2022年陜西省安康市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁
2022年陜西省安康市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁
2022年陜西省安康市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁
2022年陜西省安康市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁
2022年陜西省安康市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2022年陜西省安康市普通高校對(duì)口單招高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(20題)1.

2.

3.設(shè)y=e-2x,則y'于().A.A.2e-2xB.e-2xC.-2e-2xD.-2e2x

4.A.dx+dy

B.

C.

D.2(dx+dy)

5.

6.設(shè)y=5x,則y'=A.A.5xln5

B.5x/ln5

C.x5x-1

D.5xlnx

7.A.A.lnx+CB.-lnx+CC.f(lnx)+CD.-f(lnx)+C

8.A.等價(jià)無窮小

B.f(x)是比g(x)高階無窮小

C.f(x)是比g(x)低階無窮小

D.f(x)與g(x)是同階但非等價(jià)無窮小

9.當(dāng)x→0時(shí),3x是x的().

A.高階無窮小量B.等價(jià)無窮小量C.同階無窮小量,但不是等價(jià)無窮小量D.低階無窮小量

10.設(shè)f(x)為連續(xù)函數(shù),則等于().A.A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)

11.

12.方程z=x2+y2表示的二次曲面是().

A.球面

B.柱面

C.圓錐面

D.拋物面

13.微分方程y"-y'=0的通解為()。A.

B.

C.

D.

14.函數(shù)f(x)在點(diǎn)x=x0處連續(xù)是f(x)在x0處可導(dǎo)的A.A.充分非必要條件B.必要非充分條件C.充分必要條件D.既非充分條件也非必要條件

15.

16.設(shè)函數(shù)f(x)=則f(x)在x=0處()A.可導(dǎo)B.連續(xù)但不可導(dǎo)C.不連續(xù)D.無定義

17.曲線y=1nx在點(diǎn)(e,1)處切線的斜率為().A.A.e2

B.eC.1D.1/e

18.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.

B.

C.

D.

19.A.0B.1C.2D.不存在

20.設(shè)f(x)在點(diǎn)x0的某鄰域內(nèi)有定義,且,則f'(x0)等于().A.-1B.-1/2C.1/2D.1

二、填空題(20題)21.

22.

23.

24.設(shè)sinx為f(x)的原函數(shù),則f(x)=________。

25.

26.y''-2y'-3y=0的通解是______.

27.

28.

29.

30.∫x(x2-5)4dx=________。

31.設(shè)z=ln(x2+y),則全微分dz=__________。

32.設(shè)f(x)=x(x-1),貝f'(1)=_________.

33.

34.過M0(1,-1,2)且垂直于平面2x-y+3z-1=0的直線方程為______.

35.

36.

37.設(shè)x=f(x,y)在點(diǎn)p0(x0,y0)可微分,且p0(x0,y0)為z的極大值點(diǎn),則______.

38.

39.如果函數(shù)f(x)在[a,b]上連續(xù),在(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得f(b)-f(a)=________。

40.

三、計(jì)算題(20題)41.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

42.將f(x)=e-2X展開為x的冪級(jí)數(shù).

43.

44.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則

45.證明:

46.

47.

48.

49.

50.求微分方程的通解.

51.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

52.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.

53.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

54.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

55.

56.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

57.求曲線在點(diǎn)(1,3)處的切線方程.

58.求微分方程y"-4y'+4y=e-2x的通解.

59.

60.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

四、解答題(10題)61.

62.設(shè)函數(shù)f(x)=2x+In(3x+2),求f''(0).

63.

64.

65.展開成x-1的冪級(jí)數(shù),并指明收斂區(qū)間(不考慮端點(diǎn))。

66.

67.

68.

69.

70.

五、高等數(shù)學(xué)(0題)71.已知直線x=a將拋物線x=y2與直線x=1圍成平面圖形分成面積相等的兩部分,求a的值。

六、解答題(0題)72.求y"-2y'=2x的通解.

參考答案

1.A

2.B

3.C本題考查的知識(shí)點(diǎn)為復(fù)合函數(shù)求導(dǎo).

可知應(yīng)選C.

4.C

5.D

6.A由導(dǎo)數(shù)公式可知(5x)'=5xln5,故選A。

7.C

8.D

9.C本題考查的知識(shí)點(diǎn)為無窮小量階的比較.

