2022屆黑龍江省大慶四校高三壓軸卷數(shù)學(xué)試卷含解析_第1頁
2022屆黑龍江省大慶四校高三壓軸卷數(shù)學(xué)試卷含解析_第2頁
2022屆黑龍江省大慶四校高三壓軸卷數(shù)學(xué)試卷含解析_第3頁
2022屆黑龍江省大慶四校高三壓軸卷數(shù)學(xué)試卷含解析_第4頁
2022屆黑龍江省大慶四校高三壓軸卷數(shù)學(xué)試卷含解析_第5頁
免費預(yù)覽已結(jié)束,剩余16頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的一條漸近線經(jīng)過圓的圓心,則雙曲線的離心率為()A. B. C. D.22.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.3.某三棱錐的三視圖如圖所示,網(wǎng)格紙上小正方形的邊長為,則該三棱錐外接球的表面積為()A. B. C. D.4.已知復(fù)數(shù)z1=3+4i,z2=a+i,且z1是實數(shù),則實數(shù)a等于()A. B. C.- D.-5.,則與位置關(guān)系是()A.平行 B.異面C.相交 D.平行或異面或相交6.若滿足,且目標(biāo)函數(shù)的最大值為2,則的最小值為()A.8 B.4 C. D.67.已知函數(shù),若曲線在點處的切線方程為,則實數(shù)的取值為()A.-2 B.-1 C.1 D.28.中國古建筑借助榫卯將木構(gòu)件連接起來,構(gòu)件的凸出部分叫榫頭,凹進部分叫卯眼,圖中木構(gòu)件右邊的小長方體是榫頭.若如圖擺放的木構(gòu)件與某一帶卯眼的木構(gòu)件咬合成長方體,則咬合時帶卯眼的木構(gòu)件的俯視圖可以是A. B. C. D.9.已知集合,,則中元素的個數(shù)為()A.3 B.2 C.1 D.010.若不等式對恒成立,則實數(shù)的取值范圍是()A. B. C. D.11.如圖是來自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形,此圖由三個半圓構(gòu)成,三個半圓的直徑分別為直角三角形的斜邊,直角邊.已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C. D.12.設(shè)數(shù)列的各項均為正數(shù),前項和為,,且,則()A.128 B.65 C.64 D.63二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓與雙曲線(,)有相同的焦點,其左、右焦點分別為、,若橢圓與雙曲線在第一象限內(nèi)的交點為,且,則雙曲線的離心率為__________.14.某公園劃船收費標(biāo)準如表:某班16名同學(xué)一起去該公園劃船,若每人劃船的時間均為1小時,每只租船必須坐滿,租船最低總費用為______元,租船的總費用共有_____種可能.15.若曲線(其中常數(shù))在點處的切線的斜率為1,則________.16.在中,內(nèi)角所對的邊分別為,若,的面積為,則_______,_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線,直線與交于,兩點,且.(1)求的值;(2)如圖,過原點的直線與拋物線交于點,與直線交于點,過點作軸的垂線交拋物線于點,證明:直線過定點.18.(12分)為踐行“綠水青山就是金山銀山”的發(fā)展理念和提高生態(tài)環(huán)境的保護意識,高二年級準備成立一個環(huán)境保護興趣小組.該年級理科班有男生400人,女生200人;文科班有男生100人,女生300人.現(xiàn)按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環(huán)境保護興趣小組,再從這10人的興趣小組中抽出4人參加學(xué)校的環(huán)保知識競賽.(1)設(shè)事件為“選出的這4個人中要求有兩個男生兩個女生,而且這兩個男生必須文、理科生都有”,求事件發(fā)生的概率;(2)用表示抽取的4人中文科女生的人數(shù),求的分布列和數(shù)學(xué)期望.19.(12分)在中,角的對邊分別為,且.(1)求角的大??;(2)若函數(shù)圖象的一條對稱軸方程為且,求的值.20.(12分)對于給定的正整數(shù)k,若各項均不為0的數(shù)列滿足:對任意正整數(shù)總成立,則稱數(shù)列是“數(shù)列”.(1)證明:等比數(shù)列是“數(shù)列”;(2)若數(shù)列既是“數(shù)列”又是“數(shù)列”,證明:數(shù)列是等比數(shù)列.21.(12分)某大型公司為了切實保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次普查,為此需要抽驗1000人的血樣進行化驗,由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個人的血分別化驗,這時需要驗1000次.方案②:按個人一組進行隨機分組,把從每組個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結(jié)果呈陰性,這個人的血只需檢驗一次(這時認為每個人的血化驗次);否則,若呈陽性,則需對這個人的血樣再分別進行一次化驗,這樣,該組個人的血總共需要化驗次.假設(shè)此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應(yīng)相互獨立.(1)設(shè)方案②中,某組個人的每個人的血化驗次數(shù)為,求的分布列;(2)設(shè),試比較方案②中,分別取2,3,4時,各需化驗的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù))22.(10分)如圖,湖中有一個半徑為千米的圓形小島,岸邊點與小島圓心相距千米,為方便游人到小島觀光,從點向小島建三段棧道,,,湖面上的點在線段上,且,均與圓相切,切點分別為,,其中棧道,,和小島在同一個平面上.沿圓的優(yōu)?。▓A上實線部分)上再修建棧道.記為.用表示棧道的總長度,并確定的取值范圍;求當(dāng)為何值時,棧道總長度最短.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

