因式分解法解一元二次方程 省賽獲獎_第1頁
因式分解法解一元二次方程 省賽獲獎_第2頁
因式分解法解一元二次方程 省賽獲獎_第3頁
因式分解法解一元二次方程 省賽獲獎_第4頁
因式分解法解一元二次方程 省賽獲獎_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

21.2.3因式分解法(2)分解因式法解一元二次方程的步驟是:1.將方程左邊因式分解,右邊等于0;2.根據(jù)“至少有一個因式為零”,轉(zhuǎn)化為兩個一元一次方程.3.分別解兩個一元一次方程,它們的根就是原方程的根.小結(jié):

把小圓形場地的半徑增加5m得到大圓形場地,場地面積增加了一倍,求小圓形場地的半徑.練習(xí)(2)(3)x2-4=0(4)(3x+1)2-5=0(1)2x2-4x

+2=0你學(xué)過一元二次方程的哪些解法?說一說因式分解法開平方法配方法公式法你能說出每一種解法的特點嗎?方程的左邊是完全平方式,右邊是非負(fù)數(shù);即形如x2=a(a≥0)開平方法1.化1:把二次項系數(shù)化為1;2.移項:把常數(shù)項移到方程的右邊;3.配方:方程兩邊同加一次項系數(shù)

一半的平方;4.變形:化成5.開平方,求解“配方法”解方程的基本步驟★一除、二移、三配、四化、五解.用公式法解一元二次方程的前提是:公式法1.必需是一般形式的一元二次方程:ax2+bx+c=0(a≠0).

2.b2-4ac≥0.1.用因式分解法的條件是:方程左邊能夠分解,而右邊等于零;因式分解法2.理論依據(jù)是:如果兩個因式的積等于零那么至少有一個因式等于零.因式分解法解一元二次方程的一般步驟:一移-----方程的右邊=0;二分-----方程的左邊因式分解;三化-----方程化為兩個一元一次方程;四解-----寫出方程兩個解;

①x2-3x+1=0②3x2-1=0③-3t2+t=0④x2-4x=2⑤2x2-x=0⑥5(m+2)2=8⑦3y2-y-1=0⑧2x2+4x-1=0⑨(x-2)2=2(x-2)

適合運用直接開平方法

;適合運用因式分解法

;適合運用公式法

;適合運用配方法

.

一般地,當(dāng)一元二次方程一次項系數(shù)為0時(ax2+c=0),應(yīng)選用直接開平方法;若常數(shù)項為0(ax2+bx=0),應(yīng)選用因式分解法;若一次項系數(shù)和常數(shù)項都不為0(ax2+bx+c=0),先化為一般式,看一邊的整式是否容易因式分解,若容易,宜選用因式分解法,不然選用公式法;不過當(dāng)二次項系數(shù)是1,且一次項系數(shù)是偶數(shù)時,用配方法也較簡單。我的發(fā)現(xiàn)用最好的方法求解下列方程1)(3x-2)2-49=02)(3x-4)2=(4x-3)2

3)4y=1-y21.選擇適當(dāng)?shù)姆椒ń庀铝蟹匠?誰最快⑴5x2-3x=0⑵3x2-2=0⑶x2-4x=6⑷2x2-x-3=0⑸2x2+7x-7=0

2.引例:給下列方程選擇較簡便的方法3、用適當(dāng)方法解下列方程

①-5x2-7x+6=0②2x2+7x-4=0③4(t+2)2=3④x2+2x-9999=0

(5)3t(t+2)=2(t+2)小結(jié):ax2+c=0====>ax2+bx=0====>ax2+bx+c=0====>因式分解法公式法(配方法)2、公式法雖然是萬能的,對任何一元二次方程都適用,但不一定是最簡單的,因此在解方程時我們首先考慮能否應(yīng)用“直接開平方法”、“因式分解法”等簡單方法,若不行,再考慮公式法(適當(dāng)也可考慮配方法)3、方程中有括號時,應(yīng)先用整體思想考慮有沒有簡單方法,若看不出合適的方法時,則把它去括號并整理為一般形式再選取合理的方法。1、直接開平方法因式分解法解一元二次方程的方法聯(lián)系方法的區(qū)別適用范圍配方法公式法因式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論