《幾何原本》優(yōu)秀讀書心得600字5篇_第1頁
《幾何原本》優(yōu)秀讀書心得600字5篇_第2頁
《幾何原本》優(yōu)秀讀書心得600字5篇_第3頁
《幾何原本》優(yōu)秀讀書心得600字5篇_第4頁
《幾何原本》優(yōu)秀讀書心得600字5篇_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

8/8《幾何原本》優(yōu)秀讀書心得600字5篇《幾何原本》是古希臘數(shù)學(xué)家歐幾里得所著的一部數(shù)學(xué)著作。又稱《原本》,它是歐洲數(shù)學(xué)的根底,總結(jié)了平面幾何五大公設(shè),被廣泛的認(rèn)為是歷史上最成功的教科書。這里給大家分享一些關(guān)于《幾何原本》優(yōu)秀讀書心得600字,希望對大家能有所幫助?!稁缀卧尽穬?yōu)秀讀書心得600字1《幾何原本》的作者歐幾里得能夠代表整個古希臘人民,那么我可以說,古希臘是古代文化中最燦爛的一支——因?yàn)楣畔ED的數(shù)學(xué)中,所包含的不僅僅是數(shù)學(xué),還有著難得的邏輯,更有著耐人尋味的哲學(xué)?!稁缀卧尽愤@本數(shù)學(xué)著作,以幾個顯而易見、眾所周知的定義、公設(shè)和公理,互相搭橋,展開了一系列的命題:由簡單到復(fù)雜,相輔而成。其邏輯的嚴(yán)密,不能不令我們佩服。就我目前拜訪的幾個命題來看,歐幾里得證明關(guān)于線段“一樣長〞的題,最常用、也是最根本的,便是畫圓:因?yàn)?,一個圓的所有半徑都相等。一般的數(shù)學(xué)思想,都是很復(fù)雜的,這邊剛講一點(diǎn),就又跑到那邊去了;而《幾何原本》非常容易就被我接受,其原因大概就在于歐幾里得反復(fù)運(yùn)用一種思想、使讀者不斷接受的緣故吧。不過,我要著重講的,是他的哲學(xué)。書中有這樣幾個命題:如,“等腰三角形的兩底角相等,將腰延長,與底邊形成的兩個補(bǔ)角亦相等〞,再如,“如果在一個三角形里,有兩個角相等,那么也有兩條邊相等〞。這些命題,我在讀時,內(nèi)心一直承受著幾何外的震撼。我們七年級已經(jīng)學(xué)了幾何。想想那時做這類證明題,需要證明一個三角形中的兩個角相等的時候,我們總是會這么寫:“因?yàn)樗且粋€等腰三角形,所以兩底角相等〞——我們總是習(xí)慣性的認(rèn)為,等腰三角形的兩個底角就是相等的;而看《幾何原本》,他思考的是“等腰三角形的兩個底角為什么相等〞。想想看吧,一個思想習(xí)以為常,一個思想在思考為什么,這難道還不夠說明現(xiàn)代人的問題嗎?大多數(shù)現(xiàn)代人,好奇心似乎已經(jīng)泯滅了。這里所說的好奇心不單單是指那種對新奇的事物感興趣,同樣指對平常的事物感興趣。比方說,許多人會問“宇航員在空中為什么會飄起來〞,但也許不會問“我們?yōu)槭裁茨軌蛘驹诘厣隙粫h起來〞;許多人會問“吃什么東西能減肥〞,但也許不會問“羊?yàn)槭裁闯圆荻怀匀猕?。我們對身邊的事物太?xí)以為常了,以致不會對許多“平常〞的事物感興趣,進(jìn)而去琢磨透它。牛頓為什么會發(fā)現(xiàn)萬有引力?很大一局部原因,就在于他有好奇心。如果僅把《幾何原本》當(dāng)做數(shù)學(xué)書看,那可就大錯特錯了:因?yàn)楣畔ED的數(shù)學(xué)滲透著哲學(xué),學(xué)數(shù)學(xué),就是學(xué)哲學(xué)。