版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,的外接圓的半徑是.若,則的長為()A. B. C. D.2.如圖,一個幾何體的主視圖和左視圖都是邊長為1的正方形,俯視圖是一個圓,那么這個幾何體的側(cè)面積為()A. B. C. D.3.如圖,正方形中,點、分別在邊,上,與交于點.若,,則的長為()A. B. C. D.4.已知△ABC,D,E分別在AB,AC邊上,且DE∥BC,AD=2,DB=3,△ADE面積是4則四邊形DBCE的面積是()A.6 B.9 C.21 D.255.如圖,已知正五邊形內(nèi)接于,連結(jié)相交于點,則的度數(shù)是()A. B. C. D.6.已知二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,與x軸的一個交點B的坐標為(1,0)其圖象如圖所示,下列結(jié)論:①abc>0;②2a﹣b=0;③一元二次方程ax2+bx+c=0的兩個根是﹣3和1;④當y>0時,﹣3<x<1;⑤當x>0時,y隨x的增大而增大:⑥若點E(﹣4,y1),F(xiàn)(﹣2,y2),M(3,y3)是函數(shù)圖象上的三點,則y1>y2>y3,其中正確的有()個A.5 B.4 C.3 D.27.二次函數(shù)與一次函數(shù)在同一坐標系中的大致圖象可能是()A. B.C. D.8.在一個不透明的口袋中,裝有若干個紅球和4個黃球,它們除顏色外沒有任何區(qū)別,搖勻后從中隨機摸出一個球,記下顏色后再放回口袋中,通過大量重復摸球?qū)嶒灠l(fā)現(xiàn),摸到黃球的概率是0.2,則估計盒子中大約有紅球()A.12個 B.16個 C.20個 D.25個9.如圖,在⊙O中,已知∠OAB=22.5°,則∠C的度數(shù)為()A.135° B.122.5° C.115.5° D.112.5°10.定義:在等腰三角形中,底邊與腰的比叫做頂角的正對,頂角的正對記作,即底邊:腰.如圖,在中,,.則()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,、、所在的圓的半徑分別為r1、r2、r3,則r1、r2、r3的大小關系是____.(用“<”連接)12.一個不透明的袋子中裝有黑、白小球各兩個,這些小球除顏色外無其他差別,從袋子中隨機摸出一個小球后,放回并搖勻,再隨機摸出一個小球,則兩次摸出的小球都是白球的概率為_______.13.在平面直角坐標系中,點P(3,﹣5)關于原點對稱的點的坐標是_____.14.已知二次函數(shù)(a是常數(shù),a≠0),當自變量x分別取-6、-4時,對應的函數(shù)值分別為y1、y2,那么y1、y2的大小關系是:y1__y2(填“>”、“<”或“=”).15.如圖,在平面直角坐標系中,菱形OABC的面積為12,點B在y軸上,點C在反比例函數(shù)y=的圖象上,則k的值為________.16.如圖,用長的鋁合金條制成使窗戶的透光面積最大的矩形窗框,那么這個窗戶的最大透光面積是___________.(中間橫框所占的面積忽略不計)17.如圖,已知在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C順時針旋轉(zhuǎn)一定角度得△DEC,此時CD⊥AB,連接AE,則tan∠EAC=____.18.將拋物線y=-5x2先向左平移2個單位長度,再向下平移3個單位長度后,得到新的拋物線的表達式是________.三、解答題(共66分)19.(10分)如圖:△ABC與△DEF中,邊BC,EF在同一條直線上,AB∥DE,AC∥DF,且BF=CE,求證:AC=DF.20.