2023年吉林省白城市成考專(zhuān)升本高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁(yè)
2023年吉林省白城市成考專(zhuān)升本高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁(yè)
2023年吉林省白城市成考專(zhuān)升本高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁(yè)
2023年吉林省白城市成考專(zhuān)升本高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁(yè)
2023年吉林省白城市成考專(zhuān)升本高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁(yè)
已閱讀5頁(yè),還剩34頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年吉林省白城市成考專(zhuān)升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.

2.()。A.2πB.πC.π/2D.π/4

3.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)

4.二次積分等于()A.A.

B.

C.

D.

5.

6.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)

B.xy2cos(xy2)

C.2xyeos(xy2)

D.y2cos(xy2)

7.

8.

9.A.1/3B.1C.2D.3

10.

11.設(shè),則函數(shù)f(x)在x=a處().A.A.導(dǎo)數(shù)存在,且有f'(a)=-1B.導(dǎo)數(shù)一定不存在C.f(a)為極大值D.f(a)為極小值

12.在下列函數(shù)中,在指定區(qū)間為有界的是()。

A.f(x)=22z∈(一∞,0)

B.f(x)=lnxz∈(0,1)

C.

D.f(x)=x2x∈(0,+∞)

13.

14.∫cos3xdx=A.A.3sin3x+CB.-3sin3x+CC.(1/3)sin3x+CD.-(1/3)sin3x+C15.設(shè)z=ln(x2+y),則等于()。A.

B.

C.

D.

16.下列等式中正確的是()。A.

B.

C.

D.

17.下列關(guān)系正確的是()。A.

B.

C.

D.

18.設(shè)區(qū)域,將二重積分在極坐標(biāo)系下化為二次積分為()A.A.

B.

C.

D.

19.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x20.()A.A.條件收斂

B.絕對(duì)收斂

C.發(fā)散

D.收斂性與k有關(guān)

21.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)22.下列結(jié)論正確的有A.若xo是f(x)的極值點(diǎn),則x0一定是f(x)的駐點(diǎn)

B.若xo是f(x)的極值點(diǎn),且f’(x0)存在,則f’(x)=0

C.若xo是f(x)的駐點(diǎn),則x0一定是f(xo)的極值點(diǎn)

D.若f(xo),f(x2)分別是f(x)在(a,b)內(nèi)的極小值與極大值,則必有f(x1)<f(x2)

23.設(shè)有直線

當(dāng)直線l1與l2平行時(shí),λ等于().A.A.1

B.0

C.

D.一1

24.

A.

B.

C.

D.

25.設(shè)y=e-3x,則dy=A.e-3xdx

B.-e-3xdx

C.-3e-3xdx

D.3e-3xdx

26.在初始發(fā)展階段,國(guó)際化經(jīng)營(yíng)的主要方式是()

A.直接投資B.進(jìn)出口貿(mào)易C.間接投資D.跨國(guó)投資

27.

28.

29.微分方程y"+y'=0的通解為

A.y=Ce-x

B.y=e-x+C

C.y=C1e-x+C2

D.y=e-x

30.

31.

32.

A.2e-2x+C

B.

C.-2e-2x+C

D.

33.

34.當(dāng)x一0時(shí),與3x2+2x3等價(jià)的無(wú)窮小量是().

A.2x3

B.3x2

C.x2

D.x3

35.A.A.0

B.

C.

D.∞

36.在空間直角坐標(biāo)系中,方程x2-4(y-1)2=0表示()。A.兩個(gè)平面B.雙曲柱面C.橢圓柱面D.圓柱面37.設(shè)f(x)為區(qū)間[a,b]上的連續(xù)函數(shù),則曲線y=f(x)與直線x=a,x=b,y=0所圍成的封閉圖形的面積為()。A.

B.

C..

D.不能確定

38.過(guò)點(diǎn)(1,0,0),(0,1,0),(0,0,1)的平面方程為().

A.x+y+z=1

B.2x+y+z=1

C.x+2y+z=1

D.x+y+2z=1

39.A.-2(1-x2)2+C

B.2(1-x2)2+C

C.

D.

40.()。A.

B.

C.

D.

41.

42.

43.已知y=ksin2x的一個(gè)原函數(shù)為y=cos2x,則k等于()。A.2B.1C.-1D.-2

44.

