版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023年黑龍江省大興安嶺地區(qū)普通高校對口單招高等數(shù)學一自考預測試題(含答案)學校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.設y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個特解,則C1y1+C2y2().A.A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解
3.設函數(shù)f(x)在區(qū)間[0,1]上可導,且f(x)>0,則()
A.f(1)>f(0)B.f(1)<f(0)C.f(1)=f(0)D.f(1)與f(0)的值不能比較
4.A.A.1
B.
C.
D.1n2
5.下列關系式正確的是()A.A.
B.
C.
D.
6.若f(x)為[a,b]上的連續(xù)函數(shù),()。A.小于0B.大于0C.等于0D.不確定
7.
8.
9.
10.
11.設y1,y2為二階線性常系數(shù)微分方程y"+p1y+p2y=0的兩個特解,則C1y1+C2y2()A.為所給方程的解,但不是通解B.為所給方程的解,但不一定是通解C.為所給方程的通解D.不為所給方程的解
12.
13.()。A.3B.2C.1D.014.微分方程y'+y=0的通解為()。A.y=ex
B.y=e-x
C.y=Cex
D.y=Ce-x
15.設D={(x,y){|x2+y2≤a2,a>0,y≥0),在極坐標下二重積分(x2+y2)dxdy可以表示為()A.∫0πdθ∫0ar2dr
B.∫0πdθ∫0ar3drC.D.
16.
17.下列函數(shù)在指定區(qū)間上滿足羅爾中值定理條件的是
A.
B.f(x)=(x-4)2,x∈[-2,4]
C.
D.f(x)=|x|,x∈[-1,1]
18.()工作是對決策工作在時間和空間兩個緯度上進一步的展開和細化。
A.計劃B.組織C.控制D.領導19.設().A.A.必定收斂B.必定發(fā)散C.收斂性與a有關D.上述三個結論都不正確20.A.A.
B.
C.
D.
二、填空題(20題)21.設,則y'=________。
22.
23.24.設y=ex/x,則dy=________。25.26.27.
28.
29.設區(qū)域D由y軸,y=x,y=1所圍成,則.30.31.冪級數(shù)的收斂區(qū)間為______.32.設y=(1+x2)arctanx,則y=________。33.空間直角坐標系中方程x2+y2=9表示的曲線是________。
34.f(x)=sinx,則f"(x)=_________。
35.
36.
37.
38.
39.
40.方程cosxsinydx+sinxcosydy=O的通解為______.
三、計算題(20題)41.
42.求微分方程y"-4y'+4y=e-2x的通解.
43.
44.求微分方程的通解.45.46.設平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質量m.47.求函數(shù)一的單調區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.48.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
49.
50.當x一0時f(x)與sin2x是等價無窮小量,則51.求函數(shù)f(x)=x3-3x+1的單調區(qū)間和極值.52.53.證明:54.
55.
56.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
57.將f(x)=e-2X展開為x的冪級數(shù).58.求函數(shù)y=x-lnx的單調區(qū)間,并求該曲線在點(1,1)處的切線l的方程.59.設拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
60.求曲線在點(1,3)處的切線方程.四、解答題(10題)61.
62.
63.
64.
65.
66.
67.
68.
69.
70.五、高等數(shù)學(0題)71.f(z,y)=e-x.sin(x+2y),求
六、解答題(0題)72.
參考答案
1.D
2.B本題考查的知識點為線性常系數(shù)微分方程解的結構.
已知y1,y2為二階線性常系數(shù)齊次微分方程y"+p1y'+p2y=0的兩個解,由解的結構定理可知C1y1+C2y2為所給方程的解,因此應排除D.又由解的結構定理可知,當y1,y2線性無關時,C1y1+C2y2為y"+p1y'+p2y=0的通解,因此應該選B.
本題中常見的錯誤是選C.這是由于忽略了線性常系數(shù)微分方程解的結構定理中的條件所導致的錯誤.解的結構定理中指出:“若y1,y2為二階線性常系數(shù)微分方程y"+p1y'+p2y=0的兩個線性無關的特解,則C1y1+C2y2為所給微分方程的通解,其中C1,C2為任意常數(shù).”由于所給命題中沒有指出)y1,y2為線性無關的特解,可知C1y1+C2y2不一定為方程的通解.但是由解的結構定理知C1y1+C2y2為方程的解,因此應選B.
3.A由f"(x)>0說明f(x)在[0,1]上是增函數(shù),因為1>0,所以f(1)>f(0)。故選A。
4.C本題考查的知識點為定積分運算.
因此選C.
