Ay2+Az231PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysia2.5CartesianVectors2.5.5DirectionofaCartesianVectorSincethemagnitudeofavectorisequaltothepositivesquarerootofthesumofthesquaresofthemagnitudesofitscomponentsanduAhasamagnitudeof1,thenanimportantrelationbetweenthedirectioncosinescanbeformulatedas, cos2
+cos2
+cos2=1IfthemagnitudeandcoordinatedirectionanglesofAaregiven,AcanbeexpressedinCartesianvectorformas
A=AuA
=Acos
i+Acos
j+Acos
k =Axi+Ayj+Az
k
32PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysiaA=Ax
i
+Ay
j+Az
k
andB=Bx
i
+By
j
+Bz
k,(Figure2.29),thentheresultantvectorRhascomponentsinthescalarsumsofthe
i,
j
and
k
componentsofAandB,
R=A+B =(Ax+Bx)i+(Ay+By)j
+(Az+Bz)kVectorsubtraction,simplyrequiresascalarsubtractionoftherespectivei,jandkcomponentsofeitherAorB.Forinstance,
R=A-B =(Ax-Bx)i
+(Ay-By)j+(Az-Bz)k2.6AdditionandSubtractionof CartesianVectors33PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysia2.6AdditionandSubtractionof CartesianVectors2.6.1ConcurrentForceSystemsTheforceresultantisthevectorsumofalltheforcesinthesystemandcanbewrittenas:
FR=F =Fx
i+Fy
j+Fz
kFx,FyandFzrepresentthealgebraicsumsoftherespectivex,y,zori,j,kcomponentsofeachforceofthesystem.34PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysiaExample2.10DeterminethemagnitudeandthecoordinatedirectionanglesoftheresultantforceactingontheringasshowninFigure2.31(a).
Figure2.31(a) Figure2.31(b)35PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysiaExample2.10Theresultantforce,showninFigure2.31(b)is
FR=F=F1+F2={60j+80k}kN+{50i–100j+100k}kN ={50i–40j+180k}kN ThemagnitudeofFRisfoundtobe
FR
=
√
(50)2+(-40)2+(180)2=191kNThecoordinatedirectionanglesaredeterminedfromthecomponentsoftheunitvectoractinginthedirectionofFR.andtherefore,cos
=0.2617,
=74.8°cos
=-0.2094,=102°cos=0.9422,=19.6°uFR
==i-j+k
=0.2617i–0.2094j+0.9422k
FR
50
40180FR
191
191
191___________36PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysia2.7.1x,y,zCoordinatesThepositivezaxisisdirectedupwardsothatitshowsthealtitudeoftheobjectoritcanalsobesaidthatitmeasurestheheightofanobject.Thex,yaxesthenlieinthehorizontalplane,Figure2.33.ThecoordinatesofpointAcanbeobtainedbystartingatOandmeasuringxA=+4malongthexaxis,yA=+2malongtheyaxisandzA=-6malongthezaxis.Therefore,A(4,2,-6).
2.7PositionVectors37PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysia2.7.2PositionVectorThepositionvectorrisdefinedasafixedvectorthatlocatesthepointinspacerelativetoanotherpoint.Forinstance,ifrextendsfromtheoriginofcoordinatesO,topointP(x,y,z),Figure2.34(a),thenrcanbeexpressedintheCartesianvectorformas
r
=xi
+yj
+zk2.7PositionVectors38PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysia2.7.2PositionVectorNotehowthehead-to-tailvectoradditionofthethreecomponentsyieldsvectorr,Figure2.34(b).StartingattheoriginO,onetravelsxinthepositiveidirection,thenyinthepositivejdirectionandzinthepositivekdirectiontoarriveatpointP(x,y,z).rcanalsobedesignatedasrAB.NotethatrAandrBinFigure2.35(a)arereferencedwithonlyonesubscriptsincetheyextendfromtheoriginofcoordinates.
2.7PositionVectors39PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysia2.7.2PositionVectorFromFigure2.35(a),bythehead-to-tailvectoraddition,werequire
r
rA+r=rBSolvingforrandexpressingrAandrBinCartesianvectorformyields r=rB–rA
=(xBi+yBj+zBk)–(xAi+yAj+zAk)
orinothermanner,wecanwrite
r=(xB–xA)i+(yB
–yA)j+(zB
–
zA)k2.7PositionVectors40PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysiaWecanrepresentFasaCartesianvectorbyrealizingthatithasthesamedirectionandsenseasthepositionvectorrdirectedfrompointAtopointBonthecord.Thisdirectionisspecifiedbyunitvector.Hence,
F=Fu
=F[]rrrru=2.8ForceVectors41PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysiaExample2.12Figure2.37(a)showsthemanpullsthecordwithaforceof350N.Representthisforce,thatactsonpointAasaCartesianvectoranddetermineitsdirection.42PengenalanKepadaPangkalanData
?ODLJan2005
OpenUniversityMalaysiaExample2.12Figure2.37(b)showstheforce
F.Thedirectionofthisvector,
uisdeterminedfromthepositionvector,
r
whichextendsfromAtoB.
ThecoordinatesofA(0,0,7.5m)andB(3m,-2m,1.5m)areshowninFigure2.37(a).Thepositionvectorcanbeformedbysubtractingthecorrespondingx,yandzcoordinatesofAfromthoseofB.4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 家電業(yè)務(wù)員產(chǎn)品介紹總結(jié)
- 媒體工作室行政后勤工作總結(jié)
- 陶瓷制品生產(chǎn)合同三篇
- 資金管理及優(yōu)化總結(jié)
- 設(shè)立圖書角提升閱讀興趣計劃
- 電商平臺前臺服務(wù)總結(jié)
- 2023年福建省寧德市公開招聘警務(wù)輔助人員輔警筆試自考題2卷含答案
- 大學生村官農(nóng)村村情調(diào)研報告范本
- 《認識臭氧層危機》課件
- 2024年社會人文科學研究服務(wù)項目資金申請報告代可行性研究報告
- CRTSIII型板式無砟軌道專項施工施工方法及工藝要求
- 2022-2023學年浙江省湖州市德清縣人教PEP版四年級上冊期末檢測英語試卷【含答案】
- 新人教版數(shù)學一年級下冊第四單元《100以內(nèi)數(shù)的認識》教材解讀
- MOOC 外科護理學-中山大學 中國大學慕課答案
- 托福聽力課件
- 事業(yè)單位年度考核方案
- 2024年土地管理法
- 醫(yī)學統(tǒng)計學:醫(yī)學統(tǒng)計學課后習題答案
- 框架玻璃幕墻施工工藝
- 全球50強藥企官網(wǎng)及LOGO匯總
- 2024年福建省投資開發(fā)集團有限責任公司招聘筆試參考題庫含答案解析
評論
0/150
提交評論