45.曲線y=1nx在點(diǎn)(e,1)處切線的斜率為().A.A.e2

B.eC.1D.1/e

46.設(shè)y=2-cosx,則y'=

A.1-sinxB.1+sinxC.-sinxD.sinx

47.設(shè)f(xo)=0,f(xo)<0,則下列結(jié)論中必定正確的是

A.xo為f(x)的極大值點(diǎn)

B.xo為f(x)的極小值點(diǎn)

C.xo不為f(x)的極值點(diǎn)

D.xo可能不為f(x)的極值點(diǎn)

48.

49.函數(shù)y=sinx在區(qū)間[0,n]上滿足羅爾定理的ξ=A.A.0B.π/4C.π/2D.π50.當(dāng)x→0時(shí),2x+x2是x的A.A.等價(jià)無(wú)窮小B.較低階無(wú)窮小C.較高階無(wú)窮小D.同階但不等價(jià)的無(wú)窮小二、填空題(20題)51.

52.過(guò)點(diǎn)M0(2,0,-1)且平行于的直線方程為_(kāi)_____.53.冪級(jí)數(shù)的收斂半徑為_(kāi)_______。

54.

55.方程cosxsinydx+sinxcosydy=O的通解為_(kāi)_____.

56.

57.微分方程y'+9y=0的通解為_(kāi)_____.58.設(shè)z=ln(x2+y),則全微分dz=__________。

59.微分方程y'+4y=0的通解為_(kāi)________。

60.61.

62.

63.64.65.設(shè)y=1nx,則y'=__________.

66.冪級(jí)數(shù)的收斂半徑為_(kāi)_____.

67.

68.二階常系數(shù)齊次線性方程y"=0的通解為_(kāi)_________。

69.

70.

三、計(jì)算題(20題)71.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則

72.

73.74.

75.

76.

77.證明:78.求曲線在點(diǎn)(1,3)處的切線方程.79.

80.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為

S(x).

(1)寫(xiě)出S(x)的表達(dá)式;

(2)求S(x)的最大值.

81.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.82.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.83.84.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).

85.求微分方程y"-4y'+4y=e-2x的通解.

86.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.87.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).88.求微分方程的通解.89.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.

90.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

四、解答題(10題)91.

92.

93.94.求y"+4y'+4y=e-x的通解.95.

96.

97.98.99.計(jì)算

100.

五、高等數(shù)學(xué)(0題)101.已知f(x)的一個(gè)原函數(shù)為(1+sinz)lnz,求∫xf(x)dx。

六、解答題(0題)102.

參考答案

1.B

2.B

3.A本題考查的知識(shí)點(diǎn)為無(wú)窮級(jí)數(shù)的收斂性。

4.A本題考查的知識(shí)點(diǎn)為交換二次積分的積分次序.

由所給二次積分限可知積分區(qū)域D的不等式表達(dá)式為:

0≤x≤1,0≤y≤1-x,

其圖形如圖1-1所示.

交換積分次序,D可以表示為

0≤y≤1,0≤x≤1-y,

因此

可知應(yīng)選A.

5.C

6.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。

7.A

8.C解析:

9.D解法1由于當(dāng)x一0時(shí),sinax~ax,可知故選D.

解法2故選D.

10.B

11.A本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.

由于,可知f'(a)=-1,因此選A.

由于f'(a)=-1≠0,因此f(a)不可能是f(x)的極值,可知C,D都不正確.

12.A∵0<2x<1x∈(一∞,0)∴f(x)=2x在區(qū)間(一∞,0)內(nèi)為有界函數(shù)。

13.D解析:

14.C

15.A本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的計(jì)算。由于故知應(yīng)選A。

16.B

17.B由不定積分的性質(zhì)可知,故選B.

18.A本題考查的知識(shí)點(diǎn)為將二重積分化為極坐標(biāo)系下的二次積分.

由于在極坐標(biāo)系下積分區(qū)域D可以表示為

0≤θ≤π,0≤r≤a.

因此

故知應(yīng)選A.

19.D

20.A

21.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來(lái)判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。

22.B

23.C本題考查的知識(shí)點(diǎn)為直線間的關(guān)系.

24.D

故選D.

25.C

26.B解析:在初始投資階段,企業(yè)從事國(guó)際化經(jīng)營(yíng)活動(dòng)的主要特點(diǎn)是活動(dòng)方式主要以進(jìn)出口貿(mào)易為主。

27.A

28.C

29.C解析:y"+y'=0,特征方程為r2+r=0,特征根為r1=0,r2=-1;方程的通解為y=C1e-x+C1,可知選C。

30.D

31.C

32.D

33.D

34.B由于當(dāng)x一0時(shí),3x2為x的二階無(wú)窮小量,2x3為戈的三階無(wú)窮小量.因此,3x2+2x3為x的二階無(wú)窮小量.又由,可知應(yīng)選B.