(6分)定義:在平面直角坐標系中,拋物線()與直線交于點、(點在點右邊),將拋物線沿直線翻折,翻折前后兩拋物線的頂點分別為點、,我們將兩拋物線之間形成的封閉圖形稱為驚喜線,四邊形稱為驚喜四邊形,對角線與之比稱為驚喜度(Degreeofsurprise),記作.(1)如圖(1)拋物線沿直線翻折后得到驚喜線.則點坐標,點坐標,驚喜四邊形屬于所學過的哪種特殊平行四邊形?,為.(2)如果拋物線()沿直線翻折后所得驚喜線的驚喜度為1,求的值.(3)如果拋物線沿直線翻折后所得的驚喜線在時,其最高點的縱坐標為16,求的值并直接寫出驚喜度.21.(6分)如圖,將等邊△ABC繞點C順時針旋轉(zhuǎn)90°得到△EFC,∠ACE的平分線CD交EF于點D,連接AD、AF.(1)求∠CFA度數(shù);(2)求證:AD∥BC.22.(8分)如圖,矩形AOBC放置在平面直角坐標系xOy中,邊OA在y軸的正半軸上,邊OB在x軸的正半軸上,拋物線的頂點為F,對稱軸交AC于點E,且拋物線經(jīng)過點A(0,2),點C,點D(3,0).∠AOB的平分線是OE,交拋物線對稱軸左側(cè)于點H,連接HF.(1)求該拋物線的解析式;(2)在x軸上有動點M,線段BC上有動點N,求四邊形EAMN的周長的最小值;(3)該拋物線上是否存在點P,使得四邊形EHFP為平行四邊形?如果存在,求出點P的坐標;如果不存在,請說明理由.23.(8分)如圖,已知在菱形ABCD中,∠ABC=60°,對角線AC=8,求菱形ABCD的周長和面積.24.(8分)在△ABC中,∠ACB=90°,BC=kAC,點D在AC上,連接BD.(1)如圖1,當k=1時,BD的延長線垂直于AE,垂足為E,延長BC、AE交于點F.求證:CD=CF;(2)過點C作CG⊥BD,垂足為G,連接AG并延長交BC于點H.①如圖2,若CH=CD,探究線段AG與GH的數(shù)量關系(用含k的代數(shù)式表示),并證明;②如圖3,若點D是AC的中點,直接寫出cos∠CGH的值(用含k的代數(shù)式表示).25.(10分)“低碳生活,綠色出行”,自行車正逐漸成為人們喜愛的交通工具.某運動商城的自行車銷售量自年起逐月增加,據(jù)統(tǒng)計該商城月份銷售自行車輛,月份銷售了輛.(1)求這個運動商城這兩個月的月平均增長率是多少?(2)若該商城前個月的自行車銷量的月平均增長率相同,問該商城月份賣出多少輛自行車?26.(10分)一不透明的布袋里,裝有紅、黃、藍三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為.(1)求口袋中黃球的個數(shù);(2)甲同學先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;
參考答案一、選擇題(每小題3分,共30分)1、A【分析】由題意連接OA、OB,根據(jù)圓周角定理求出∠AOB,利用勾股定理進行計算即可.【詳解】解:連接OA、OB,由圓周角定理得:∠AOB=2∠C=90°,所以的長為.故選:A.【點睛】本題考查的是三角形的外接圓和外心的概念和性質(zhì),掌握圓周角定理和勾股定理是解題的關鍵.2、D【分析】這個幾何體的側(cè)面是以底面圓周長為長、圓柱體的高為寬的矩形,根據(jù)矩形的面積公式計算即可.【詳解】根據(jù)三視圖可得幾何體為圓柱,圓柱體的側(cè)面積=底面圓的周長圓柱體的高=故答案為:D.【點睛】本題考查了圓柱體的側(cè)面積問題,掌握矩形的面積公式是解題的關鍵.3、A【分析】根據(jù)正方形的性質(zhì)以及勾股定理求得,證明,根據(jù)全等三角形的性質(zhì)可得,繼而根據(jù),可求得CG的長,進而根據(jù)即可求得答案.【詳解】∵四邊形ABCD是正方形,,∴,,∵,∴,∴,在和中,,∴,∴,∵,,∴,,∴,故選A.