2023年內(nèi)蒙古自治區(qū)包頭市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第1頁(yè)
2023年內(nèi)蒙古自治區(qū)包頭市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第2頁(yè)
2023年內(nèi)蒙古自治區(qū)包頭市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第3頁(yè)
2023年內(nèi)蒙古自治區(qū)包頭市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第4頁(yè)
2023年內(nèi)蒙古自治區(qū)包頭市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩34頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年內(nèi)蒙古自治區(qū)包頭市成考專升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.

2.

3.A.A.連續(xù)點(diǎn)

B.

C.

D.

4.

5.圖示懸臂梁,若已知截面B的撓度和轉(zhuǎn)角分別為vB和θB,則C端撓度為()。

A.vC=2uB

B.uC=θBα

C.vC=uB+θBα

D.vC=vB

6.

7.

8.

9.

10.設(shè)函數(shù)f(x)在[0,b]連續(xù),在(a,b)可導(dǎo),f′(x)>0.若f(a)·f(b)<0,則y=f(x)在(a,b)().

A.不存在零點(diǎn)

B.存在唯一零點(diǎn)

C.存在極大值點(diǎn)

D.存在極小值點(diǎn)

11.A.e

B.e-1

C.-e-1

D.-e

12.設(shè)有直線

當(dāng)直線l1與l2平行時(shí),λ等于().A.A.1

B.0

C.

D.一1

13.設(shè)z=x2y,則等于()。A.2yx2y-1

B.x2ylnx

C.2x2y-1lnx

D.2x2ylnx

14.()A.A.2xy+y2

B.x2+2xy

C.4xy

D.x2+y2

15.A.f(x)+CB.f'(x)+CC.f(x)D.f'(x)

16.若,則下列命題中正確的有()。A.

B.

C.

D.

17.

18.

19.設(shè)lnx是f(x)的一個(gè)原函數(shù),則f'(x)=()。A.

B.

C.

D.

20.

21.A.A.2B.1C.1/2D.0

22.

23.

24.

25.

26.A.A.

B.e

C.e2

D.1

27.

28.

29.()。A.收斂且和為0

B.收斂且和為α

C.收斂且和為α-α1

D.發(fā)散

30.

31.

32.微分方程y''-2y'=x的特解應(yīng)設(shè)為

A.AxB.Ax+BC.Ax2+BxD.Ax2+Bx+c

33.

34.

35.A.A.4B.3C.2D.1

36.

37.設(shè)函數(shù)y=f(x)的導(dǎo)函數(shù),滿足f'(-1)=0,當(dāng)x<-1時(shí),f'(x)<0;x>-1時(shí),f'(x)>0.則下列結(jié)論肯定正確的是().A.A.x=-1是駐點(diǎn),但不是極值點(diǎn)B.x=-1不是駐點(diǎn)C.x=-1為極小值點(diǎn)D.x=-1為極大值點(diǎn)38.A.A.1

B.3

C.

D.0

39.設(shè)y=e-5x,則dy=()A.-5e-5xdxB.-e-5xdxC.e-5xdxD.5e-5xdx

40.

41.等于()。A.-1B.-1/2C.1/2D.142.A.A.2B.1/2C.-2D.-1/243.()。A.過(guò)原點(diǎn)且平行于X軸B.不過(guò)原點(diǎn)但平行于X軸C.過(guò)原點(diǎn)且垂直于X軸D.不過(guò)原點(diǎn)但垂直于X軸44.A.1B.0C.2D.1/2

45.由曲線,直線y=x,x=2所圍面積為

A.

B.

C.

D.

46.下列說(shuō)法中不能提高梁的抗彎剛度的是()。

A.增大梁的彎度B.增加梁的支座C.提高梁的強(qiáng)度D.增大單位面積的抗彎截面系數(shù)47.A.A.

B.

C.

D.

48.

A.f(x)

B.f(x)+C

C.f/(x)

D.f/(x)+C

49.下面哪個(gè)理論關(guān)注下屬的成熟度()

A.管理方格B.路徑—目標(biāo)理論C.領(lǐng)導(dǎo)生命周期理論D.菲德勒權(quán)變理論

50.

二、填空題(20題)51.

52.

53.

54.

55.

56.

57.微分方程exy'=1的通解為_(kāi)_____.58.59.

60.

61.

62.63.函數(shù)的間斷點(diǎn)為_(kāi)_____.64.65.冪級(jí)數(shù)的收斂半徑為_(kāi)_____.

66.

67.

68.

69.70.三、計(jì)算題(20題)71.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).72.

73.

74.

75.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

76.求微分方程y"-4y'+4y=e-2x的通解.

77.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).78.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.79.證明:80.81.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.82.求微分方程的通解.83.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.84.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則85.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

86.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

87.

88.求曲線在點(diǎn)(1,3)處的切線方程.89.

90.四、解答題(10題)91.92.求微分方程的通解.93.94.

95.求由曲線y2=(x-1)3和直線x=2所圍成的圖形繞x軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體的體積.

96.

97.

98.

99.

100.

五、高等數(shù)學(xué)(0題)101.f(x,y)在點(diǎn)(x0,y0)存在偏導(dǎo)數(shù)是在該點(diǎn)可微的()。

A.必要而不充分條件B.充分而不必要條件C.必要且充分條件D.既不必要也不充分條件六、解答題(0題)102.

參考答案

1.C解析:

2.A

3.C解析:

4.C

5.C

6.B

7.C解析:

8.C

9.C

10.B由于f(x)在[a,b]上連續(xù)f(z)·fb)<0,由閉區(qū)間上連續(xù)函數(shù)的零點(diǎn)定理可知,y=f(x)在(a,b)內(nèi)至少存在一個(gè)零點(diǎn).又由于f(x)>0,可知f(x)在(a,b)內(nèi)單調(diào)增加,因此f(x)在(a,b)內(nèi)如果有零點(diǎn),則至多存在一個(gè).