哲學(xué)第一課:人要建立好奇心,不僅探索新奇的事物,更要探索身邊的平常事,這就是我讀《幾何原本》意外的收獲吧!《幾何原本》優(yōu)秀讀書心得600字2《幾何原本》是古希臘數(shù)學(xué)家歐幾里得的一部不朽之作,集整個古希臘數(shù)學(xué)的成果和精神于一身。既是數(shù)學(xué)巨著,也是哲學(xué)巨著,并且第一次完成了人類對空間的認(rèn)識。該書自問世之日起,在長達(dá)兩千多年的時間里,歷經(jīng)屢次翻譯和修訂,自1482年第一個印刷本出版,至今已有一千多種不同版本。除《圣經(jīng)》以外,沒有任何其他著作,其研究、使用和傳播之廣泛能夠和《幾何原本》相比。漢語的最早譯本是由意大利傳教士利瑪竇和明代科學(xué)家徐光啟于1607年合作完成的,但他們只譯出了前六卷。證實(shí)這個殘本斷定了中國現(xiàn)代數(shù)學(xué)的根本術(shù)語,諸如三角形、角、直角等。日本、印度等東方國家皆使用中國譯法,沿用至今。近百年來,雖然大陸的中學(xué)課本必提及這一偉大著作,但對中國讀者來說,卻無緣一睹它的全貌,納入家庭藏書更是妄想。徐光啟在譯此作時,對該書有極高的評價,他說:“能精此書者,無一事不可精;好學(xué)此書者,無一事不科學(xué)。〞現(xiàn)代科學(xué)的奠基者愛因斯坦更是認(rèn)為:如果歐幾里得未能激發(fā)起你少年時代的科學(xué)熱情,那你肯定不會是一個天才的科學(xué)家。由此可見,《幾何原本》對人們理性推演能力的影響,即對人的科學(xué)思想的影響是何等巨大。在高等數(shù)學(xué)中,有正交的概念,最早的概念起源應(yīng)該是畢達(dá)哥拉斯定理,我們稱之為勾股定理,只是勾3股4弦5是一種特例,而畢氏定理對任意直角三角形都成立。并由畢氏定理,發(fā)現(xiàn)了無理數(shù)根號2。在數(shù)學(xué)方法上初步涉及演繹法,又在證明命題時用了歸謬法(即反證法)。可能由于受丟番圖(Diophantus)對一個平方數(shù)分成兩個平方數(shù)整數(shù)解的啟發(fā),350多年前,法國數(shù)學(xué)家費(fèi)馬提出了著名的費(fèi)馬大定理,吸引了歷代數(shù)學(xué)家為它的證明付出了巨大的努力,有力地推動了數(shù)論用至整個數(shù)學(xué)的進(jìn)步。1994年,這一曠世難題被英國數(shù)學(xué)家安德魯威樂斯解決。多少年來,千千萬萬人(著名的有牛頓(Newton)、阿基米德(Archimedes)等)通過歐幾里得幾何的學(xué)習(xí)受到了邏輯的訓(xùn)練,從而邁入科學(xué)的殿堂?!稁缀卧尽穬?yōu)秀讀書心得600字3公理化結(jié)構(gòu)是近代數(shù)學(xué)的主要特征。而《原本》是完成公理化結(jié)構(gòu)的最早典范,它產(chǎn)生于兩千多年前,這是難能可貴的。不過用現(xiàn)代的標(biāo)準(zhǔn)去衡量,也有不少缺點(diǎn)。首先,一個公理系統(tǒng)都有假設(shè)干原始概念,或稱不定義概念,作為其他概念定義的根底。點(diǎn)、線、面就屬于這一類。而在《原本》中一一給出定義,這些定義本身就是含混不清的。其次是公理系統(tǒng)不完備,沒有運(yùn)動、順序、連續(xù)性等公理,所以許多證明不得不借助于直觀。此外,有的公理不是獨(dú)立的,即可以由別的公理推出。這些缺陷直到1899年希爾伯特(Hilbert)的《幾何根底》出版才得到了補(bǔ)救。