利用三角形全等測(cè)距離_第1頁(yè)
利用三角形全等測(cè)距離_第2頁(yè)
利用三角形全等測(cè)距離_第3頁(yè)
利用三角形全等測(cè)距離_第4頁(yè)
利用三角形全等測(cè)距離_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

5.7利用三角形全等測(cè)距離學(xué)習(xí)目標(biāo)1.利用三角形全等解決實(shí)際問(wèn)題.2.能在解決問(wèn)題的過(guò)程中進(jìn)行有條理的思考和表達(dá).自學(xué)指導(dǎo)認(rèn)真看課本P89-90,思考:1.課本89頁(yè)的戰(zhàn)爭(zhēng)故事中的問(wèn)題如何轉(zhuǎn)化為數(shù)學(xué)問(wèn)題?戰(zhàn)士測(cè)量的依據(jù)是什么?2.“想一想”中的實(shí)際問(wèn)題如何轉(zhuǎn)化為數(shù)學(xué)問(wèn)題?已知條件和求證的內(nèi)容分別是什么?請(qǐng)寫(xiě)出證明過(guò)程.你還能想出其它方案嗎?將實(shí)際問(wèn)題轉(zhuǎn)換成數(shù)學(xué)問(wèn)題為:步測(cè)距離碉堡距離ACBD?∴BC=

DC()在△ACB與△ACD中,∠1=∠2AC=AC(公共邊)

∠3=∠4∴△ACB≌△ACD(ASA)全等三角形的對(duì)應(yīng)邊相等解由題意得:AC=AC,∠1=∠2,AC

⊥BD步測(cè)距離碉堡距離CBD?A(已知)(已證)∴他測(cè)出自己與那個(gè)點(diǎn)的距離就是他與碉堡間的距離1234∵AC⊥BD∴∠3=∠4=90°想一想:

如圖,A、B兩點(diǎn)分別位于一個(gè)池塘的兩端,小明想用繩子測(cè)量A、B間的距離,但繩子不夠長(zhǎng),,一個(gè)叔叔幫他出了這樣一個(gè)主意:①先在地上取一個(gè)可以直接到達(dá)A、B兩點(diǎn)的點(diǎn)C;②連接AC并延長(zhǎng)到D,使CD=AC;③連接BC并延長(zhǎng)到E,使CE=CB;④連接DE并測(cè)量出它的長(zhǎng)度,則DE的長(zhǎng)就是A、B間的距離。你能說(shuō)明其中的道理嗎?請(qǐng)把你的思路寫(xiě)下來(lái)。

∴△ABC≌△DEC(SAS)∴AB=DE(全等三角形對(duì)應(yīng)邊相等)AC=DC(已知)∠1=∠2(對(duì)頂角相等)BC=EC(已知)解:由題意得:AC=DC,BC=EC在△ABC與△DEC中ABCDE∴

測(cè)得DE的長(zhǎng)即可知道AB間的距離12DC想一想△ABC≌△DEC(SAS)△ABC≌△ADC(SAS)△ABC≌△DBC(SAS)CD1、將實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題。2、構(gòu)造全等三角形并說(shuō)明理由。ECD你能想到其它測(cè)量方法嗎?還有嗎?思路三如圖要測(cè)量河兩岸相對(duì)的兩點(diǎn)A、B的距離,先在AB

的垂線BF上取兩點(diǎn)C、D,使CD=BC,再定出BF的垂線DE,可以證明△EDC≌△ABC,得ED=AB,因此,測(cè)得ED的長(zhǎng)就是AB的長(zhǎng)。判定△EDC≌△ABC的理由是()A、SSSB、ASAC、AASD、SASBA●●DCEFB自學(xué)檢測(cè)2、山腳下有A、B兩點(diǎn),要測(cè)出A、B兩點(diǎn)間的距離。在地上取一個(gè)可以直接到達(dá)A、B點(diǎn)的點(diǎn)O,連接AO并延長(zhǎng)到C,使AO=CO;連接BO并延長(zhǎng)到D,使BO=DO,連接CD。可以證△ABO≌△CDO,得CD=AB,因此,測(cè)得CD的長(zhǎng)就是AB的長(zhǎng)。判定△ABO≌△CDO的理由是()A、SSSB、ASAC、AASD、SASDD3、把兩根鋼條AB,CD的中點(diǎn)連在一起,可以做成一個(gè)測(cè)量工件內(nèi)槽寬的工具(卡鉗)。只要量得AC的長(zhǎng)度,就可知工件的內(nèi)徑BD是否符合標(biāo)準(zhǔn)。你能明白其中的道理嗎?CABDO(SAS)4、如圖,要測(cè)量河兩岸兩點(diǎn)A、B間的距離,可用什么方法?并說(shuō)明這樣做的合理性.理由:由題意得AB⊥BE,DF⊥BE,BC=DC∵AB⊥BE,DG⊥BE∴∠B=∠BDF=90°

在△ABC和△FDC中∠B=∠BDF(已證)BC

=CD(已知)∠1=∠2(對(duì)頂角相等)∴△ABC≌△FDC(ASA)∴AB=DF(全等三角形對(duì)應(yīng)邊相等)∴測(cè)得DF的長(zhǎng)就知道AB間的距離.解:①在AB的垂線BE上取兩點(diǎn)C、D,使CD=BC。②過(guò)點(diǎn)D作DF⊥BE,使A、C、F在一條直線上,則DF的長(zhǎng)就是A、B間的距離.125、課間,小明和小聰在操場(chǎng)上突然爭(zhēng)論起來(lái)。他們都說(shuō)自己比對(duì)方長(zhǎng)得高,這時(shí)數(shù)學(xué)老師走過(guò)來(lái),笑著對(duì)他們說(shuō):“你們不用爭(zhēng)了,其實(shí)你們一樣高,瞧瞧地上,你倆的影子一樣長(zhǎng)!”如圖,你知道數(shù)學(xué)老師為什么能從他們的影長(zhǎng)相等就斷定它們的身高相同?你能運(yùn)用全等三角形的有關(guān)知識(shí)說(shuō)明一下其中的道理嗎?(假定太陽(yáng)光線是平行的)太陽(yáng)光線你們其實(shí)一樣高,瞧瞧,你們的影子一樣長(zhǎng)!太陽(yáng)光線將實(shí)際問(wèn)題轉(zhuǎn)換成數(shù)學(xué)問(wèn)題為:ABCDEF在△ABC和△DEF中,∠C=∠F,∠B=∠

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論