求出圓心,代入漸近線方程,找到的關(guān)系,即可求解.【詳解】解:,一條漸近線,故選:B【點睛】利用的關(guān)系求雙曲線的離心率,是基礎(chǔ)題.2.D【解析】

根據(jù)面面垂直的判定定理,對選項中的命題進行分析、判斷正誤即可.【詳解】對于A,當(dāng),,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當(dāng),,時,則,故不能作為的充分條件,故B錯誤;對于C,當(dāng),,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當(dāng),,,則一定能得到,故D正確.故選:D.【點睛】本題考查了面面垂直的判斷問題,屬于基礎(chǔ)題.3.C【解析】

作出三棱錐的實物圖,然后補成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球為同一個球,然后計算出矩形的外接圓直徑,利用公式可計算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實物圖如下圖所示:將其補成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點睛】本題考查三棱錐外接球的表面積,解題時要結(jié)合三視圖作出三棱錐的實物圖,并分析三棱錐的結(jié)構(gòu),選擇合適的模型進行計算,考查推理能力與計算能力,屬于中等題.4.A【解析】分析:計算,由z1,是實數(shù)得,從而得解.詳解:復(fù)數(shù)z1=3+4i,z2=a+i,.所以z1,是實數(shù),所以,即.故選A.點睛:本題主要考查了復(fù)數(shù)共軛的概念,屬于基礎(chǔ)題.5.D【解析】結(jié)合圖(1),(2),(3)所示的情況,可得a與b的關(guān)系分別是平行、異面或相交.選D.6.A【解析】

作出可行域,由,可得.當(dāng)直線過可行域內(nèi)的點時,最大,可得.再由基本不等式可求的最小值.【詳解】作出可行域,如圖所示由,可得.平移直線,當(dāng)直線過可行域內(nèi)的點時,最大,即最大,最大值為2.解方程組,得..,當(dāng)且僅當(dāng),即時,等號成立.的最小值為8.故選:.【點睛】本題考查簡單的線性規(guī)劃,考查基本不等式,屬于中檔題.7.B【解析】

求出函數(shù)的導(dǎo)數(shù),利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域為(﹣1,+∞),因為f′(x)a,曲線y=f(x)在點(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點睛】本題考查函數(shù)的導(dǎo)數(shù)的幾何意義,切線方程的求法,考查計算能力.8.A【解析】

詳解:由題意知,題干中所給的是榫頭,是凸出的幾何體,求得是卯眼的俯視圖,卯眼是凹進去的,即俯視圖中應(yīng)有一不可見的長方形,且俯視圖應(yīng)為對稱圖形故俯視圖為故選A.點睛:本題主要考查空間幾何體的三視圖,考查學(xué)生的空間想象能力,屬于基礎(chǔ)題。9.C【解析】

集合表示半圓上的點,集合表示直線上的點,聯(lián)立方程組求得方程組解的個數(shù),即為交集中元素的個數(shù).【詳解】由題可知:集合表示半圓上的點,集合表示直線上的點,聯(lián)立與,可得,整理得,即,當(dāng)時,,不滿足題意;故方程組有唯一的解.故.故選:C.【點睛】本題考查集合交集的求解,涉及圓和直線的位置關(guān)系的判斷,屬基礎(chǔ)題.10.B【解析】

轉(zhuǎn)化為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究單調(diào)性,求函數(shù)最值,即得解.【詳解】由,可知.設(shè),則,所以函數(shù)在上單調(diào)遞增,所以.所以.故的取值范圍是.故選:B【點睛】本題考查了導(dǎo)數(shù)在恒成立問題中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.11.D【解析】

由半圓面積之比,可求出兩個直角邊的長度之比,從而可知,結(jié)合同角三角函數(shù)的基本關(guān)系,即可求出,由二倍角公式即可求出.【詳解】解:由題意知,以為直徑的半圓面積,以為直徑的半圓面積,則,即.由,得,所以.故選:D.【點睛】本題考查了同角三角函數(shù)的基本關(guān)系,考查了二倍角公式.本題的關(guān)鍵是由面積比求出角的正切值.12.D【解析】

根據(jù),得到,即,由等比數(shù)列的定義知數(shù)列是等比數(shù)列,然后再利用前n項和公式求.【詳解】因為,所以,所以,所以數(shù)列是等比數(shù)列,又因為,所以,.故選:D【點睛】本題主要考查等比數(shù)列的定義及等比數(shù)列的前n項和公式,還考查了運算求解的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