【點睛】本題考查了正方形的性質(zhì),勾股定理,全等三角形的判定與性質(zhì),三角函數(shù)等知識,綜合性較強,熟練掌握和靈活運用相關知識是解題的關鍵.注意數(shù)形結(jié)合思想的運用.4、C【解析】∵DE//BC,∴△ADE∽△ABC,∴,∵AD=2,BD=3,AB=AD+BD,∴,∵S△ADE=4,∴S△ABC=25,∴S四邊形DBCE=S△ABC-S△ADE=25-4=21,故選C.5、C【分析】連接OA、OB、OC、OD、OE,如圖,則由正多邊形的性質(zhì)易求得∠COD和∠BOE的度數(shù),然后根據(jù)圓周角定理可得∠DBC和∠BCF的度數(shù),再根據(jù)三角形的內(nèi)角和定理求解即可.【詳解】解:連接OA、OB、OC、OD、OE,如圖,則∠COD=∠AOB=∠AOE=,∴∠BOE=144°,∴,,∴.故選:C.【點睛】本題考查了正多邊形和圓、圓周角定理和三角形的內(nèi)角和定理,屬于基本題型,熟練掌握基本知識是解題關鍵.6、C【分析】根據(jù)拋物線的開口方向、對稱軸、頂點坐標、增減性逐個進行判斷,得出答案.【詳解】由拋物線的開口向上,可得a>0,對稱軸是x=﹣1,可得a、b同號,即b>0,拋物線與y軸交在y軸的負半軸,c<0,因此abc<0,故①不符合題意;對稱軸是x=﹣1,即﹣=﹣1,即2a﹣b=0,因此②符合題意;拋物線的對稱軸為x=﹣1,與x軸的一個交點B的坐標為(1,0),可知與x軸的另一個交點為(﹣3,0),因此一元二次方程ax2+bx+c=0的兩個根是﹣3和1,故③符合題意;由圖象可知y>0時,相應的x的取值范圍為x<﹣3或x>1,因此④不符合題意;在對稱軸的右側(cè),y隨x的增大而增大,因此當x>0時,y隨x的增大而增大是正確的,因此⑤符合題意;由拋物線的對稱性,在對稱軸的左側(cè)y隨x的增大而減小,∵﹣4<﹣2,∴y1>y2,(3,y3)l離對稱軸遠因此y3>y1,因此y3>y1>y2,因此⑥不符合題意;綜上所述,正確的結(jié)論有3個,故選:C.【點睛】考查二次函數(shù)的圖象和性質(zhì),二次函數(shù)與一元二次方程的關系,熟練掌握a、b、c的值決定拋物線的位置,拋物線的對稱性是解決問題的關鍵.7、D【分析】由一次函數(shù)y=ax+a可知,一次函數(shù)的圖象與x軸交于點(-1,0),即可排除A、B,然后根據(jù)二次函數(shù)的開口方向,與y軸的交點;一次函數(shù)經(jīng)過的象限,與y軸的交點可得相關圖象進行判斷.【詳解】解:由一次函數(shù)可知,一次函數(shù)的圖象與軸交于點,排除;當時,二次函數(shù)開口向上,一次函數(shù)經(jīng)過一、三、四象限,當時,二次函數(shù)開口向下,一次函數(shù)經(jīng)過二、三、四象限,排除;故選.【點睛】本題主要考查一次函數(shù)和二次函數(shù)的圖象,解題的關鍵是熟練掌握二次函數(shù)的圖象和一次函數(shù)的圖象與系數(shù)之間的關系.8、B【解析】在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關系入手,列出方程求解.【詳解】解:設盒子中有紅球x個,由題意可得:=0.2,解得:x=16,故選:B..【點睛】此題主要考查了利用頻率估計概率,本題利用了用大量試驗得到的頻率可以估計事件的概率.關鍵是根據(jù)黃球的概率得到相應的等量關系9、D【解析】分析:∵OA=OB,∴∠OAB=∠OBC=22.5°.∴∠AOB=180°﹣22.5°﹣22.5°=135°.如圖,在⊙O取點D,使點D與點O在AB的同側(cè).則.∵∠C與∠D是圓內(nèi)接四邊形的對角,∴∠C=180°﹣∠D=112.5°.故選D.10、C【分析】證明△ABC是等腰直角三角形即可解決問題.【詳解】解:∵AB=AC,
∴∠B=∠C,
