2023年四川省德陽市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第1頁
2023年四川省德陽市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第2頁
2023年四川省德陽市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第3頁
2023年四川省德陽市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第4頁
2023年四川省德陽市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)_第5頁
已閱讀5頁,還剩35頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年四川省德陽市成考專升本高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________

一、單選題(50題)1.微分方程y′-y=0的通解為().

A.y=ex+C

B.y=e-x+C

C.y=Cex

D.y=Ce-x

2.設(shè)y=x2-e2,則y=

A.2x-2e

B.2x-e2

C.2x-e

D.2x

3.

4.

5.

A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與a有關(guān)

6.設(shè)y=exsinx,則y'''=

A.cosx·ex

B.sinx·ex

C.2ex(cosx-sinx)

D.2ex(sinx-cosx)

7.()A.A.

B.

C.

D.

8.微分方程y"-y=ex的一個(gè)特解應(yīng)具有的形式為(下列各式中α、b為常數(shù))。A.aex

B.axex

C.aex+bx

D.axex+bx

9.設(shè)有直線當(dāng)直線l1與l2平行時(shí),λ等于().

A.1B.0C.-1/2D.-1

10.

11.函數(shù)y=x2-x+1在區(qū)間[-1,3]上滿足拉格朗日中值定理的ξ等于().

A.-3/4B.0C.3/4D.1

12.在特定工作領(lǐng)域內(nèi)運(yùn)用技術(shù)、工具、方法等的能力稱為()

A.人際技能B.技術(shù)技能C.概念技能D.以上都不正確

13.

14.

15.

16.

17.微分方程(y)2+(y)3+sinx=0的階數(shù)為

A.1B.2C.3D.418.設(shè)y=e-5x,則dy=()A.-5e-5xdxB.-e-5xdxC.e-5xdxD.5e-5xdx

19.搖篩機(jī)如圖所示,已知O1B=O2B=0.4m,O1O2=AB,桿O1A按

規(guī)律擺動(dòng),(式中∮以rad計(jì),t以s計(jì))。則當(dāng)t=0和t=2s時(shí),關(guān)于篩面中點(diǎn)M的速度和加速度就散不正確的一項(xiàng)為()。

A.當(dāng)t=0時(shí),篩面中點(diǎn)M的速度大小為15.7cm/s

B.當(dāng)t=0時(shí),篩面中點(diǎn)M的法向加速度大小為6.17cm/s2

C.當(dāng)t=2s時(shí),篩面中點(diǎn)M的速度大小為0

D.當(dāng)t=2s時(shí),篩面中點(diǎn)M的切向加速度大小為12.3cm/s2

20.f(x)是可積的偶函數(shù),則是()。A.偶函數(shù)B.奇函數(shù)C.非奇非偶D.可奇可偶

21.

22.

23.

A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)24.設(shè)Y=x2-2x+a,貝0點(diǎn)x=1()。A.為y的極大值點(diǎn)B.為y的極小值點(diǎn)C.不為y的極值點(diǎn)D.是否為y的極值點(diǎn)與a有關(guān)25.為二次積分為()。A.

B.

C.

D.

26.

27.設(shè)y=3+sinx,則y=()A.-cosxB.cosxC.1-cosxD.1+cosx28.A.A.

B.

C.

D.

29.A.A.1B.2C.1/2D.-1

30.

31.

32.

33.

34.設(shè)二元函數(shù)z==()A.1

B.2

C.x2+y2D.

35.

A.arcsinb-arcsina

B.

C.arcsinx

D.0

36.A.

B.

C.

D.

37.A.A.橢球面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面38.設(shè)函數(shù)z=sin(xy2),則等于()。A.cos(xy2)

B.xy2cos(xy2)

C.2xyeos(xy2)

D.y2cos(xy2)

39.

40.A.A.

B.B.

C.C.

D.D.

41.

42.設(shè)f(x)為連續(xù)函數(shù),則下列關(guān)系式中正確的是()A.A.

B.

C.

D.

43.下列說法中不能提高梁的抗彎剛度的是()。

A.增大梁的彎度B.增加梁的支座C.提高梁的強(qiáng)度D.增大單位面積的抗彎截面系數(shù)44.設(shè)函數(shù)在x=0處連續(xù),則等于()。A.2B.1/2C.1D.-245.圖示結(jié)構(gòu)中,F(xiàn)=10N,I為圓桿,直徑d=15mm,2為正方形截面桿,邊長為a=20mm,α=30。,則各桿強(qiáng)度計(jì)算有誤的一項(xiàng)為()。

A.1桿受拉20kNB.2桿受壓17.3kNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa

46.

47.

48.