綜合上述f(x)在(a,b)內(nèi)存在唯一零點(diǎn),故選B.

11.B所給極限為重要極限公式形式.可知.故選B.

12.C本題考查的知識(shí)點(diǎn)為直線間的關(guān)系.

13.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。對(duì)于z=x2y,求的時(shí)候,要將z認(rèn)定為x的冪函數(shù),從而可知應(yīng)選A。

14.A

15.C

16.B本題考查的知識(shí)點(diǎn)為級(jí)數(shù)收斂性的定義。

17.B

18.A解析:

19.C

20.D

21.D

22.C

23.B解析:

24.D解析:

25.D

26.C本題考查的知識(shí)點(diǎn)為重要極限公式.

27.C解析:

28.A

29.C

30.B

31.C

32.C本題考查了二階常系數(shù)微分方程的特解的知識(shí)點(diǎn)。

因f(x)=x為一次函數(shù),且特征方程為r2-2r=0,得特征根為r1=0,r2=2.于是特解應(yīng)設(shè)為y*=(Ax+B)x=Ax2+Bx.

33.B解析:

34.C

35.C

36.B

37.C本題考查的知識(shí)點(diǎn)為極值的第一充分條件.

由f'(-1)=0,可知x=-1為f(x)的駐點(diǎn),當(dāng)x<-1時(shí),f'(x)<0;當(dāng)x>-1時(shí),f'(x)>1,由極值的第一充分條件可知x=-1為f(x)的極小值點(diǎn),故應(yīng)選C.

38.B本題考查的知識(shí)點(diǎn)為重要極限公式.可知應(yīng)選B.

39.A

40.B

41.C本題考查的知識(shí)點(diǎn)為定積分的運(yùn)算。

故應(yīng)選C。

42.B

43.C將原點(diǎn)(0,0,O)代入直線方程成等式,可知直線過(guò)原點(diǎn)(或由

44.C

45.B

46.A

47.A

48.A由不定積分的性質(zhì)“先積分后求導(dǎo),作用抵消”可知應(yīng)選A.

49.C解析:領(lǐng)導(dǎo)生命周期理論關(guān)注下屬的成熟度。

50.D51.

52.-24.

本題考查的知識(shí)點(diǎn)為連續(xù)函數(shù)在閉區(qū)間上的最大值.

若f(x)在(a,b)內(nèi)可導(dǎo),在[a,b]上連續(xù),常可以利用導(dǎo)數(shù)判定f(x)在[a,b]上的最值:

53.

本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算.

54.2

55.y=f(0)

56.57.y=-e-x+C本題考查的知識(shí)點(diǎn)為可分離變量方程的求解.

可分離變量方程求解的一般方法為:

(1)變量分離;

(2)兩端積分.

由于方程為exy'=1,先變形為

變量分離dy=e-xdx.

兩端積分

為所求通解.

58.本題考查的知識(shí)點(diǎn)為不定積分的湊微分法.

59.

60.1

61.62.本題考查的知識(shí)點(diǎn)為無(wú)窮小的性質(zhì)。63.本題考查的知識(shí)點(diǎn)為判定函數(shù)的間斷點(diǎn).

僅當(dāng),即x=±1時(shí),函數(shù)沒(méi)有定義,因此x=±1為函數(shù)的間斷點(diǎn)。

64.65.0本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

所給冪級(jí)數(shù)為不缺項(xiàng)情形

因此收斂半徑為0.

66.ln|1-cosx|+Cln|1-cosx|+C解析:

67.

68.(-∞.2)69.1/2

本題考查的知識(shí)點(diǎn)為計(jì)算二重積分.

其積分區(qū)域如圖1—1陰影區(qū)域所示.

可利用二重積分的幾何意義或?qū)⒍胤e分化為二次積分解之.

解法1

解法2化為先對(duì)y積分,后對(duì)x積分的二次積分.

作平行于y軸的直線與區(qū)域D相交,沿Y軸正向看,人口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此

x≤y≤1.

區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此

0≤x≤1.

可得知

解法3化為先對(duì)x積分,后對(duì)y積分的二次積分.

作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y(tǒng),作為積分上限,因此

0≤x≤y.

區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此

0≤y≤1.

可得知70.2.

本題考查的知識(shí)點(diǎn)為二階導(dǎo)數(shù)的運(yùn)算.

71.

列表:

說(shuō)明

72.

73.

74.

75.

76.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

77.

78.

79.

80.

81.函數(shù)的定義域?yàn)?/p>

注意

82.83.由二重積分物理意義知

84.由等價(jià)無(wú)窮小量的定義可知

85.

86.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

87.

88.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

89.由一階線性微分方程通解公式有

90.

91.由題意知,使f(x)不成立的x值,均為f(x)的間斷點(diǎn).故sin(x-3)=0或x-3=0時(shí)'f(x)無(wú)意義,則間斷點(diǎn)為

x-3=kπ(k=0,±1,±2,..).

即x=3+kπ(k=0,±1,±2--.).92.所給方程為一階線性微分方程

其通解為

本題考杏的知識(shí)點(diǎn)為求解一階線性微分方程.

93.

94.

95.注:本題關(guān)鍵是確定積分區(qū)間,曲線為y2=(x-1)3.由y2≥0知x-1≥0即x≥1,又與直線x=2所圍成的圖形,所以積分區(qū)間為[1,2].

96.97.本題考查的知識(shí)點(diǎn)為求解-階線性微分方程.

將方程化為標(biāo)準(zhǔn)形式

求解一階線性微分方程常可以采用兩種解法:

解法1

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論