版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.⊙O是半徑為1的圓,點(diǎn)O到直線L的距離為3,過直線L上的任一點(diǎn)P作⊙O的切線,切點(diǎn)為Q;若以PQ為邊作正方形PQRS,則正方形PQRS的面積最小為()A.7 B.8 C.9 D.102.如圖,將繞點(diǎn)按逆時針方向旋轉(zhuǎn)后得到,若,則的度數(shù)為()A. B. C. D.3.如圖,△ABC中,D是AB的中點(diǎn),DE∥BC,連結(jié)BE,若S△DEB=1,則S△BCE的值為()A.1 B.2 C.3 D.44.下面是投影屏上出示的搶答題,需要回答橫線上符號代表的內(nèi)容則回答正確的是()A.◎代表∠FEC B.@代表同位角C.▲代表∠EFC D.※代表AB5.如圖,在正方形網(wǎng)格中,線段A′B′是線段AB繞某點(diǎn)逆時針旋轉(zhuǎn)角α得到的,點(diǎn)A′與A對應(yīng),則角α的大小為()A.30° B.60° C.90° D.120°6.方程的根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.有一個實數(shù)根 D.沒有實數(shù)根7.如圖,在△ABC中,DE∥BC,DE分別交AB,AC于點(diǎn)D,E,若AD:DB=1:2,則△ADE與△ABC的面積之比是()A.1:3 B.1:4 C.1:9 D.1:168.如圖,點(diǎn)的坐標(biāo)是,是等邊角形,點(diǎn)在第一象限,若反比例函數(shù)的圖象經(jīng)過點(diǎn),則的值是()A. B. C. D.9.解方程最適當(dāng)?shù)姆椒ㄊ牵ǎ〢.直接開平方法 B.配方法 C.因式分解法 D.公式法10.如圖,四邊形中,,,,設(shè)的長為,四邊形的面積為,則與之間的函數(shù)關(guān)系式是()A. B. C. D.11.某水庫大壩的橫斷面是梯形,壩內(nèi)一斜坡的坡度,則這個斜坡坡角為()A.30° B.45° C.60° D.90°12.如圖,小明要測量河內(nèi)小島B到河邊公路l的距離,在A點(diǎn)測得,在C點(diǎn)測得,又測得米,則小島B到公路l的距離為()米.A.25 B. C. D.二、填空題(每題4分,共24分)13.如圖,已知∠AOB=30°,在射線OA上取點(diǎn)O1,以點(diǎn)O1為圓心的圓與OB相切;在射線O1A上取點(diǎn)O2,以點(diǎn)O2為圓心,O2O1為半徑的圓與OB相切;在射線O2A上取點(diǎn)O3,以點(diǎn)O3為圓心,O3O2為半徑的圓與OB相切……,若⊙O1的半徑為1,則⊙On的半徑是______________.14.如圖所示的弧三角形,又叫萊洛三角形,是機(jī)械學(xué)家萊洛首先進(jìn)行研究的.弧三角形是這樣畫的:先畫一個正三角,然后分別以三個頂點(diǎn)為圓心,邊長長為半徑畫弧得到的三角形.若中間正三角形的邊長是10,則這個萊洛三角形的周長是____________.15.如圖,一根直立于水平地面上的木桿AB在燈光下形成影子,當(dāng)木桿繞A按逆時針方向旋轉(zhuǎn)直至到達(dá)地面時,影子的長度發(fā)生變化.設(shè)AB垂直于地面時的影長為AC﹙假定AC>AB﹚,影長的最大值為m,最小值為n,那么下列結(jié)論中:①m>AC;②m=AC;③n=AB;④影子的長度先增大后減小.正確的結(jié)論序號是_____.﹙直角填寫正確的結(jié)論的序號﹚.16.已知中,,,,,垂足為點(diǎn),以點(diǎn)為圓心作,使得點(diǎn)在外,且點(diǎn)在內(nèi),設(shè)的半徑為,那么的取值范圍是______.17.如圖,鐵道口的欄桿短臂長1m,長臂長16m.當(dāng)短臂端點(diǎn)下降0.5m時,長臂端點(diǎn)升高_(dá)_____18.