盡管如此,畢竟瑕不掩瑜,《原本》開創(chuàng)了數(shù)學(xué)公理化的正確道路,對整個數(shù)學(xué)開展的影響,超過了歷史上任何其他著作。《原本》的兩個理論支柱——比例論和窮竭法。為了論述相似形的理論,歐幾里得安排了比例論,引用了歐多克索斯的比例論。這個理論是無比的成功,它避開了無理數(shù),而建立了可公度與不可公度的正確的比例論,因而順利地建立了相似形的理論。在幾何開展的歷史上,解決曲邊圍成的面積和曲面圍成的體積等問題,一直是人們關(guān)注的重要課題。這也是微積分最初涉及的問題。它的解決依賴于極限理論,這已是17世紀(jì)的事了。然而在古希臘于公元前三四世紀(jì)對一些重要的面積、體積問題的證明卻沒有明顯的極限過程,他們解決這些問題的理念和方法是如此的超前,并且深刻地影響著數(shù)學(xué)的開展。化圓為方問題是古希臘數(shù)學(xué)家歐多克索斯提出的,后來以“窮竭法〞而得名的方法。“窮竭法〞的依據(jù)是阿基米得公理和反證法。在《幾何原本》中歐幾里得利用“窮竭法〞證明了許多命題,如圓與圓的面積之比等于直徑平方比。兩球體積之比等于它們的直徑的立方比。阿基米德應(yīng)用“窮竭法〞更加熟練,而且技巧很高。并且用它解決了一批重要的面積和體積命題。當(dāng)然,利用“窮竭法〞證明命題,首先要知道命題的結(jié)論,而結(jié)論往往是由推測、判斷等確定的。阿基米德在此做了重要的工作,他在《方法》一文中闡述了發(fā)現(xiàn)結(jié)論的一般方法,這實(shí)際又包含了積分的思想。他在數(shù)學(xué)上的奉獻(xiàn),奠定了他在數(shù)學(xué)史上的突出地位。作圖問題的研究與終結(jié)。歐幾里得在《原本》中談了正三角形、正方形、正五邊形、正六邊形、正十五邊形的作圖,未提及其他正多邊形的作法??梢娝褔L試著作過其他正多邊形,碰到了“不能〞作出的情形。但當(dāng)時還無法判斷真正的“不能作〞,還是暫時找不到作圖方法。高斯并未滿足于尋求個別正多邊形的作圖方法,他希望能找到一種判別準(zhǔn)那么,哪些正多邊形用直尺和圓規(guī)可以作出、哪些正多邊形不能作出。也就是說,他已經(jīng)意識到直尺和圓規(guī)的“效能〞不是萬能的,可能對某些正多邊形不能作出,而不是人們找不到作圖方法。1801年,他發(fā)現(xiàn)了新的研究結(jié)果,這個結(jié)果可以判斷一個正多邊形“能作〞或“不能作〞的準(zhǔn)那么。判斷這個問題是否可作,首先把問題化為代數(shù)方程。然后,用代數(shù)方法來判斷。判斷的準(zhǔn)那么是:“對一個幾何量用直尺和圓規(guī)能作出的充分必要條件是:這個幾何量所對應(yīng)的數(shù)能由量所對應(yīng)的數(shù),經(jīng)有限次的加、減、乘、除及開平方而得到。〞(圓周率不可能如此得到,它是超越數(shù),還有e、劉維爾數(shù)都是超越數(shù),我們知道,實(shí)數(shù)是不可數(shù)的,實(shí)數(shù)分為有理數(shù)和無理數(shù),其中有理數(shù)和一局部無理數(shù),比方根號2,是代數(shù)數(shù),而代數(shù)數(shù)是可數(shù)的,因此實(shí)數(shù)中不可數(shù)是因?yàn)槌綌?shù)的存在。雖然超越數(shù)比擬多,但要判定一個數(shù)是否為超越數(shù)卻不是那么的簡單。)