∵∠A=2∠B,
∴∠B=∠C=45°,∠A=90°,
∴在Rt△ABC中,BC==AC,
∴sin∠B?sadA=,故選:C.【點睛】本題考查解直角三角形,等腰直角三角形的判定和性質(zhì)三角函數(shù)等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,屬于中考??碱}型.二、填空題(每小題3分,共24分)11、r3<r2<r1【分析】利用尺規(guī)作圖分別做出、、所在的圓心及半徑,從而進行比較即可.【詳解】解:利用尺規(guī)作圖分別做出、、所在的圓心及半徑∴r3<r2<r1故答案為:r3<r2<r1【點睛】本題考查利用圓弧確定圓心及半徑,掌握尺規(guī)作圖的基本方法,準確確定圓心及半徑是本題的解題關鍵.12、【解析】試題分析:列表得:
黑1
黑2
白1
白2
黑1
黑1黑1
黑1黑2
黑1白1
黑1白2
黑2
黑2黑1
黑2黑2
黑2白1
黑2白2
白1
白1黑1
白1黑2
白1白1
白1白2
白2
白2黑1
白2黑2
白2白1
白2白2
共有16種等可能結(jié)果總數(shù),其中兩次摸出是白球有4種.∴P(兩次摸出是白球)=.考點:概率.13、(﹣3,5)【分析】根據(jù)兩個點關于原點對稱時,它們的坐標符號相反,即可得答案.【詳解】點P(3,﹣5)關于原點對稱的點的坐標是(﹣3,5),故答案為:(﹣3,5).【點睛】本題主要考查平面直角坐標系中,關于原點的兩個點的坐標變化規(guī)律,掌握兩個點關于原點對稱時,它們的坐標符號相反,是解題的關鍵.14、>【分析】先求出拋物線的對稱軸為,由,則當,y隨x的增大而減小,即可判斷兩個函數(shù)值的大小.【詳解】解:∵二次函數(shù)(a是常數(shù),a≠0),∴拋物線的對稱軸為:,∵,∴當,y隨x的增大而減小,∵,∴;故答案為:.【點睛】本題考查了二次函數(shù)的性質(zhì),解題的關鍵是熟練掌握二次函數(shù)的性質(zhì)進行解題.15、-6【解析】因為四邊形OABC是菱形,所以對角線互相垂直平分,則點A和點C關于y軸對稱,點C在反比例函數(shù)上,設點C的坐標為(x,),則點A的坐標為(-x,),點B的坐標為(0,),因此AC=-2x,OB=,根據(jù)菱形的面積等于對角線乘積的一半得:,解得16、【分析】設窗的高度為xm,寬為m,根據(jù)矩形面積公式列出二次函數(shù)求函數(shù)值的最大值即可.【詳解】解:設窗的高度為xm,寬為.所以,即,當x=2m時,S最大值為.故答案為:.【點睛】本題考查二次函數(shù)的應用.能熟練將二次函數(shù)化為頂點式,并據(jù)此求出函數(shù)的最值是解決此題的關鍵.17、【分析】設,得,根據(jù)旋轉(zhuǎn)的性質(zhì)得,∠1=30°,分別求得,,繼而求得答案.【詳解】如圖,AB與CD相交于G,過點E作EF⊥AC延長線于點F,設,∵∠ACB=90°,∠B=30°,∴,∴,根據(jù)旋轉(zhuǎn)的性質(zhì)知:,∠DCE=∠ACB=90°,∵CD⊥AB,∴∠1+∠BAC=90°,∴∠1=30°,∵∠1+∠2+∠DCE=1800°,∴∠2=60°,∴,,∴,故答案為:.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì)以及銳角三角函數(shù)的知識,構(gòu)建合適的輔助線,借助解直角三角形求解是解答本題的關鍵.18、y=-5(x+2)2-1【分析】根據(jù)向左平移橫坐標減,向下平移縱坐標減求出新拋物線的頂點坐標,再利用頂點式解析式寫出即可.【詳解】解:∵拋物線y=-5x2先向左平移2個單位長度,再向下平移1個單位長度,
∴新拋物線頂點坐標為(-2,-1),
∴所得到的新的拋物線的解析式為y=-5(x+2)2-1.