5.C
6.C
7.D
8.A
9.C
10.C
11.B如果y1,y2這兩個特解是線性無關的,即≠C,則C1y1+C2y2是其方程的通解?,F(xiàn)在題設中沒有指出是否線性無關,所以可能是通解,也可能不是通解,故選B。
12.D
13.A
14.D可以將方程認作可分離變量方程;也可以將方程認作一階線性微分方程;還可以仿二階線性常系數(shù)齊次微分方程,并作為特例求解。解法1將方程認作可分離變量方程。分離變量
兩端分別積分
或y=Ce-x解法2將方程認作一階線性微分方程.由通解公式可得解法3認作二階常系數(shù)線性齊次微分方程特例求解:特征方程為r+1=0,特征根為r=-1,方程通解為y=Ce-x。
15.B因為D:x2+y2≤a2,a>0,y≥0,令則有r2≤a2,0≤r≤a,0≤θ≤π,所以(x2+y2)dxdy=∫0πdθ∫0ar2.rdr=∫0πdθ∫0ar3.rdr故選B。
16.A
17.C
18.A解析:計劃工作是對決策工作在時間和空間兩個緯度上進一步的展開和細分。
19.D
20.A
21.
22.1
23.1
24.
25.
26.
27.
28.29.1/2本題考查的知識點為計算二重積分.其積分區(qū)域如圖1-2陰影區(qū)域所示.
可利用二重積分的幾何意義或將二重積分化為二次積分解之.
解法1由二重積分的幾何意義可知表示積分區(qū)域D的面積,而區(qū)域D為等腰直角三角形,面積為1/2,因此.
解法2化為先對y積分,后對x積分的二次積分.
作平行于y軸的直線與區(qū)域D相交,沿y軸正向看,入口曲線為y=x,作為積分下限;出口曲線為y=1,作為積分上限,因此
x≤y≤1.
區(qū)域D在x軸上的投影最小值為x=0,最大值為x=1,因此
0≤x≤1.
可得知
解法3化為先對x積分,后對Y積分的二次積分.
作平行于x軸的直線與區(qū)域D相交,沿x軸正向看,入口曲線為x=0,作為積分下限;出口曲線為x=y,作為積分上限,因此
0≤x≤y.
區(qū)域D在y軸上投影的最小值為y=0,最大值為y=1,因此
0≤y≤1.
可得知
30.-1本題考查了利用導數(shù)定義求極限的知識點。31.(-2,2);本題考查的知識點為冪級數(shù)的收斂區(qū)間.
由于所給級數(shù)為不缺項情形,
可知收斂半徑,收斂區(qū)間為(-2,2).32.因為y=(1+x2)arctanx,所以y"=2xarctanx+(1+x2)。=2xarctanx+1。33.以Oz為軸的圓柱面方程。F(x,y)=0表示母線平行于Oz軸的柱面,稱之為柱面方程,方程x2+y2=32=0表示母線平行Oz軸的圓柱面方程。
34.-sinx
35.
本題考查的知識點為二元函數(shù)的偏導數(shù).
36.2本題考查了定積分的知識點。
37.-ln|3-x|+C
38.
39.eyey
解析:
40.sinx·siny=C由cosxsinydx+sinxcosydy=0,知sinydsinx+sinxdsiny=0,即d(sinx·siny)=0,兩邊積分得sinx·siny=C,這就是方程的通解.
41.
42.解:原方程對應的齊次方程為y"-4y'+4y=0,
43.
44.
45.
46.由二重積分物理意義知
47.
列表:
說明
48.
49.
50.由等價無窮小量的定義可知51.函數(shù)的定義域為
注意
52.
53.
54.由一階線性微分方程通解公式有
55.
則
56.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%
57.
58.
59.
60.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或寫為2x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
61.
62.
63.
64.
65.
66.
67.
68.
69.
7
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度個人委托新能源儲能技術投資合同3篇
- 商鋪售后返租合同中的履約保障與爭議解決(2025年版)2篇
- 二零二五年度建筑玻璃幕墻工程勞務分包及安全評估協(xié)議3篇
- 2025年度氣體滅火系統(tǒng)研發(fā)與生產(chǎn)合作協(xié)議
- 二零二五年度城市綠化帶植物病蟲害防治合同3篇
- 2025版壓路機設備翻新改造與租賃合同范本3篇
- 二零二五年度商用機動車買賣合同范本3篇
- 高速公路交通安全宣傳教育活動合同(二零二五版)3篇
- 專賣店銷售業(yè)績獎勵協(xié)議(2024年度)2篇
- 2025版新型外墻保溫及真石漆技術應用分包合同2篇
- 場地委托授權
- 2024年四川省成都市龍泉驛區(qū)中考數(shù)學二診試卷(含答案)
- 項目工地春節(jié)放假安排及安全措施
- 印染廠安全培訓課件
- 紅色主題研學課程設計
- 胸外科手術圍手術期處理
- 裝置自動控制的先進性說明
- 《企業(yè)管理課件:團隊管理知識點詳解PPT》
- 移動商務內(nèi)容運營(吳洪貴)任務二 軟文的寫作
- 英語詞匯教學中落實英語學科核心素養(yǎng)
- 《插畫設計》課程標準
評論
0/150
提交評論