先根據(jù)橢圓得出焦距,結(jié)合橢圓的定義求出,結(jié)合雙曲線的定義求出雙曲線的實半軸,最后利用離心率的公式求出離心率即可.【詳解】解:因為橢圓,則焦點為,又因為橢圓與雙曲線(,)有相同的焦點,橢圓與雙曲線在第一象限內(nèi)的交點為,且,在橢圓中:由橢圓的定義:在雙曲線中:,所以雙曲線的實軸長為:,實半軸為則雙曲線的離心率為:.故答案為:【點睛】本題主要考查橢圓與雙曲線的定義,考查離心率的求解,利用定義解決綜合問題.14.36010【解析】

列出所有租船的情況,分別計算出租金,由此能求出結(jié)果.【詳解】當(dāng)租兩人船時,租金為:元,當(dāng)租四人船時,租金為:元,當(dāng)租1條四人船6條兩人船時,租金為:元,當(dāng)租2條四人船4條兩人船時,租金為:元,當(dāng)租3條四人船2條兩人船時,租金為:元,當(dāng)租1條六人船5條2人船時,租金為:元,當(dāng)租2條六人船2條2人船時,租金為:元,當(dāng)租1條六人船1條四人船3條2人船時,租金為:元,當(dāng)租1條六人船2條四人船1條2人船時,租金為:元,當(dāng)租2條六人船1條四人船時,租金為:元,綜上,租船最低總費用為360元,租船的總費用共有10種可能.故答案為:360,10.【點睛】本小題主要考查分類討論的數(shù)學(xué)思想方法,考查實際應(yīng)用問題,屬于基礎(chǔ)題.15.【解析】

利用導(dǎo)數(shù)的幾何意義,由解方程即可.【詳解】由已知,,所以,解得.故答案為:.【點睛】本題考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的基本運算能力,是一道基礎(chǔ)題.16.【解析】

由已知及正弦定理,三角函數(shù)恒等變換的應(yīng)用可得,從而求得,結(jié)合范圍,即可得到答案運用余弦定理和三角形面積公式,結(jié)合完全平方公式,即可得到答案【詳解】由已知及正弦定理可得,可得:解得,即,由面積公式可得:,即由余弦定理可得:即有解得【點睛】本題主要考查了運用正弦定理、余弦定理和面積公式解三角形,題目較為基礎(chǔ),只要按照題意運用公式即可求出答案三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2)見解析【解析】

(1)聯(lián)立直線和拋物線,消去可得,求出,,再代入弦長公式計算即可.(2)由(1)可得,設(shè),計算直線的方程為,代入求出,即可求出,再代入拋物線方程,求出,最后計算直線的斜率,求出直線的方程,化簡可得到恒過的定點.【詳解】(1)由,消去可得,設(shè),,則,.,解得或(舍去),.(2)證明:由(1)可得,設(shè),所以直線的方程為,當(dāng)時,,則,代入拋物線方程,可得,,所以直線的斜率,直線的方程為,整理可得,故直線過定點.【點睛】本題第一問考查直線與拋物線相交的弦長問題,需熟記弦長公式.第二問考查直線方程和直線恒過定點問題,需有較強的計算能力,屬于難題.18.(1);(2)見解析【解析】

(1)按分層抽樣得抽取了理科男生4人,女生2人,文科男生1人,女生3人,再利用古典概型求解即可(2)由超幾何分布求解即可【詳解】(1)因為學(xué)生總數(shù)為1000人,該年級分文、理科按男女用分層抽樣抽取10人,則抽取了理科男生4人,女生2人,文科男生1人,女生3人.所以.(2)的可能取值為0,1,2,3,,,,,的分布列為0123.【點睛】本題考查分層抽樣,考查超幾何分布及期望,考查運算求解能力,是基礎(chǔ)題19.(1)(2)【解析】

(1)由已知利用三角函數(shù)恒等變換的應(yīng)用,正弦定理可求,即可求的值.(2)利用三角函數(shù)恒等變換的應(yīng)用,可得,根據(jù)題意,得到,解得,得到函數(shù)的解析式,進而求得的值,利用三角函數(shù)恒等變換的應(yīng)用可求的值.【詳解】(1)由題意,根據(jù)正弦定理,可得,又由,所以,可得,即,又因為,則,可得,∵,∴.(2)由(1)可得,所以函數(shù)的圖象的一條對稱軸方程為,∴,得,即,∴,又,∴,∴.【點睛】本題主要考查了三角函數(shù)恒等變換的應(yīng)用,正弦定理在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.20.(1)證明見詳解;(2)證明見詳解【解析】

(1)由是等比數(shù)列,由等比數(shù)列的性質(zhì)可得:即可證明.(2)既是“數(shù)列”又是“數(shù)列”,可得,,則對于任意都成立,則成等比數(shù)列,設(shè)公比為,驗證得答案.【詳解】(1)證明:由是等比數(shù)列,由等比數(shù)列的性質(zhì)可得:等比數(shù)列是“數(shù)列”.(2)證明:既是“數(shù)列”又是“數(shù)列”,可得,()(),()可得:對于任意都成立,即成等比數(shù)列,即成等比數(shù)列,成等比數(shù)列,成等比數(shù)列,設(shè),()數(shù)列是“數(shù)列”時,由()可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論