應(yīng)依定義考察

由此可知,當(dāng)x→0時(shí),3x是x的同階無窮小量,但不是等價(jià)無窮小量,故知應(yīng)選C.

本題應(yīng)明確的是:考察當(dāng)x→x0時(shí)無窮小量β與無窮小量α的階的關(guān)系時(shí),要判定極限

這里是以α為“基本量”,考生要特別注意此點(diǎn),才能避免錯(cuò)誤.

10.C本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo).

由于當(dāng)f(x)連續(xù)時(shí),,可知應(yīng)選C.

11.C

12.D對(duì)照標(biāo)準(zhǔn)二次曲面的方程可知z=x2+y2表示的二次曲面是拋物面,故選D.

13.B本題考查的知識(shí)點(diǎn)為二階常系數(shù)齊次微分方程的求解。微分方程為y"-y'=0特征方程為r2-r=0特征根為r1=1,r2=0方程的通解為y=C1ex+c2可知應(yīng)選B。

14.B由可導(dǎo)與連續(xù)的關(guān)系:“可導(dǎo)必定連續(xù),連續(xù)不一定可導(dǎo)”可知,應(yīng)選B。

15.D解析:

16.A因?yàn)閒"(x)=故選A。

17.D本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.

由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點(diǎn)x0處可導(dǎo),則曲線),y=f(x)在點(diǎn)(x0,f(x0))處必定存在切線,且切線的斜率為f(x0).

由于y=lnx,可知可知應(yīng)選D.

18.C

19.D本題考查的知識(shí)點(diǎn)為極限與左極限、右極限的關(guān)系.

由于f(x)為分段函數(shù),點(diǎn)x=1為f(x)的分段點(diǎn),且在x=1的兩側(cè),f(x)的表達(dá)式不相同,因此應(yīng)考慮左極限與右極限.

20.B由導(dǎo)數(shù)的定義可知

可知,故應(yīng)選B。

21.5.

本題考查的知識(shí)點(diǎn)為二元函數(shù)的偏導(dǎo)數(shù).

解法1

解法2

22.

23.1/2本題考查的知識(shí)點(diǎn)為極限運(yùn)算.

由于

24.本題考查的知識(shí)點(diǎn)為原函數(shù)的概念。

由于sinx為f(x)的原函數(shù),因此f(x)=(sinx)=cosx。

25.

26.y=C1e-x+C2e3x由y''-2y'-3y=0的特征方程為r2-2r-3=0,得特征根為r1=3,r2=-1,所以方程的通解為y=C1e-x+C2e3x.

27.

28.

29.

解析:

30.

31.

32.1

33.(12)(01)

34.

本題考查的知識(shí)點(diǎn)為直線方程的求解.

由于所求直線與平面垂直,因此直線的方向向量s可取為已知平面的法向量n=(2,-1,3).由直線的點(diǎn)向式方程可知所求直線方程為

35.

36.+∞(發(fā)散)+∞(發(fā)散)

37.0本題考查的知識(shí)點(diǎn)為二元函數(shù)極值的必要條件.

由于z=f(x,y)在點(diǎn)P0(x0,y0)可微分,P(x0,y0)為z的極值點(diǎn),由極值的必要條件可知

38.1.

本題考查的知識(shí)點(diǎn)為二元函數(shù)的極值.

可知點(diǎn)(0,0)為z的極小值點(diǎn),極小值為1.

39.f"(ξ)(b-a)由題目條件可知函數(shù)f(x)在[a,b]上滿足拉格朗日中值定理的條件,因此必定存在一點(diǎn)ξ∈(a,b),使f(b)-f(a)=f"(ξ)(b-a)。

40.2cos(x2+y2)(xdx+ydy)2cos(x2+y2)(xdx+ydy)解析:

41.函數(shù)的定義域?yàn)?/p>

注意

42.

43.

44.由等價(jià)無窮小量的定義可知

45.

46.

47.

48.

49.由一階線性微分方程通解公式有

50.

51.

52.

53.

列表:

說明

54.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

55.

56.

57.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

58.解:原方程對(duì)應(yīng)的齊次方程為y"-4y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論