二次函數(shù)y=ax2+bx+c(a、b、c為常數(shù)且a≠0)中的x與y的部分對應(yīng)值如下表:x-2-1012345y50-3-4-30512給出了結(jié)論:(1)二次函數(shù)y=ax2+bx+c有最小值,最小值為-3;(2)當(dāng)-<x<2時,y<0;(3)二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個交點(diǎn),且它們分別在y軸兩側(cè).則其中正確結(jié)論是_________(填上正確的序號)三、解答題(共78分)19.(8分)(1)如圖1,在⊙O中,弦AB與CD相交于點(diǎn)F,∠BCD=68°,∠CFA=108°,求∠ADC的度數(shù).(2)如圖2,在正方形ABCD中,點(diǎn)E是CD上一點(diǎn)(DE>CE),連接AE,并過點(diǎn)E作AE的垂線交BC于點(diǎn)F,若AB=9,BF=7,求DE長.20.(8分)化簡:.21.(8分)李老師將1個黑球和若干個白球放入一個不透明的口袋中并攪勻,讓學(xué)生進(jìn)行摸球試驗,每次摸出一個球(放回),下表是活動進(jìn)行中的一組統(tǒng)計數(shù)據(jù).摸球的次數(shù)n1001502005008001000摸到黑球的次數(shù)m233160130203251摸到黑球的頻率0.230.210.30_______________(1)補(bǔ)全上表中的有關(guān)數(shù)據(jù),根據(jù)上表數(shù)據(jù)估計從袋中摸出一個黑球的概率是______.(結(jié)果都保留小數(shù)點(diǎn)后兩位)(2)估算袋中白球的個數(shù)為________.(3)在(2)的條件下,若小強(qiáng)同學(xué)有放回地連續(xù)兩次摸球,用畫樹狀圖或列表的方法計算出兩次都摸出白球的概率.22.(10分)在平面直角坐標(biāo)系中,已知拋物線y=x2+kx+c的圖象經(jīng)過點(diǎn)C(0,1),當(dāng)x=2時,函數(shù)有最小值.(1)求拋物線的解析式;(2)直線l⊥y軸,垂足坐標(biāo)為(0,﹣1),拋物線的對稱軸與直線l交于點(diǎn)A.在x軸上有一點(diǎn)B,且AB=,試在直線l上求異于點(diǎn)A的一點(diǎn)Q,使點(diǎn)Q在△ABC的外接圓上;(3)點(diǎn)P(a,b)為拋物線上一動點(diǎn),點(diǎn)M為坐標(biāo)系中一定點(diǎn),若點(diǎn)P到直線l的距離始終等于線段PM的長,求定點(diǎn)M的坐標(biāo).23.(10分)已知關(guān)于x的一元二次方程.(1)若是方程的一個解,寫出、滿足的關(guān)系式;(2)當(dāng)時,利用根的判別式判斷方程根的情況;(3)若方程有兩個相等的實數(shù)根,請寫出一組滿足條件的、的值,并求出此時方程的根.24.(10分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相較于A(2,3),B(﹣3,n)兩點(diǎn).(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集;(3)過點(diǎn)B作BC⊥x軸,垂足為C,求S△ABC.25.(12分)如圖,中,,,平分,交軸于點(diǎn),點(diǎn)是軸上一點(diǎn),經(jīng)過點(diǎn)、,與軸交于點(diǎn),過點(diǎn)作,垂足為,的延長線交軸于點(diǎn),(1)求證:為的切線;(2)求的半徑.26.如圖,在平面直角坐標(biāo)系中,邊長為3的正方形ABCD在第一象限內(nèi),AB∥x軸,點(diǎn)A的坐標(biāo)為(5,4)經(jīng)過點(diǎn)O、點(diǎn)C作直線l,將直線l沿y軸上下平移.(1)當(dāng)直線l與正方形ABCD只有一個公共點(diǎn)時,求直線l的解析式;(2)當(dāng)直線l在平移過程中恰好平分正方形ABCD的面積時,直線l分別與x軸、y軸相交于點(diǎn)E、點(diǎn)F,連接BE、BF,求△BEF的面積.