49.設(shè)f(x)=e-2x,則f'(x)=()。A.-e-2x

B.e-2x

C.-(1/2)e-2x

D.-2e-2x

50.微分方程y'=1的通解為A.y=xB.y=CxC.y=C-xD.y=C+x二、填空題(20題)51.52.已知平面π:2x+y一3z+2=0,則過原點(diǎn)且與π垂直的直線方程為________.

53.

54.

55.

56.

57.

58.59.60.

61.

62.________。63.冪級(jí)數(shù)的收斂半徑為________。64.65.66.

67.

68.

69.曲線y=x3-6x的拐點(diǎn)坐標(biāo)為______.70.三、計(jì)算題(20題)71.

72.

73.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).74.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.75.76.

77.

78.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求該薄板的質(zhì)量m.79.求微分方程的通解.80.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為

S(x).

(1)寫出S(x)的表達(dá)式;

(2)求S(x)的最大值.

81.求曲線在點(diǎn)(1,3)處的切線方程.82.證明:83.將f(x)=e-2X展開為x的冪級(jí)數(shù).84.85.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無窮小量,則86.

87.求微分方程y"-4y'+4y=e-2x的通解.

88.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.

89.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?

90.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.四、解答題(10題)91.

92.93.求函數(shù)的二階導(dǎo)數(shù)y''94.設(shè)y=y(x)由方程X2+2y3+2xy+3y-x=1確定,求y'.95.96.97.98.

99.

100.

五、高等數(shù)學(xué)(0題)101.已知直線x=a將拋物線x=y2與直線x=1圍成平面圖形分成面積相等的兩部分,求a的值。

六、解答題(0題)102.

參考答案

1.C所給方程為可分離變量方程.

2.D

3.C解析:

4.C解析:

5.A

本題考查的知識(shí)點(diǎn)為級(jí)數(shù)絕對(duì)收斂與條件收斂的概念.

6.C本題考查了萊布尼茨公式的知識(shí)點(diǎn).

由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).

7.C

8.B方程y"-y=0的特征方程是r2-1=0,特征根為r1=1,r2=-1。

方程y"-y=ex中自由項(xiàng)f1(x)=ex,α=1是特征單根,故應(yīng)設(shè)定y*=αxex,因此選B。

9.C解析:

10.C

11.D解析:本題考查的知識(shí)點(diǎn)為拉格朗日中值定理的條件與結(jié)論.

由于y=x2-x+1在[-1,3]上連續(xù),在(-1,3)內(nèi)可導(dǎo),可知y在[-1,3]上滿足拉格朗日中值定理,又由于y'=2x-1,因此必定存在ξ∈(-1,3),使

可知應(yīng)選D.

12.B解析:技術(shù)技能是指管理者掌握和熟悉特定專業(yè)領(lǐng)域中的過程、慣例、技術(shù)和工具的能力。

13.B解析:

14.D

15.D

16.D

17.B

18.A

19.D

20.Bf(x)是可積的偶函數(shù);設(shè)令t=-u,是奇函數(shù)。

21.D解析:

22.C

23.C

本題考查的知識(shí)點(diǎn)為可變限積分求導(dǎo).

24.B本題考查的知識(shí)點(diǎn)為一元函數(shù)的極值。求解的一般步驟為:先求出函數(shù)的一階導(dǎo)數(shù),令偏導(dǎo)數(shù)等于零,確定函數(shù)的駐點(diǎn).再依極值的充分條件來判定所求駐點(diǎn)是否為極值點(diǎn)。由于y=x2-2x+a,可由y'=2x-2=0,解得y有唯一駐點(diǎn)x=1.又由于y"=2,可得知y"|x=1=2>0。由極值的充分條件可知x=1為y的極小值點(diǎn),故應(yīng)選B。如果利用配方法,可得y=(x-1)2+a-1≥a-1,且y|x=1=a-1,由極值的定義可知x=1為y的極小值點(diǎn),因此選B。

25.A本題考查的知識(shí)點(diǎn)為將二重積分化為極坐標(biāo)系下的二次積分。由于在極坐標(biāo)系下積分區(qū)域D可以表示為

故知應(yīng)選A。

26.C

27.B

28.D本題考查的知識(shí)點(diǎn)為可變上限積分的求導(dǎo).

當(dāng)f(x)為連續(xù)函數(shù),φ(x)為可導(dǎo)函數(shù)時(shí),

因此應(yīng)選D.

29.C

30.D

31.A

32.C

33.B

34.A

35.D

本題考查的知識(shí)點(diǎn)為定積分的性質(zhì).

故應(yīng)選D.

36.C據(jù)右端的二次積分可得積分區(qū)域D為選項(xiàng)中顯然沒有這個(gè)結(jié)果,于是須將該區(qū)域D用另一種不等式(X-型)表示.故D又可表示為

37.C本題考查的知識(shí)點(diǎn)為二次曲面的方程.

