版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023年安徽省安慶市普通高校對(duì)口單招高等數(shù)學(xué)一自考真題(含答案)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.設(shè)y=sinx,則y'|x=0等于().A.1B.0C.-1D.-2
2.
3.
4.
5.設(shè)f(x)=e3x,則在x=0處的二階導(dǎo)數(shù)f"(0)=A.A.3B.6C.9D.9e
6.
7.
8.
9.A.A.2B.1C.0D.-1
10.∫cos3xdx=A.A.3sin3x+CB.-3sin3x+CC.(1/3)sin3x+CD.-(1/3)sin3x+C
11.A.A.較高階的無(wú)窮小量B.等價(jià)無(wú)窮小量C.同階但不等價(jià)無(wú)窮小量D.較低階的無(wú)窮小量
12.
13.
14.設(shè)a={-1,1,2),b={3,0,4},則向量a在向量b上的投影為()A.A.
B.1
C.
D.-1
15.
16.
17.
18.A.A.
B.
C.
D.
19.A.A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與口有關(guān)
20.
二、填空題(20題)21.設(shè)z=sin(x2+y2),則dz=________。
22.函數(shù)f(x)=2x2+4x+2的極小值點(diǎn)為x=_________。
23.
24.
25.
26.
27.
28.
29.設(shè),則y'=________。
30.
31.
32.設(shè)y=f(x)可導(dǎo),點(diǎn)xo=2為f(x)的極小值點(diǎn),且f(2)=3.則曲線y=f(x)在點(diǎn)(2,3)處的切線方程為_(kāi)_________.
33.
34.
35.
36.
37.
38.函數(shù)x=ln(1+x2-y2)的全微分dz=_________.
39.
40.
三、計(jì)算題(20題)41.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.
42.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
43.
44.
45.
46.求微分方程的通解.
47.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.
48.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則
49.求曲線在點(diǎn)(1,3)處的切線方程.
50.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
51.
52.證明:
53.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
54.
55.
56.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).
57.
58.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
59.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).
60.求微分方程y"-4y'+4y=e-2x的通解.
四、解答題(10題)61.
62.
63.求∫arctanxdx。
64.
65.
66.
67.
68.(本題滿分10分)求由曲線y=3-x2與y=2x,y軸所圍成的平面圖形的面積及該封閉圖形繞x軸旋轉(zhuǎn)-周所成旋轉(zhuǎn)體的體積.
69.
70.
五、高等數(shù)學(xué)(0題)71.已知函數(shù)f(x)在點(diǎn)x0處可導(dǎo),則
=()。
A.一2f"(x0)
B.2f"(一x0)
C.2f"(x0)
D.不存在
六、解答題(0題)72.
參考答案
1.A由于
可知應(yīng)選A.
2.D
3.C
4.B
5.Cf(x)=e3x,f'(x)=3e3x,f"(x)=9e3x,f"(0)=9,因此選C。
6.A解析:
7.B解析:
8.C解析:
9.Df(x)為分式,當(dāng)x=-1時(shí),分母x+1=0,分式?jīng)]有意義,因此點(diǎn)
x=-1為f(x)的間斷點(diǎn),故選D。
10.C
11.C本題考查的知識(shí)點(diǎn)為無(wú)窮小量階的比較.
12.B
13.A解析:
14.B
15.D
16.C解析:
17.A
18.Dy=cos3x,則y'=-sin3x*(3x)'=-3sin3x。因此選D。
19.A
20.C解析:
21.2cos(x2+y2)(xdx+ydy)
22.-1
23.
24.
25.R
26.2
27.
解析:
28.
29.
30.本題考查的知識(shí)點(diǎn)為重要極限公式。
31.|x|
32.
33.
34.0
35.
36.11解析:
37.0
38.
39.
40.
41.
42.
43.
44.由一階線性微分方程通解公式有
45.
則
46.
47.
48.由等價(jià)無(wú)窮小量的定義可知
49.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
50.由二重積分物理意義知
51.
52.
53.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
54.
55.
56.
列表:
說(shuō)明
57.
58.函數(shù)的定義域?yàn)?/p>
注意
59.
60.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
61.本題考查的知識(shí)點(diǎn)為定積分的換元積分法.
62.
63.
64.
65.解
66.
67.
68.本題考查的知識(shí)點(diǎn)有兩個(gè):利用定積分求平面圖形的面積;
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024高考化學(xué)一輪復(fù)習(xí)第一部分考點(diǎn)18化學(xué)能和熱能強(qiáng)化訓(xùn)練含解析
- 2024高考化學(xué)一輪復(fù)習(xí)解題指導(dǎo)8物質(zhì)結(jié)構(gòu)與性質(zhì)的命題分析規(guī)范演練含解析新人教版
- 2024高考?xì)v史一輪復(fù)習(xí)方案專題四世界政治制度的演變與發(fā)展第10講英國(guó)代議制和美國(guó)1787年憲法教學(xué)案+練習(xí)人民版
- 2024高考地理一輪復(fù)習(xí)第二十單元中國(guó)地理考法精練含解析
- 紅外熱像技術(shù)檢測(cè)墻體保溫
- 2024年渤海石油職業(yè)學(xué)院高職單招職業(yè)技能測(cè)驗(yàn)歷年參考題庫(kù)(頻考版)含答案解析
- 技術(shù)質(zhì)量部年終工作總結(jié)
- 第一課1法律的基本特征教材課程
- 二零二五年度貨運(yùn)合同標(biāo)的貨物運(yùn)輸與保險(xiǎn)責(zé)任詳細(xì)條款2篇
- 2024年陜西省核工業(yè)二一五醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫(kù)頻考點(diǎn)附帶答案
- 英語(yǔ)-遼寧省大連市2024-2025學(xué)年高三上學(xué)期期末雙基測(cè)試卷及答案
- 2024年意識(shí)形態(tài)風(fēng)險(xiǎn)隱患點(diǎn)及應(yīng)對(duì)措施
- 2025版新能源充電樁加盟代理合作協(xié)議范本3篇
- 2025年廣東省揭陽(yáng)市揭西縣招聘事業(yè)單位人員11人歷年高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年云南昆明經(jīng)濟(jì)技術(shù)開(kāi)發(fā)區(qū)投資開(kāi)發(fā)(集團(tuán))有限公司招聘筆試參考題庫(kù)附帶答案詳解
- 2023-2024學(xué)年廣東省廣州市花都區(qū)九年級(jí)(上)期末物理試卷(含答案)
- GB/T 5483-2024天然石膏
- 空調(diào)年度巡檢報(bào)告范文
- 線上推廣授權(quán)合同范例
- 保定學(xué)院《大學(xué)英語(yǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024-2025學(xué)年九年級(jí)語(yǔ)文上冊(cè)部編版期末綜合模擬試卷(含答案)
評(píng)論
0/150
提交評(píng)論