2023年四川省宜賓市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁
2023年四川省宜賓市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁
2023年四川省宜賓市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁
2023年四川省宜賓市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁
2023年四川省宜賓市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁
已閱讀5頁,還剩32頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2023年四川省宜賓市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________

一、單選題(50題)1.

2.已知作用在簡支梁上的力F與力偶矩M=Fl,不計桿件自重和接觸處摩擦,則以下關(guān)于固定鉸鏈支座A的約束反力表述正確的是()。

A.圖(a)與圖(b)相同B.圖(b)與圖(c)相同C.三者都相同D.三者都不相同

3.

4.以下結(jié)論正確的是().

A.

B.

C.

D.

5.

6.

7.交換二次積分次序等于().A.A.

B.

C.

D.

8.

9.

10.

11.A.A.1B.2C.3D.4

12.

13.

14.

15.()。A.-2B.-1C.0D.2

16.

17.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-218.若y(x-1)=x2-1,則y'(x)等于()A.2x+2B.x(x+1)C.x(x-1)D.2x-1

19.

20.績效評估的第一個步驟是()

A.確定特定的績效評估目標(biāo)B.確定考評責(zé)任者C.評價業(yè)績D.公布考評結(jié)果,交流考評意見

21.

22.

23.設(shè)Y=x2-2x+a,貝0點x=1()。A.為y的極大值點B.為y的極小值點C.不為y的極值點D.是否為y的極值點與a有關(guān)24.A.1B.0C.2D.1/2

25.

26.A.A.1

B.3

C.

D.0

27.A.A.

B.B.

C.C.

D.D.

28.

29.下列關(guān)于構(gòu)建的幾何形狀說法不正確的是()。

A.軸線為直線的桿稱為直桿B.軸線為曲線的桿稱為曲桿C.等截面的直桿稱為等直桿D.橫截面大小不等的桿稱為截面桿

30.若級數(shù)在x=-1處收斂,則此級數(shù)在x=2處

A.發(fā)散B.條件收斂C.絕對收斂D.不能確定

31.

A.0B.2C.4D.832.A.exln2

B.e2xln2

C.ex+ln2

D.e2x+ln2

33.

34.當(dāng)x→0時,sinx是sinx的等價無窮小量,則k=()A.0B.1C.2D.335.A.e2

B.e-2

C.1D.036.設(shè)二元函數(shù)z=xy,則點P0(0,0)A.為z的駐點,但不為極值點B.為z的駐點,且為極大值點C.為z的駐點,且為極小值點D.不為z的駐點,也不為極值點37.函數(shù)y=sinx在區(qū)間[0,π]上滿足羅爾定理的ξ等于().A.A.0B.π/4C.π/2D.π38.級數(shù)(k為非零正常數(shù))().A.A.絕對收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)39.設(shè)f(x)為連續(xù)函數(shù),則等于().A.A.f(x2)B.x2f(x2)C.xf(x2)D.2xf(x2)

40.平面x+y一3z+1=0與平面2x+y+z=0相互關(guān)系是()。

A.斜交B.垂直C.平行D.重合41.若收斂,則下面命題正確的是()A.A.

B.

C.

D.

42.

43.設(shè)y=exsinx,則y'''=

A.cosx·ex

B.sinx·ex

C.2ex(cosx-sinx)

D.2ex(sinx-cosx)

44.

45.設(shè)y=2x,則dy=A.A.x2x-1dx

B.2xdx

C.(2x/ln2)dx

D.2xln2dx

46.

47.A.A.x2+cosy

B.x2-cosy

C.x2+cosy+1

D.x2-cosy+1

48.設(shè)f(x)在點x0處取得極值,則()

A.f"(x0)不存在或f"(x0)=0

B.f"(x0)必定不存在

C.f"(x0)必定存在且f"(x0)=0

D.f"(x0)必定存在,不一定為零

49.設(shè)f(x)在x=2處可導(dǎo),且f'(2)=2,則等于().A.A.1/2B.1C.2D.450.在空間直角坐標(biāo)系中,方程x+z2=z的圖形是A.A.圓柱面B.圓C.拋物線D.旋轉(zhuǎn)拋物面二、填空題(20題)51.方程cosxsinydx+sinxcosydy=0的通解為___________.52.過原點且與直線垂直的平面方程為______.

53.

54.

55.56.

57.

58.

59.設(shè)f(0)=0,f'(0)存在,則60.微分方程y''+6y'+13y=0的通解為______.

61.

62.

63.

64.

65.

66.

67.

68.69.過坐標(biāo)原點且與平面2x-y+z+1=0平行的平面方程為______.

70.

三、計算題(20題)71.

72.

73.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達式;

(2)求S(x)的最大值.

74.求微分方程的通解.75.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則

76.

77.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.

78.

79.求微分方程y"-4y'+4y=e-2x的通解.

80.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.81.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.82.證明:83.將f(x)=e-2X展開為x的冪級數(shù).84.

85.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?

86.87.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.88.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.89.求曲線在點(1,3)處的切線方程.90.四、解答題(10題)91.

92.

93.

94.計算其中區(qū)域D由y=x,y=0,x2+y2=1圍成的在第一象限內(nèi)的區(qū)域.

95.

96.求由曲線y=cos、x=0及y=0所圍第一象限部分圖形的面積A及該圖形繞x軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積Vx。

97.

98.

99.

100.

五、高等數(shù)學(xué)(0題)101.

且k≠0則k=________。

六、解答題(0題)102.

參考答案

1.B

2.D

3.C

4.C

5.C

6.B

7.B本題考查的知識點為交換二次積分次序.

由所給二次積分可知積分區(qū)域D可以表示為

1≤y≤2,y≤x≤2,

交換積分次序后,D可以表示為

1≤x≤2,1≤y≤x,

故應(yīng)選B.