參考答案一、選擇題(每題4分,共48分)1、B【分析】連接OQ、OP,作于H,如圖,則OH=3,根據(jù)切線的性質(zhì)得,利用勾股定理得到,根據(jù)垂線段最短,當(dāng)OP=OH=3時,OP最小,于是PQ的最小值為,即可得到正方形PQRS的面積最小值1.【詳解】解:連接OQ、OP,作于H,如圖,則OH=3,∵PQ為的切線,∴在Rt中,,當(dāng)OP最小時,PQ最小,正方形PQRS的面積最小,當(dāng)OP=OH=3時,OP最小,所以PQ的最小值為,所以正方形PQRS的面積最小值為1故選B2、D【分析】由題意可知旋轉(zhuǎn)角∠BCB′=60°,則根據(jù)∠ACB′=∠BCB′+∠ACB即可得出答案.【詳解】解:根據(jù)旋轉(zhuǎn)的定義可知旋轉(zhuǎn)角∠BCB′=60°,∴∠ACB′=∠BCB′+∠ACB=60°+25°=85°.故選:D.【點(diǎn)睛】本題主要考查旋轉(zhuǎn)的定義,解題的關(guān)鍵是找到旋轉(zhuǎn)角,以及旋轉(zhuǎn)后的不變量.3、B【解析】根據(jù)三角形中位線定理和三角形的面積即可得到結(jié)論.【詳解】∵D是AB的中點(diǎn),DE∥BC,∴CE=AE.∴DE=BC,∵S△DEB=1,∴S△BCE=2,故選:B.【點(diǎn)睛】本題考查了三角形中位線定理,熟練掌握并運(yùn)用三角形中位線定理是解題的關(guān)鍵.4、C【解析】根據(jù)圖形可知※代表CD,即可判斷D;根據(jù)三角形外角的性質(zhì)可得◎代表∠EFC,即可判斷A;利用等量代換得出▲代表∠EFC,即可判斷C;根據(jù)圖形已經(jīng)內(nèi)錯角定義可知@代表內(nèi)錯角.【詳解】延長BE交CD于點(diǎn)F,則∠BEC=∠EFC+∠C(三角形的外角等于與它不相鄰兩個內(nèi)角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(內(nèi)錯角相等,兩直線平行).故選C.【點(diǎn)睛】本題考查了平行線的判定,三角形外角的性質(zhì),比較簡單.5、C【詳解】分析:先根據(jù)題意確定旋轉(zhuǎn)中心,然后根據(jù)旋轉(zhuǎn)中心即可確定旋轉(zhuǎn)角的大?。斀猓喝鐖D,連接A′A,BB′,分別A′A,BB′作的中垂線,相交于點(diǎn)O.
