版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022年廣東省云浮市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C
2.
3.
4.下列命題正確的是().A.A.
B.
C.
D.
5.
6.
在x=0處()。A.間斷B.可導(dǎo)C.可微D.連續(xù)但不可導(dǎo)7.()。A.
B.
C.
D.
8.方程x2+y2-2z=0表示的二次曲面是.
A.柱面B.球面C.旋轉(zhuǎn)拋物面D.橢球面
9.
10.方程x2+2y2-z2=0表示的曲面是()A.A.橢球面B.錐面C.柱面D.平面
11.談判是雙方或多方為實現(xiàn)某種目標(biāo)就有關(guān)條件()的過程。
A.達成協(xié)議B.爭取利益C.避免沖突D.不斷協(xié)商12.()。A.3B.2C.1D.013.直線l與x軸平行,且與曲線y=x-ex相切,則切點的坐標(biāo)是()A.A.(1,1)
B.(-1,1)
C.(0,-l)
D.(0,1)
14.設(shè)()A.1B.-1C.0D.215.等于().A.A.0
B.
C.
D.∞
16.
17.
18.設(shè)f(x)在點x0處連續(xù),則下列命題中正確的是().A.A.f(x)在點x0必定可導(dǎo)B.f(x)在點x0必定不可導(dǎo)C.必定存在D.可能不存在19.A.A.π/4
B.π/2
C.π
D.2π
20.
二、填空題(20題)21.
22.
23.設(shè)z=sin(x2+y2),則dz=________。
24.設(shè)f(0)=0,f'(0)存在,則
25.過點M1(1,2,-1)且與平面x-2y+4z=0垂直的直線方程為__________。
26.
27.
28.
29.
30.
31.
32.y″+5y′=0的特征方程為——.
33.
34.設(shè)z=sin(y+x2),則.
35.微分方程y"-y'=0的通解為______.
36.37.y''-2y'-3y=0的通解是______.
38.
39.
40.
三、計算題(20題)41.將f(x)=e-2X展開為x的冪級數(shù).42.證明:43.44.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.45.
46.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.47.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
48.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.49.求曲線在點(1,3)處的切線方程.
50.
51.
52.
53.54.55.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.56.求微分方程的通解.57.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則
58.求微分方程y"-4y'+4y=e-2x的通解.
59.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.
60.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
四、解答題(10題)61.
62.63.64.
65.
66.將展開為x的冪級數(shù).
67.68.將展開為x的冪級數(shù).
69.
70.五、高等數(shù)學(xué)(0題)71.
則dz=__________。
六、解答題(0題)72.
參考答案
1.C
2.C解析:
3.D
4.D本題考查的知識點為收斂級數(shù)的性質(zhì)和絕對收斂的概念.
由絕對收斂級數(shù)的性質(zhì)“絕對收斂的級數(shù)必定收斂”可知應(yīng)選D.
5.C解析:
6.D①∵f(0)=0,f-(0)=0,f+(0)=0;∴f(x)在x=0處連續(xù);∵f-"(0)≠f"(0)∴f(x)在x=0處不可導(dǎo)。
7.A
8.C本題考查了二次曲面的知識點。x2+y2-2z=0可化為x2/2+y2/2=z,故表示的是旋轉(zhuǎn)拋物面。
9.D
10.B對照二次曲面的標(biāo)準方程可知,所給曲面為錐面,因此選B.
11.A解析:談判是指雙方或多方為實現(xiàn)某種目標(biāo)就有關(guān)條件達成協(xié)議的過程。
12.A
13.C
14.A
15.A
16.A
17.C
18.C本題考查的知識點為極限、連續(xù)與可導(dǎo)性的關(guān)系.
函數(shù)f(x)在點x0可導(dǎo),則f(x)在點x0必連續(xù).
函數(shù)f(x)在點x0連續(xù),則必定存在.
函數(shù)f(x)在點x0連續(xù),f(x)在點x0不一定可導(dǎo).
函數(shù)f(x)在點x0不連續(xù),則f(x)在點x0必定不可導(dǎo).
這些性質(zhì)考生應(yīng)該熟記.由這些性質(zhì)可知本例應(yīng)該選C.