8.D

9.D

10.A

11.D

12.D

13.C

14.D解析:

15.A

16.B

17.C本題考查的知識點為函數(shù)連續(xù)性的概念。由于f(x)在點x=0連續(xù),因此,故a=1,應(yīng)選C。

18.A因f(x-1)=x2-1,故f(x)=(x+1)2-1=x2+2x,則f'(x)=2x+2.

19.D

20.A解析:績效評估的步驟:(1)確定特定的績效評估目標(biāo);(2)確定考評責(zé)任者;(3)評價業(yè)績;(4)公布考評結(jié)果,交流考評意見;(5)根據(jù)考評結(jié)論,將績效評估的結(jié)論備案。

21.B

22.C

23.B本題考查的知識點為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點.再依極值的充分條件來判定所求駐點是否為極值點。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點,故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點,因此選B。

24.C

25.A解析:

26.B本題考查的知識點為重要極限公式.可知應(yīng)選B.

27.B本題考查了已知積分函數(shù)求原函數(shù)的知識點

28.B

29.D

30.C由題意知,級數(shù)收斂半徑R≥2,則x=2在收斂域內(nèi)部,故其為絕對收斂.

31.A解析:

32.B本題考查了一階線性齊次方程的知識點。

因f'(x)=f(x)·2,即y'=2y,此為常系數(shù)一階線性齊次方程,其特征根為r=2,所以其通解為y=Ce2x,又當(dāng)x=0時,f(0)=ln2,所以C=In2,故f(x)=e2xln2.

注:方程y'=2y求解時也可用變量分離.

33.D解析:

34.B由等價無窮小量的概念,可知=1,從而k=1,故選B。也可以利用等價無窮小量的另一種表述形式,由于當(dāng)x→0時,有sinx~x,由題設(shè)知當(dāng)x→0時,kx~sinx,從而kx~x,可知k=1。

35.A

36.A

37.C本題考查的知識點為羅爾定理的條件與結(jié)論.

由于y=sinx在[0,π]上連續(xù),在(0,π)內(nèi)可導(dǎo),且y|x=0=0=y|x=π,可知y=sinx在[0,π]上滿足羅爾定理,因此必定存在ξ∈(0,π),使y'|x=ξ=cosx|x=ξ=cosξ=0,從而應(yīng)有.

故知應(yīng)選C.

38.A本題考查的知識點為無窮級數(shù)的收斂性.

由于收斂,可知所給級數(shù)絕對收斂.

39.D解析:

40.Bπ1x+y一3z+1=0的法向量n1=(1,1,一3)π2:2x+y+z=0的法向量n2=(2,1,1)∵n1.n2=(1,1,一3).(2,1,1)=0∵n1⊥n2;∴π1⊥π2

41.D本題考查的知識點為級數(shù)的基本性質(zhì).

由級數(shù)收斂的必要條件:若收斂,則必有,可知D正確.而A,B,C都不正確.

本題常有考生選取C,這是由于考生將級數(shù)收斂的定義存在,其中誤認(rèn)作是un,這屬于概念不清楚而導(dǎo)致的錯誤.

42.B

43.C本題考查了萊布尼茨公式的知識點.

由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).

44.A

45.Dy=2x,y'=2xln2,dy=y'dx=2xln2dx,故選D。

46.A

47.A

48.A若點x0為f(x)的極值點,可能為兩種情形之一:(1)若f(x)在點x0處可導(dǎo),由極值的必要條件可知f"(x0)=0;(2)如f(x)=|x|在點x=0處取得極小值,但f(x)=|x|在點x=0處不可導(dǎo),這表明在極值點處,函數(shù)可能不可導(dǎo)。故選A。

49.B本題考查的知識點為導(dǎo)數(shù)在一點處的定義.

可知應(yīng)選B.

50.A

51.sinx·siny=Csinx·siny=C本題考查了可分離變量微分方程的通解的知識點.

由cosxsinydx+sinxcosydy=0,知sinydsinx+sinxdsiny=-0,即d(sinx·siny)=0,兩邊積分得sinx·siny=C,這就是方程的通解.52.2x+y-3z=0本題考查的知識點為平面方程和平面與直線的關(guān)系.

由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過原點,由平面的點法式方程,可知所求平面方程為2x+y-3z=0

53.

54.2

55.

56.

57.

58.

59.f'(0)本題考查的知識點為導(dǎo)數(shù)的定義.

由于f(0)=0,f'(0)存在,因此

本題如果改為計算題,其得分率也會下降,因為有些考生常常出現(xiàn)利用洛必達法則求極限而導(dǎo)致運算錯誤:

因為題設(shè)中只給出f'(0)存在,并沒有給出,f'(z)(x≠0)存在,也沒有給出,f'(x)連續(xù)的條件,因此上述運算的兩步都錯誤.60.y=e-3x(C1cos2x+C2sin2x)微分方程y''+6y'+13y=0的特征方程為r2+6r+13=0,特征根為所以微分方程的通解為y=e-3x(C1cos2x+C2sin2x).

61.y=1/2y=1/2解析:

62.3x2siny3x2siny解析:

63.1/21/2解析:

64.

65.12x12x解析:

66.

67.

解析:

68.69.已知平面的法線向量n1=(2,-1,1),所求平面與已知平面平行,可設(shè)所求平面方程為2x-y+z+D=0,將x=0,y=0,z=0代入上式,可得D=0,因此所求平面方程為2x-y+z=0.

70.0

71.

72.由一階線性微分方程通解公式有

73.

74.75.由等價無窮小量的定義可知

76.77.由二重積分物理意義知

78.

79.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,

80.

81.函數(shù)的定義域為

注意

82.

83.

84.

85.需求規(guī)律為Q=100e

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論