顯然,旋轉(zhuǎn)角為90°,故選C.點(diǎn)睛:考查了旋轉(zhuǎn)的性質(zhì),解題的關(guān)鍵是能夠根據(jù)題意確定旋轉(zhuǎn)中心,難度不大.先找到這個旋轉(zhuǎn)圖形的兩對對應(yīng)點(diǎn),連接對應(yīng)兩點(diǎn),然后就會出現(xiàn)兩條線段,分別作這兩條線段的中垂線,兩條中垂線的交點(diǎn)就是旋轉(zhuǎn)中心.6、A【分析】計算判別式即可得到答案.【詳解】∵=∴方程有兩個不相等的實數(shù)根,故選:A.【點(diǎn)睛】此題考查一元二次方程根的情況,正確掌握判別式的三種情況即可正確解題.7、C【分析】根據(jù)DE∥BC,即可證得△ADE∽△ABC,然后根據(jù)相似三角形的面積的比等于相似比的平方,即可求解.【詳解】解:∵AD:DB=1:2,∴AD:AB=1:3,∵DE∥BC,∴△ADE∽△ABC,∴=()2=.故選:C.【點(diǎn)睛】此題主要考查相似三角形的性質(zhì),解題的關(guān)鍵是熟知相似三角形的面積的比等于相似比的平方.8、D【分析】首先過點(diǎn)B作BC垂直O(jiān)A于C,根據(jù)AO=4,△ABO是等辺三角形,得出B點(diǎn)坐標(biāo),迸而求出k的值.【詳解】解:過點(diǎn)B作BC垂直O(jiān)A于C,
∵點(diǎn)A的坐標(biāo)是(2,0)
,AO=4,
∵△ABO是等邊三角形∴OC=
2,BC=∴點(diǎn)B的坐標(biāo)是(2,),把(2,)代入,得:k=xy=故選:D【點(diǎn)睛】本題考查的是利用等邊三角形的性質(zhì)來確定反比例函數(shù)的k值.9、C【分析】根據(jù)解一元二次方程的方法進(jìn)行判斷.【詳解】解:先移項得到,然后利用因式分解法解方程.故選:C.【點(diǎn)睛】本題考查了解一元二次方程——因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.10、C【分析】四邊形ABCD圖形不規(guī)則,根據(jù)已知條件,將△ABC繞A點(diǎn)逆時針旋轉(zhuǎn)90°到△ADE的位置,求四邊形ABCD的面積問題轉(zhuǎn)化為求梯形ACDE的面積問題;根據(jù)全等三角形線段之間的關(guān)系,結(jié)合勾股定理,把梯形上底DE,下底AC,高DF分別用含x的式子表示,可表示四邊形ABCD的面積.【詳解】作AE⊥AC,DE⊥AE,兩線交于E點(diǎn),作DF⊥AC垂足為F點(diǎn),∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE∴∠BAC=∠DAE又∵AB=AD,∠ACB=∠E=90°∴△ABC≌△ADE(AAS)∴BC=DE,AC=AE,設(shè)BC=a,則DE=a,DF=AE=AC=4BC=4a,CF=AC-AF=AC-DE=3a,在Rt△CDF中,由勾股定理得,CF1+DF1=CD1,即(3a)1+(4a)1=x1,解得:a=,∴y=S四邊形ABCD=S梯形ACDE=×(DE+AC)×DF=×(a+4a)×4a=10a1=x1.故選C.【點(diǎn)睛】本題運(yùn)用了旋轉(zhuǎn)法,將求不規(guī)則四邊形面積問題轉(zhuǎn)化為求梯形的面積,充分運(yùn)用了全等三角形,勾股定理在解題中的作用.11、A【分析】根據(jù)坡度可以求得該坡角的正切值,根據(jù)正切值即可求得坡角的角度.【詳解】∵坡度為,
∴,
∵,且α為銳角,
∴.
故選:A.【點(diǎn)睛】本題考查了坡度的定義,考查了特殊角的三角函數(shù)值,考查了三角函數(shù)值在直角三角形中的應(yīng)用.12、B【詳解】解:過點(diǎn)B作BE⊥AD于E.設(shè)BE=x.∵∠BCD=60°,tan∠BCE,,在直角△ABE中,AE=,AC=50米,則,解得即小島B到公路l的距離為,故選B.二、填空題(每題4分,共24分)13、2n?1【分析】作O1C、O2D、O3E分別⊥OB,易找出圓半徑的規(guī)律,即可解題.【詳解】解:作O1C、O2D、O3E分別⊥OB,∵∠AOB=30°,∴OO1=2CO1,OO2=2DO2,OO3=2EO3,∵O1O2=DO2,O2O3=EO3,∴圓的半徑呈2倍遞增,∴⊙On的半徑為2n?1
CO1,∵⊙O1的半徑為1,∴⊙O10的半徑長=2n?1,故答案為:2n?1.【點(diǎn)睛】本題考查了圓切線的性質(zhì),考查了30°角所對直角邊是斜邊一半的性質(zhì),本題中找出圓半徑的規(guī)律是解題的關(guān)鍵.14、10π【分析】根據(jù)正三角形的有關(guān)計算求出弧的半徑和圓心角,根據(jù)弧長的計算公式求解即可.【詳解】解:如圖:
∵△ABC是正三角形,
∴∠BAC=60°,
∴的長為:,
∴萊洛三角形的周長=.故答案為:.【點(diǎn)睛】本題考查的是正多邊形和圓的知識,理解弧三角形的概念、掌握正多邊形的中心角的求法是解題的關(guān)鍵.15、①③④【分析】由當(dāng)AB與光線BC垂直時,m最大即可判斷①②,由最小值為AB與底面重合可判斷③,點(diǎn)光源固定,當(dāng)線段AB旋轉(zhuǎn)時,影長將隨物高擋住光線的不同位置發(fā)生變化過程可判斷④.【詳解】當(dāng)木桿繞點(diǎn)A按逆時針方向旋轉(zhuǎn)時,如圖所示當(dāng)AB與光線BC垂直時,m最大,則m>AC,①成立;
①成立,那么②不成立;
最小值為AB與底面重合,故n=AB,故③成立;
由上可知,影子的長度先增大后減小,④成立.