19.B
20.D
21.1/(1-x)2
22.arctanx+C
23.2cos(x2+y2)(xdx+ydy)24.f'(0)本題考查的知識點為導(dǎo)數(shù)的定義.
由于f(0)=0,f'(0)存在,因此
本題如果改為計算題,其得分率也會下降,因為有些考生常常出現(xiàn)利用洛必達法則求極限而導(dǎo)致運算錯誤:
因為題設(shè)中只給出f'(0)存在,并沒有給出,f'(z)(x≠0)存在,也沒有給出,f'(x)連續(xù)的條件,因此上述運算的兩步都錯誤.
25.
26.2/52/5解析:
27.
28.
29.1/e1/e解析:
30.3e3x3e3x
解析:
31.
解析:32.由特征方程的定義可知,所給方程的特征方程為
33.y=034.2xcos(y+x2)本題考查的知識點為二元函數(shù)的偏導(dǎo)數(shù)計算.
可以令u=y+x2,得z=sinu,由復(fù)合函數(shù)偏導(dǎo)數(shù)的鏈式法則得
35.y=C1+C2exy=C1+C2ex
解析:本題考查的知識點為二階級常系數(shù)線性微分方程的求解.
特征方程為r2-r=0,
特征根為r1=0,r2=1,
方程的通解為y=C1+C2ex.36.3yx3y-137.y=C1e-x+C2e3x由y''-2y'-3y=0的特征方程為r2-2r-3=0,得特征根為r1=3,r2=-1,所以方程的通解為y=C1e-x+C2e3x.
38.11解析:
39.1本題考查了一階導(dǎo)數(shù)的知識點。
40.e1/2e1/2
解析:
41.
42.
43.
44.
45.由一階線性微分方程通解公式有
46.
47.
48.由二重積分物理意義知
49.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
50.
51.
則
52.
53.
54.
55.函數(shù)的定義域為
注意
56.57.由等價無窮小量的定義可知
58.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
59.
列表:
說明
60.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
61.解
62.
63.
64.
65.
66.
;本題考查的知識點為將初等函數(shù)展開為x的冪級數(shù).
如果題目中沒有限定展開方法,一律要利用間接展開法.這要求考生記住幾個標(biāo)準展開式:,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 西京學(xué)院《微機原理與接口技術(shù)》2022-2023學(xué)年期末試卷
- 西南林業(yè)大學(xué)《地理信息系統(tǒng)原理與應(yīng)用》2022-2023學(xué)年第一學(xué)期期末試卷
- 從事專業(yè)與所學(xué)專業(yè)不一致專業(yè)技術(shù)人員申報職稱崗位任職合格證明附件6
- 西京學(xué)院《電機學(xué)實驗》2021-2022學(xué)年期末試卷
- 西華師范大學(xué)《中學(xué)思想政治學(xué)科教學(xué)論》2021-2022學(xué)年第一學(xué)期期末試卷
- 西華師范大學(xué)《音樂作品分析與寫作》2023-2024學(xué)年第一學(xué)期期末試卷
- 西華師范大學(xué)《文藝作品演播》2022-2023學(xué)年第一學(xué)期期末試卷
- 2024-2025學(xué)年高中物理舉一反三系列專題4.1 普朗克黑體輻射理論(含答案)
- 房地產(chǎn)金融與投資概論教學(xué)課件第二章房地產(chǎn)抵押貸款
- 匆匆 朱自清課件
- 區(qū)塊鏈技術(shù)在供應(yīng)鏈金融中的應(yīng)用
- (完整)中小學(xué)教師職稱評定答辯題
- 中國電影發(fā)展史簡介
- 2023北京海淀區(qū)高二上學(xué)期期末語文試題及答案
- 糧油售后服務(wù)承諾書
- 科研倫理與學(xué)術(shù)規(guī)范-課后作業(yè)答案
- 藥學(xué)職業(yè)生涯人物訪談
- 2023年營養(yǎng)師營養(yǎng)指導(dǎo)員專業(yè)技能及理論知識考試題庫附含答案
- 單位職工獨生子女父母一次性退休補貼申請表
- 國有集團公司中層及員工履職追責(zé)問責(zé)處理辦法模版
評論
0/150
提交評論