2022年江西省萍鄉(xiāng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第1頁(yè)
2022年江西省萍鄉(xiāng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第2頁(yè)
2022年江西省萍鄉(xiāng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第3頁(yè)
2022年江西省萍鄉(xiāng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第4頁(yè)
2022年江西省萍鄉(xiāng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年江西省萍鄉(xiāng)市普通高校對(duì)口單招高等數(shù)學(xué)一自考測(cè)試卷(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.A.A.e-x+CB.-e-x+CC.ex+CD.-ex+C

2.

3.設(shè)函數(shù)f(x)在點(diǎn)x0處連續(xù),則下列結(jié)論肯定正確的是()。A.

B.

C.

D.

4.設(shè)函數(shù)f(x)=2lnx+ex,則f'(2)等于

A.eB.1C.1+e2

D.ln25.設(shè)z=ln(x2+y),則等于()。A.

B.

C.

D.

6.A.A.>0B.<0C.=0D.不存在

7.設(shè)函數(shù)f(x)=arcsinx,則f'(x)等于().

A.-sinx

B.cosx

C.

D.

8.

9.函數(shù)f(x)在x=x0處連續(xù)是f(x)在x=x0處極限存在的()A.充分非必要條件B.必要非充分條件C.充分必要條件D.既不充分也不必要條件

10.A.

B.0

C.ln2

D.-ln2

11.當(dāng)x→0時(shí),x+x2+x3+x4為x的

A.等價(jià)無(wú)窮小B.2階無(wú)窮小C.3階無(wú)窮小D.4階無(wú)窮小12.

13.平衡物體發(fā)生自鎖現(xiàn)象的條件為()。

A.0≤α≤φ

B.0≤φ≤α

C.0<α<90。

D.0<φ<90。

14.下列函數(shù)中,在x=0處可導(dǎo)的是()

A.y=|x|

B.

C.y=x3

D.y=lnx

15.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-2

16.已知

=()。

A.

B.

C.

D.

17.級(jí)數(shù)(k為非零正常數(shù))().A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)

18.

19.設(shè)f'(x)在點(diǎn)x0的某鄰域內(nèi)存在,且f(x0)為f(x)的極大值,則等于().A.A.2B.1C.0D.-220.A.充分條件B.必要條件C.充要條件D.以上都不對(duì)二、填空題(20題)21.

22.23.

24.

25.

26.

27.將積分改變積分順序,則I=______.

28.29.設(shè),則f'(x)=______.

30.設(shè)函數(shù)f(x)有一階連續(xù)導(dǎo)數(shù),則∫f'(x)dx=_________。

31.

32.冪級(jí)數(shù)的收斂半徑為______.

33.設(shè)y=ln(x+2),貝y"=________。

34.

35.

36.37.

38.當(dāng)x=1時(shí),f(x)=x3+3px+q取到極值(其中q為任意常數(shù)),則p=______.

39.40.三、計(jì)算題(20題)41.

42.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則43.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).44.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

45.

46.求微分方程y"-4y'+4y=e-2x的通解.

47.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

48.

49.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

50.

51.

52.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.53.求微分方程的通解.54.

55.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

56.求曲線在點(diǎn)(1,3)處的切線方程.57.證明:58.59.將f(x)=e-2X展開為x的冪級(jí)數(shù).60.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.四、解答題(10題)61.

62.設(shè)函數(shù)y=ex+arctanx+π2,求dy.

63.

64.

65.

66.

67.設(shè)y=ln(1+x2),求dy。

68.

69.

70.用洛必達(dá)法則求極限:五、高等數(shù)學(xué)(0題)71.在下列函數(shù)中,在指定區(qū)間為有界的是()。

A.f(x)=22z∈(一∞,0)

B.f(x)=lnxz∈(0,1)

C.

D.f(x)=x2x∈(0,+∞)

六、解答題(0題)72.