故答案為:①③④.16、【分析】先根據(jù)勾股定理求出AB的長,進(jìn)而得出CD的長,再求出AD,BD的長,由點(diǎn)與圓的位置關(guān)系即可得出結(jié)論.【詳解】解:∵Rt△ABC中,∠ACB=90,AC=3,BC=,
∴AB==1.
∵CD⊥AB,∴CD=.
∵AD?BD=CD2,
設(shè)AD=x,BD=1-x,得x(1-x)=,又AD>BD,解得x1=(舍去),x2=.∴AD=,BD=.
∵點(diǎn)A在圓外,點(diǎn)B在圓內(nèi),∴BD<r<AD,
∴r的范圍是,
故答案為:.【點(diǎn)睛】本題考查的是點(diǎn)與圓的位置關(guān)系,熟知點(diǎn)與圓的三種位置關(guān)系是解答此題的關(guān)鍵.17、8m【分析】由題意證△ABO∽△CDO,可得,即,解之可得.【詳解】如圖,
由題意知∠BAO=∠C=90°,
∵∠AOB=∠COD,
∴△ABO∽△CDO,
∴,即,
解得:CD=8,
故答案為:8m.【點(diǎn)睛】本題主要考查相似三角形的應(yīng)用,熟練掌握相似三角形的判定與性質(zhì)是解題的關(guān)鍵.18、(2)(3)【分析】根據(jù)表格數(shù)據(jù)求出二次函數(shù)的對稱軸為直線x=1,然后根據(jù)二次函數(shù)的性質(zhì)對各小題分析判斷即可得解.【詳解】由表格數(shù)據(jù)可知,二次函數(shù)的對稱軸為直線x=1,所以,當(dāng)x=1時,二次函數(shù)y=ax2+bx+c有最小值,最小值為?4;故(1)小題錯誤;根據(jù)表格數(shù)據(jù),當(dāng)?1<x<3時,y<0,所以,?<x<2時,y<0正確,故(2)小題正確;二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個交點(diǎn),分別為(?1,0)(3,0),它們分別在y軸兩側(cè),故(3)小題正確;綜上所述,結(jié)論正確的是(2)(3)共2個.故答案為:(2)(3).【點(diǎn)睛】本題考查了二次函數(shù)的最值,拋物線與x軸的交點(diǎn),仔細(xì)分析表格數(shù)據(jù),熟練掌握二次函數(shù)的性質(zhì)是解題的關(guān)鍵.三、解答題(共78分)19、(1)40°;(2)1.【分析】(1)由∠BCD=18°,∠CFA=108°,利用三角形外角的性質(zhì),即可求得∠B的度數(shù),然后由圓周角定理,求得答案;(2)由正方形的性質(zhì)和已知條件證明△ADE∽△ECF,根據(jù)相似三角形的性質(zhì)可知:,設(shè)DE=x,則EC=9﹣x,代入計算求出x的值即可.【詳解】(1)∵∠BCD=18°,∠CFA=108°,∴∠B=∠CFA﹣∠BCD=108°﹣18°=40°,∴∠ADC=∠B=40°.(2)解:∵四邊形ABCD是正方形,∴CD=AD=BC=AB=9,∠D=∠C=90°,∴CF=BC﹣BF=2,在Rt△ADE中,∠DAE+∠AED=90°,∵AE⊥EF于E,∴∠AED+∠FEC=90°,∴∠DAE=∠FEC,∴△ADE∽△ECF,∴,設(shè)DE=x,則EC=9﹣x,∴,解得x1=3,x2=1,∵DE>CE,∴DE=1.