故答案為:y=-5(x+2)2-1.【點睛】本題考查了二次函數(shù)圖象與幾何變換,掌握平移的規(guī)律:左加右減,上加下減是關鍵.三、解答題(共66分)19、見解析.【分析】先根據(jù)BF=CE,得出BC=EF,再利用平行線的性質(zhì)可得出兩組對應角相等,再加上BC=EF,利用ASA即可證明△ABC≌△DEF,則結(jié)論可證.【詳解】證明:∵AB∥DE,∴∠B=∠E,∵AC∥DF∴∠ACB=∠EFD,∵BF=CE∴BC=EF,且∠B=∠E,∠ACB=∠EFD,∴△ABC≌△DEF(ASA)∴AC=DF【點睛】本題主要考查全等三角形的判定及性質(zhì),掌握全等三角形的判定方法是解題的關鍵.20、(1);;菱形;2;(2);(3),或,.【分析】(1)當y=0時可求出點A坐標為,B坐標為,AB=4,根據(jù)四邊形四邊相等可知該四邊形為菱形,由可知拋物線頂點坐標為(1,-4),所以B,AB=8,即可得到為2;(2)驚喜度為1即,利用拋物線解析式分別求出各點坐標,從而得到AC和BD的長,計算即可求出m;(3)先求出頂點坐標,對稱軸為直線,討論對稱軸直線是否在這個范圍內(nèi),分3中情況分別求出最大值為16是m的值.【詳解】解:(1)在拋物線上,當y=0時,,解得,,,∵點在點右邊,∴A點的坐標為,B點的坐標為;∴AB=4,∵∴頂點B的坐標為,由于BD關于x軸對稱,∴D的坐標為,∴BD=8,通過拋物線的對稱性得到AB=BC,又由于翻折,得到AB=BC=AD=CD,∴驚喜四邊形為菱形;;(2)由題意得:的頂點坐標,解得:,∴∴,(3)拋物線的頂點為,對稱軸為直線:①即時,,得∴②即時,時,對應驚喜線上最高點的函數(shù)值,∴(舍去);∴③即時形成不了驚喜線,故不存在綜上所述,,或,【點睛】本題主要考查了二次函數(shù)的綜合問題,需要熟練掌握二次函數(shù)的基礎內(nèi)容:頂點坐標、對稱軸以及各交點的坐標求法.21、(1)75°(2)見解析【解析】(1)由等邊三角形的性質(zhì)可得∠ACB=60°,BC=AC,由旋轉(zhuǎn)的性質(zhì)可得CF=BC,∠BCF=90°,由等腰三角形的性質(zhì)可求解;(2)由“SAS”可證△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可證AD∥BC.【詳解】解:(1)∵△ABC是等邊三角形∴∠ACB=60°,BC=AC∵等邊△ABC繞點C順時針旋轉(zhuǎn)90°得到△EFC∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CFA=(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等邊三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊三角形的性質(zhì),等腰三角形的性質(zhì),平行線的判定,熟練運用旋轉(zhuǎn)的性質(zhì)是本題關鍵.22、(1)y=x2﹣x+2;(2);(3)不存在點P,使得四邊形EHFP為平行四邊形,理由見解析.【分析】(1)根據(jù)題意可以得到C的坐標,然后根據(jù)拋物線過點A、C、D可以求得該拋物線的解析式;(2)根據(jù)對稱軸和圖形可以畫出相應的圖形,然后找到使得四邊形EAMN的周長的取得最小值時的點M和點N即可,然后求出直線MN的解析式,然后直線MN與x軸的交點即可解答本題;(3)根據(jù)題意作出合適的圖形,然后根據(jù)平行四邊形的性質(zhì)可知EH=FP,而通過計算看EH和FP是否相等,即可解答本題.【詳解】解:(1)∵AE∥x軸,OE平分∠AOB,∴∠AEO=∠EOB=∠AOE,∴AO=AE,∵A(0,2),∴E(2,2),∴點C(4,2),設二次函數(shù)解析式為y=ax2+bx+2,∵C(4,2)和D(3,0)在該函數(shù)圖象上,∴,得,∴該拋物線的解析式為y=x2﹣x+2;(2)作點A關于x軸的對稱點A1,作點E關于直線BC的對稱點E1,連接A1E1,交x軸于點M,交線段BC于點N.根據(jù)對稱與最短路徑原理,此時,四邊形AMNE周長最?。