至此,“三大難題〞即“化圓為方、三等分角、二倍立方體〞問題是用尺規(guī)不能作出的作圖題。正十七邊形可作,但其作法不易給出。高斯(Gauss)在1796年19歲時,給出了正十七邊形的尺規(guī)作圖法,并作了詳盡的討論。為了表彰他的這一發(fā)現(xiàn),他去世后,在他的故土不倫瑞克建立的紀(jì)念碑上面刻了一個正十七邊形。幾何中連續(xù)公理的引入。由歐氏公設(shè)、公理不能推出作圖題中“交點(diǎn)〞存在。因?yàn)?,其中沒有連續(xù)性(公理)概念。這就需要給歐氏的公理系統(tǒng)中添加新的公理——連續(xù)性公理。雖然19世紀(jì)之前費(fèi)馬與笛卡爾已經(jīng)發(fā)現(xiàn)解析幾何,代數(shù)有了長驅(qū)直入的進(jìn)展,微積分進(jìn)入了大學(xué)課堂,拓?fù)鋵W(xué)和射影幾何已經(jīng)出現(xiàn)。但是,數(shù)學(xué)家對數(shù)系理論根底仍然是模糊的,沒有引起重視。直觀地成認(rèn)了實(shí)數(shù)與直線上的點(diǎn)都是連續(xù)的,且一一對應(yīng)。直到19世紀(jì)末葉才完滿地解決了這一重大問題。從事這一工作的學(xué)者有康托(Cantor)、戴德金(Dedekind)、皮亞諾(Peano)、希爾伯特(Hilbert)等人。當(dāng)時,康托希望用根本序列建立實(shí)數(shù)理論,代德金也深入地研究了無理數(shù)理念,他的一篇論文發(fā)表在1872年。在此之前的1858年,他給學(xué)生開設(shè)微積分時,知道實(shí)數(shù)系還沒有邏輯根底的保證。因此,當(dāng)他要證明“單調(diào)遞增有界變量序列趨向于一個極限〞時,只得借助于幾何的直觀性。實(shí)際上,“直線上全體點(diǎn)是連續(xù)統(tǒng)〞也是沒有邏輯根底的。更沒有明確全體實(shí)數(shù)和直線全體點(diǎn)是一一對應(yīng)這一重大關(guān)系。如,數(shù)學(xué)家波爾查奴(Bolzano)把兩個數(shù)之間至少存在一個數(shù),認(rèn)為是數(shù)的連續(xù)性。實(shí)際上,這是誤解。因?yàn)?,任何兩個有理數(shù)之間一定能求到一個有理數(shù)。但是,有理數(shù)并不是數(shù)的全體。有了戴德金分割之后,人們認(rèn)識至波爾查奴的說法只是數(shù)的稠密性,而不是連續(xù)性。由無理數(shù)引發(fā)的數(shù)學(xué)危機(jī)一直延續(xù)到19世紀(jì)。直到1872年,德國數(shù)學(xué)家戴德金從連續(xù)性的要求出發(fā),用有理數(shù)的“分割〞來定義無理數(shù),并把實(shí)數(shù)理論建立在嚴(yán)格的科學(xué)根底上,才結(jié)束了無理數(shù)被認(rèn)為“無理〞的時代,也結(jié)束了持續(xù)2000多年的數(shù)學(xué)史上的第一次大危機(jī)。原本還研究了其它許多問題,如求兩數(shù)(可推廣至任意有限數(shù))最大公因數(shù),數(shù)論中的素?cái)?shù)的個數(shù)無窮多等。《幾何原本》優(yōu)秀讀書心得600字4“古希臘〞這個詞,我們耳熟能詳,很多人卻不了解它。如果《幾何原本》的作者歐幾里得能夠代表整個古希臘人民,那么我可以說,古希臘是古代文化中最燦爛的一支——因?yàn)楣畔ED的數(shù)學(xué)中,所包含的不僅僅是數(shù)學(xué),還有著難得的邏輯,更有著耐人尋味的哲學(xué)?!