【點(diǎn)睛】此題考查三角形的外角的性質(zhì),圓周角定理,正方形的性質(zhì),三角形相似的判定及性質(zhì).20、【分析】根據(jù)完全平方公式和平方差公式,先算整式乘法,再算加減.【詳解】解:原式===【點(diǎn)睛】考核知識點(diǎn):整式乘法.熟記乘法公式是關(guān)鍵.21、表格內(nèi)數(shù)據(jù):0.26,0.25,0.25(1)0.25;(2)1;(1).【分析】(1)直接利用頻數(shù)÷總數(shù)=頻率求出答案;(2)設(shè)袋子中白球有x個,利用表格中數(shù)據(jù)估算出得到黑球的頻率列出關(guān)于x的分式方程,【詳解】(1)251÷1000=0.251;∵大量重復(fù)試驗事件發(fā)生的頻率逐漸穩(wěn)定到0.25附近0.25,∴估計從袋中摸出一個球是黑球的概率是0.25;(2)設(shè)袋中白球為x個,=0.25,x=1.答:估計袋中有1個白球.(1)由題意畫樹狀圖得:由樹狀圖可知,所有可能出現(xiàn)的結(jié)果共有16種,這些結(jié)果出現(xiàn)的可能性相等,其中兩次都摸出白球的有9種情況.所以P(兩次都摸出白球)=.【點(diǎn)睛】本題主要考查了模擬實驗以及頻率求法和樹狀圖法與列表法求概率,解決本題的關(guān)鍵是要熟練掌握概率計算方法.22、(1)y=x2﹣x+1;(2)Q(1,﹣1);(3)M(2,1)【分析】(1)由已知可求拋物線解析式為y=x2﹣x+1;(2)由題意可知A(2,﹣1),設(shè)B(t,0),由AB=,所以(t﹣2)2+1=2,求出B(1,0)或B(3,0),當(dāng)B(1,0)時,A、B、C三點(diǎn)共線,舍去,所以B(3,0),可證明△ABC為直角三角形,BC為外接圓的直徑,外接圓的圓心為BC的中點(diǎn)(,),半徑為,設(shè)Q(x,﹣1),則有(x﹣)2+(+1)2=()2,即可求Q(1,﹣1);(3)設(shè)頂點(diǎn)M(m,n),P(a,b)為拋物線上一動點(diǎn),則有b=a2﹣a+1,因為P到直線l的距離等于PM,所以(m﹣a)2+(n﹣b)2=(b+1)2,可得+(2n﹣2m+2)a+(m2+n2﹣2n﹣3)=0,由a為任意值上述等式均成立,有,可求定點(diǎn)M的坐標(biāo).【詳解】解:(1)∵圖象經(jīng)過點(diǎn)C(0,1),∴c=1,∵當(dāng)x=2時,函數(shù)有最小值,即對稱軸為直線x=2,∴,解得:k=﹣1,∴拋物線解析式為y=x2﹣x+1;(2)由題意可知A(2,﹣1),設(shè)B(t,0),∵AB=,∴(t﹣2)2+1=2,∴t=1或t=3,∴B(1,0)或B(3,0),∵B(1,0)時,A、B、C三點(diǎn)共線,舍去,∴B(3,0),∴AC=2,BC=,∴∠BAC=90°,∴△ABC為直角三角形,BC為外接圓的直徑,外接圓的圓心為BC的中點(diǎn)(,),半徑為,設(shè)Q(x,﹣1),則有(x﹣)2+(+1)2=()2,∴x=1或x=2(舍去),∴Q(1,﹣1);(3)設(shè)頂點(diǎn)M(m,n),∵P(a,b)為拋物線上一動點(diǎn),∴b=a2﹣a+1,∵P到直線l的距離等于PM,∴(m﹣a)2+(n﹣b)2=(b+1)2,∴+(2n﹣2m+2)a+(m2+n2﹣2n﹣3)=0,∵a為任意值上述等式均成立,∴,∴,此時m2+n2﹣2n﹣3=0,∴定點(diǎn)M(2,1).