35.A本題考查的知識(shí)點(diǎn)為“有界變量與無(wú)窮小量的乘積為無(wú)窮小量”的性質(zhì).這表明計(jì)算時(shí)應(yīng)該注意問(wèn)題中的所給條件.

36.A

37.B本題考查的知識(shí)點(diǎn)為定積分的幾何意義。由定積分的幾何意義可知應(yīng)選B。常見(jiàn)的錯(cuò)誤是選C。如果畫(huà)個(gè)草圖,則可以避免這類(lèi)錯(cuò)誤。

38.A設(shè)所求平面方程為.由于點(diǎn)(1,0,0),(0,1,0),(0,0,1)都在平面上,將它們的坐標(biāo)分別代入所設(shè)平面方程,可得方程組

故選A.

39.C

40.D由所給二次積分可知區(qū)域D可以表示為0≤y≤l,y≤x≤1。其圖形如右圖中陰影部分.又可以表示為0≤x≤1,0≤y≤x。因此選D。

41.A

42.C

43.D本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo)。由原函數(shù)的定義可知(cos2x)'=ksin2x,而(cos2x)'=(-sin2x)·2,可知k=-2。

44.A

45.D本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的幾何意義.

由導(dǎo)數(shù)的幾何意義可知,若y=f(x)在點(diǎn)x0處可導(dǎo),則曲線),y=f(x)在點(diǎn)(x0,f(x0))處必定存在切線,且切線的斜率為f(x0).

由于y=lnx,可知可知應(yīng)選D.

46.D解析:y=2-cosx,則y'=2'-(cosx)'=sinx。因此選D。

47.A

48.C

49.Cy=sinx在[0,π]上連續(xù),在(0,π)內(nèi)可導(dǎo),sin0=sinπ=0,可

知y=sinx在[0,π]上滿足羅爾定理,由于(sinx)'=cosx,可知ξ=π/2時(shí),cosξ=0,因此選C。

50.D

51.

解析:

52.53.因?yàn)榧?jí)數(shù)為,所以用比值判別法有當(dāng)<1時(shí)收斂,即x2<2。收斂區(qū)間為,故收斂半徑R=。

54.e-6

55.sinx·siny=C由cosxsinydx+sinxcosydy=0,知sinydsinx+sinxdsiny=0,即d(sinx·siny)=0,兩邊積分得sinx·siny=C,這就是方程的通解.

56.3/23/2解析:57.y=Ce-9x本題考查的知識(shí)點(diǎn)為求解可分離變量微分方程.

分離變量

兩端分別積分

lny=-9x+C1,y=Ce-9x.

58.

59.y=Ce-4x

60.x-arctanx+C61.2.

本題考查的知識(shí)點(diǎn)為極限的運(yùn)算.

能利用洛必達(dá)法則求解.

如果計(jì)算極限,應(yīng)該先判定其類(lèi)型,再選擇計(jì)算方法.當(dāng)所求極限為分式時(shí):

若分子與分母的極限都存在,且分母的極限不為零,則可以利用極限的商的運(yùn)算法則求極限.

若分子與分母的極限都存在,但是分子的極限不為零,而分母的極限為零,則所求極限為無(wú)窮大量.

檢查是否滿足洛必達(dá)法則的其他條件,是否可以進(jìn)行等價(jià)無(wú)窮小量代換,所求極限的分子或分母是否有非零因子,可以單獨(dú)進(jìn)行極限運(yùn)算等.

62.63.e-1/264.

65.

66.

解析:本題考查的知識(shí)點(diǎn)為冪級(jí)數(shù)的收斂半徑.

注意此處冪級(jí)數(shù)為缺項(xiàng)情形.

67.

本題考查的知識(shí)點(diǎn)為二階常系數(shù)線性齊次微分方程的求解.

68.y=C1+C2x。

69.本題考查的知識(shí)點(diǎn)為兩個(gè):參數(shù)方程形式的函數(shù)求導(dǎo)和可變上限積分求導(dǎo).

70.-ln271.由等價(jià)無(wú)窮小量的定義可知

72.

73.

74.

75.

76.

77.

78.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

79.由一階線性微分方程通解公式有

80.

81.函數(shù)的定義域?yàn)?/p>

注意

82.由二重積分物理意義知

83.

84.

列表:

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論