稁缀卧尽愤@本數(shù)學(xué)著作,以幾個顯而易見、眾所周知的定義、公設(shè)和公理,互相搭橋,展開了一系列的命題:由簡單到復(fù)雜,相輔而成。其邏輯的嚴(yán)密,不能不令我們佩服。就我目前拜訪的幾個命題來看,歐幾里得證明關(guān)于線段“一樣長〞的題,最常用、也是最根本的,便是畫圓:因?yàn)椋粋€圓的所有半徑都相等。一般的數(shù)學(xué)思想,都是很復(fù)雜的,這邊剛講一點(diǎn),就又跑到那邊去了;而《幾何原本》非常容易就被我接受,其原因大概就在于歐幾里得反復(fù)運(yùn)用一種思想、使讀者不斷接受的緣故吧。不過,我要著重講的,是他的哲學(xué)。書中有這樣幾個命題:如,“等腰三角形的兩底角相等,將腰延長,與底邊形成的兩個補(bǔ)角亦相等〞,再如,“如果在一個三角形里,有兩個角相等,那么也有兩條邊相等〞。這些命題,我在讀時,內(nèi)心一直承受著幾何外的震撼。我們七年級已經(jīng)學(xué)了幾何。想想那時做這類證明題,需要證明一個三角形中的兩個角相等的時候,我們總是會這么寫:“因?yàn)樗且粋€等腰三角形,所以兩底角相等〞——我們總是習(xí)慣性的認(rèn)為,等腰三角形的兩個底角就是相等的;而看《幾何原本》,他思考的是“等腰三角形的兩個底角為什么相等〞。想想看吧,一個思想習(xí)以為常,一個思想在思考為什么,這難道還不夠說明現(xiàn)代人的問題嗎?大多數(shù)現(xiàn)代人,好奇心似乎已經(jīng)泯滅了。這里所說的好奇心不單單是指那種對新奇的事物感興趣,同樣指對平常的事物感興趣。比方說,許多人會問“宇航員在空中為什么會飄起來〞,但也許不會問“我們?yōu)槭裁茨軌蛘驹诘厣隙粫h起來〞;許多人會問“吃什么東西能減肥〞,但也許不會問“羊?yàn)槭裁闯圆荻怀匀猕?。我們對身邊的事物太?xí)以為常了,以致不會對許多“平常〞的事物感興趣,進(jìn)而去琢磨透它。牛頓為什么會發(fā)現(xiàn)萬有引力?很大一局部原因,就在于他有好奇心。如果僅把《幾何原本》當(dāng)做數(shù)學(xué)書看,那可就大錯特錯了:因?yàn)楣畔ED的數(shù)學(xué)滲透著哲學(xué),學(xué)數(shù)學(xué),就是學(xué)哲學(xué)。哲學(xué)第一課:人要建立好奇心,不僅探索新奇的事物,更要探索身邊的平常事,這就是我讀《幾何原本》意外的收獲吧!《幾何原本》優(yōu)秀讀書心得600字5古希臘大數(shù)學(xué)家歐幾里德是與他的巨著——《幾何原本》一起名垂千古的。這本書是世界上最著名、最完整而且流傳最廣的數(shù)學(xué)著作,也是歐幾里德最有價值的一部著作,在《原本》里,歐幾里德系統(tǒng)地總結(jié)了古代勞動人民和學(xué)者們在實(shí)踐和思考中獲得的幾何知識,歐幾里德把人們公認(rèn)的一些事實(shí)列成定義和公理,以形式邏輯的方法,用這些定義和公理來研究各種幾何圖形的性質(zhì),從而建立了一套從公理、定義出發(fā),論證命題得到定理得幾何學(xué)論證方法,形成了一個嚴(yán)密的邏輯體系——幾何學(xué)。而這本書,也就成了歐式幾何的奠基之作。兩千多年來,《幾何原本》一直是學(xué)習(xí)幾何的主要教材。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論