字狝1(0,﹣2),E1(6,2).設直線A1E1的解析式為y=kx+b,,得,∴直線A1E1的解析式為.當y=0時,x=3,∴點M的坐標為(3,0).∴由勾股定理得AM=,ME1=,∴四邊形EAMN周長的最小值為AM+MN+NE+AE=AM+ME1+AE=;(3)不存在.理由:過點F作EH的平行線,交拋物線于點P.易得直線OE的解析式為y=x,∵拋物線的解析式為y=x2﹣x+2=,∴拋物線的頂點F的坐標為(2,﹣),設直線FP的解析式為y=x+b,將點F代入,得,∴直線FP的解析式為.,解得或,∴點P的坐標為(,),F(xiàn)P=×(﹣2)=,,解得,或,∵點H是直線y=x與拋物線左側(cè)的交點,∴點H的坐標為(,),∴OH=×=,易得,OE=2,EH=OE﹣OH=2﹣=,∵EH≠FP,∴點P不符合要求,∴不存在點P,使得四邊形EHFP為平行四邊形.【點睛】本題主要考察二次函數(shù)綜合題,解題關鍵是得到C的坐標,然后根據(jù)拋物線過點A、C、D求得拋物線的解析式.23、周長=32,面積=32.【分析】由在菱形ABCD中,∠ABC=60°,可得△ABC是等邊三角形,又由對角線AC=1,即可求得此菱形的邊長,進而可求出菱形的周長,再根據(jù)菱形的面積等于對角線乘積的的一半即可求出其面積.【詳解】∵四邊形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等邊三角形,∴AB=AC=1.∴菱形ABCD的周長=4×1=32,∵BO==4,∴BD=2BO=1,∴菱形ABCD的面積=×1×=32.【點睛】本題考查了菱形面積的計算,考查了勾股定理在直角三角形中的運用,考查了菱形各邊長相等的性質(zhì),本題中根據(jù)勾股定理計算AB的長是解題的關鍵,難度一般.24、(1)證明見解析;(2)①,證明見解析;②cos∠CGH=.【分析】(1)只要證明△ACF≌△BCD(ASA),即可推出CF=CD.(2)結(jié)論:.設CD=5a,CH=2a,利用相似三角形的性質(zhì)求出AM,再利用平行線分線段成比例定理即可解決問題.(3)如圖3中,設AC=m,則BC=km,m,想辦法證明∠CGH=∠ABC即可解決問題.【詳解】(1)證明:如圖1中,∵∠ACB=90°,BE⊥AF∴∠ACB=∠ACF=∠AEB=90°∵∠ADE+∠EAD=∠BDC+∠DBC=90°,∠ADE=∠BDC,∴∠CAF=∠DBC,∵BC=AC,∴△ACF≌△BCD(ASA),∴CF=CD.(2)解:結(jié)論:.理由:如圖2中,作AM⊥AC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中班語言活動不浪費水
- 新生兒過敏知識培訓
- 江西省宜春市豐城市第九中學2024-2025學年八年級上學期第一次段考化學試卷(含解析)
- 甘肅省會寧縣第四中學2024-2025學年高三上學期第一次月考化學試卷
- 全球無人機探測與防控系統(tǒng)市場運營現(xiàn)狀及發(fā)展策略研究報告2024-2030年
- 初中七年級生物上學期期中考前測試卷(人教版)含答案解析
- T-YNRZ 019-2024 珠芽黃魔芋組培種苗生產(chǎn)技術(shù)規(guī)程
- 內(nèi)蒙古自治區(qū)通遼市科爾沁左翼中旗聯(lián)盟校2024-2025學年六年級上學期期中考試英語試題
- 【課件】Unit+3+SectionB+1a-2b+課件人教版英語七年級上冊
- 高中語文11琵琶行并序錦瑟課件蘇教版必修
- 下肢深靜脈血栓靜脈濾器置入術(shù) 課件
- 新教科版六下科學2.4《多種多樣的動物》教學課件
- 全年級語文課件 - 小古文 疑鄰竊斧 全國通用
- DB31-T 1360-2022 民防工程安全管理工作導則
- 醫(yī)院管理系統(tǒng)需求規(guī)格說明書hexia
- 《靜夜思》課件版
- 職場個人形象設計課件
- 管理會計知識培訓課件
- 2022年無錫產(chǎn)業(yè)發(fā)展集團有限公司校園招聘筆試試題及答案解析
- 旅游規(guī)劃收費標準
- 市政工程施工安全檢查標準評分表
評論
0/150
提交評論