參考答案

1.B

2.A

3.D本題考查的知識(shí)點(diǎn)為連續(xù)性的定義,連續(xù)性與極限、可導(dǎo)性的關(guān)系由函數(shù)連續(xù)性的定義:若在x0處f(x)連續(xù),則可知選項(xiàng)D正確,C不正確。由于連續(xù)性并不能保證f(x)的可導(dǎo)性,可知A不正確。自于連續(xù)必定能保證極限等于f(x0),而f(x0)不一定等于0,B不正確。故知應(yīng)選D。

4.C本題考查了函數(shù)在一點(diǎn)的導(dǎo)數(shù)的知識(shí)點(diǎn).

因f(x)=2lnx+ex,于是f'(x)=2/x+ex,故f'(2)=1+e2.

5.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。

6.C被積函數(shù)sin5x為奇函數(shù),積分區(qū)間[-1,1]為對(duì)稱區(qū)間。由定積分的對(duì)稱性質(zhì)知選C。

7.C解析:本題考查的知識(shí)點(diǎn)為基本導(dǎo)數(shù)公式.

可知應(yīng)選C.

8.D

9.A函數(shù)f(x)在x=x0處連續(xù),則f(x)在x=x0處極限存在.但反過來卻不行,如函數(shù)f(x)=故選A。

10.A為初等函數(shù),定義區(qū)間為,點(diǎn)x=1在該定義區(qū)間內(nèi),因此

故選A.

11.A本題考查了等價(jià)無(wú)窮小的知識(shí)點(diǎn)。

12.B

13.A

14.C選項(xiàng)A中,y=|x|,在x=0處有尖點(diǎn),即y=|x|在x=0處不可導(dǎo);選項(xiàng)B中,在x=0處不存在,即在x=0處不可導(dǎo);選項(xiàng)C中,y=x3,y'=3x2處處存在,即y=x3處處可導(dǎo),也就在x=0處可導(dǎo);選項(xiàng)D中,y=lnx,在x=0處不存在,y=lnx在x=0處不可導(dǎo)(事實(shí)上,在x=0點(diǎn)就沒定義).

15.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。

16.A

17.A本題考查的知識(shí)點(diǎn)為無(wú)窮級(jí)數(shù)的收斂性.

由于收斂,可知所給級(jí)數(shù)絕對(duì)收斂.

18.D解析:

19.C本題考查的知識(shí)點(diǎn)為極值的必要條件;在一點(diǎn)導(dǎo)數(shù)的定義.

由于f(x0)為f(x)的極大值,且f'(x0)存在,由極值的必要條件可知f'(x0)=0.從而

可知應(yīng)選C.

20.D本題考查了判斷函數(shù)極限的存在性的知識(shí)點(diǎn).

極限是否存在與函數(shù)在該點(diǎn)有無(wú)定義無(wú)關(guān).

21.-222.e-1/223.

本題考查的知識(shí)點(diǎn)為二階線性常系數(shù)齊次微分方程的求解.

二階線性常系數(shù)齊次微分方程求解的-般步驟為:先寫出特征方程,求出特征根,再寫出方程的通解.

24.22解析:25.本題考查的知識(shí)點(diǎn)為二重積分的直角坐標(biāo)與極坐標(biāo)轉(zhuǎn)化問題。

26.ee解析:

27.

28.0

29.本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)導(dǎo)數(shù)的運(yùn)算.

30.f(x)+C

31.

32.

解析:本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

注意此處冪級(jí)數(shù)為缺項(xiàng)情形.

33.

34.y=-e-x+C

35.1/π

36.

37.

38.-1f'(x)=3x2+3p,f'(1)=3十3p=0,所以p=-1.

39.

本題考查的知識(shí)點(diǎn)為求直線的方程.

由于所求直線平行于已知直線1,可知兩條直線的方向向量相同,由直線的標(biāo)準(zhǔn)式方程可知所求直線方程為

40.2本題考查了定積分的知識(shí)點(diǎn)。41.由一階線性微分方程通解公式有

42.由等價(jià)無(wú)窮小量的定義可知

43.

列表:

說明

44.

45.

46.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

47.

48.

49.

50.

51.

52.函數(shù)的定義域?yàn)?/p>

注意

53.

54.

55.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%56.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

57.

5

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論