38.D本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算。由z=sin(xy2),知可知應(yīng)選D。

39.B解析:

40.B本題考查了已知積分函數(shù)求原函數(shù)的知識(shí)點(diǎn)

41.D

42.B本題考查的知識(shí)點(diǎn)為:若f(x)可積分,則定積分的值為常數(shù);可變上限積分求導(dǎo)公式的運(yùn)用.

注意到A左端為定積分,定積分存在時(shí),其值一定為常數(shù),常量的導(dǎo)數(shù)等于零.因此A不正確.

由可變上限積分求導(dǎo)公式可知B正確.C、D都不正確.

43.A

44.C本題考查的知識(shí)點(diǎn)為函數(shù)連續(xù)性的概念。由于f(x)在點(diǎn)x=0連續(xù),因此,故a=1,應(yīng)選C。

45.C

46.C

47.C

48.D

49.D

50.D51.本題考查的知識(shí)點(diǎn)為:求解可分離變量的微分方程.

52.

本題考查的知識(shí)點(diǎn)為直線方程和直線與平面的關(guān)系.

由于平面π與直線1垂直,則直線的方向向量s必定平行于平面的法向量n,因此可以取

53.(sinx+cosx)exdx(sinx+cosx)exdx解析:54.2x+3y.

本題考查的知識(shí)點(diǎn)為偏導(dǎo)數(shù)的運(yùn)算.

55.e-6

56.1/61/6解析:

57.

58.x-arctanx+C

59.本題考查的知識(shí)點(diǎn)為兩個(gè):參數(shù)方程形式的函數(shù)求導(dǎo)和可變上限積分求導(dǎo).

60.

61.762.163.因?yàn)榧?jí)數(shù)為,所以用比值判別法有當(dāng)<1時(shí)收斂,即x2<2。收斂區(qū)間為,故收斂半徑R=。64.1.

本題考查的知識(shí)點(diǎn)為函數(shù)在一點(diǎn)處導(dǎo)數(shù)的定義.

由于f(1)=2,可知

65.

本題考查的知識(shí)點(diǎn)為求直線的方程.

由于所求直線平行于已知直線1,可知兩條直線的方向向量相同,由直線的標(biāo)準(zhǔn)式方程可知所求直線方程為

66.

67.y''=x(asinx+bcosx)

68.

69.(0,0)本題考查的知識(shí)點(diǎn)為求曲線的拐點(diǎn).

依求曲線拐點(diǎn)的一般步驟,只需

(1)先求出y".

(2)令y"=0得出x1,…,xk.

(3)判定在點(diǎn)x1,x2,…,xk兩側(cè),y"的符號(hào)是否異號(hào).若在xk的兩側(cè)y"異號(hào),則點(diǎn)(xk,f(xk)為曲線y=f(x)的拐點(diǎn).

y=x3-6x,

y'=3x2-6,y"=6x.

令y"=0,得到x=0.當(dāng)x=0時(shí),y=0.

當(dāng)x<0時(shí),y"<0;當(dāng)x>0時(shí),y">0.因此點(diǎn)(0,0)為曲線y=x3-6x的拐點(diǎn).

本題出現(xiàn)較多的錯(cuò)誤為:填x=0.這個(gè)錯(cuò)誤產(chǎn)生的原因是對(duì)曲線拐點(diǎn)的概念不清楚.拐點(diǎn)的定義是:連續(xù)曲線y=f(x)上的凸與凹的分界點(diǎn)稱之為曲線的拐點(diǎn).其一般形式為(x0,f(x0)),這是應(yīng)該引起注意的,也就是當(dāng)判定y"在x0的兩側(cè)異號(hào)之后,再求出f(x0),則拐點(diǎn)為(x0,f(x0)).

注意極值點(diǎn)與拐點(diǎn)的不同之處!

70.本題考查了一元函數(shù)的一階導(dǎo)數(shù)的知識(shí)點(diǎn)。

71.

72.

73.

列表:

說明

74.

75.76.由一階線性微分方程通解公式有

77.

78.由二重積分物理意義知

79.

80.

81.曲線方程為,點(diǎn)(1,3)在曲線上.

因此所求曲線方程為或?qū)憺?x+y-5=0.

如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)

(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為

82.

83.

84.

85.由等價(jià)無窮小量的定義可知

86.

87.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,

88.函數(shù)的定義域?yàn)?/p>

注意

89.需求規(guī)律為Q=100ep-2.25p

∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,

∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%

90.

91.

92.

93.94.解法1將所給方程兩端關(guān)于x求導(dǎo),可得2x+6y2·y'+2(y+xy')+3y'-1=0,整理可得

解法2令F(x,y)=x2+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論