【點(diǎn)睛】本題考查二次函數(shù)的圖象及性質(zhì);熟練掌握二次函數(shù)的圖象及性質(zhì),結(jié)合圓的相關(guān)知識解題是關(guān)鍵.23、(1);(2)原方程有兩個不相等的實數(shù)根;(3),,(答案不唯一).【分析】(1)把方程的解代入即可;(2)根據(jù)根的判別式及b=a+1計算即可;(3)根據(jù)方程根的情況得到根的判別式,從而得到a、b的值,再代入方程解方程即可.【詳解】解:(1)把代入方程可得,故a、b滿足的關(guān)系式為;(2)△,∵,∴△,∴原方程有兩個不相等的實數(shù)根;(3)∵方程有兩個相等的實數(shù)根,∴△=,即,取,(取值不唯一),則方程為,解得.【點(diǎn)睛】本題考查一元二次方程的解,解法,及根的判別式,熟記根的判別式,掌握一元二次方程的解法是解題的關(guān)鍵.24、(1)反比例函數(shù)的解析式為:y=,一次函數(shù)的解析式為:y=x+1;(2)﹣3<x<0或x>2;(3)1.【解析】(1)根據(jù)點(diǎn)A位于反比例函數(shù)的圖象上,利用待定系數(shù)法求出反比例函數(shù)解析式,將點(diǎn)B坐標(biāo)代入反比例函數(shù)解析式,求出n的值,進(jìn)而求出一次函數(shù)解析式(2)根據(jù)點(diǎn)A和點(diǎn)B的坐標(biāo)及圖象特點(diǎn),即可求出反比例函數(shù)值大于一次函數(shù)值時x的取值范圍(3)由點(diǎn)A和點(diǎn)B的坐標(biāo)求得三角形以BC為底的高是10,從而求得三角形ABC的面積【詳解】解:(1)∵點(diǎn)A(2,3)在y=的圖象上,∴m=6,∴反比例函數(shù)的解析式為:y=,∴n==﹣2,∵A(2,3),B(﹣3,﹣2)兩點(diǎn)在y=kx+b上,∴,解得:,∴一次函數(shù)的解析式為:y=x+1;(2)由圖象可知﹣3<x<0或x>2;(3)以BC為底,則BC邊上的高為3+2=1,∴S△ABC=×2×1=1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國速凍甜玉米仁行業(yè)投資前景及策略咨詢研究報告
- 2025至2030年中國防滑EVA底露趾毛巾拖鞋數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國磁選機(jī)數(shù)據(jù)監(jiān)測研究報告
- 2025至2030年中國變速器支承數(shù)據(jù)監(jiān)測研究報告
- 二零二五年度個人心理咨詢合同范本下載心理健康護(hù)航2篇
- 2025版水電站消防安全檢測與維護(hù)保養(yǎng)合同范本3篇
- 二零二五年度城市供水供電綜合保障服務(wù)合同3篇
- 二零二五年度城市社區(qū)蔬菜直供購銷協(xié)議2篇
- 數(shù)據(jù)結(jié)構(gòu)試題及答案-經(jīng)典期末試題
- 企業(yè)聘用合同書
- 小學(xué)一年級數(shù)學(xué)上冊口算練習(xí)題總匯
- 課題申報書:GenAI賦能新質(zhì)人才培養(yǎng)的生成式學(xué)習(xí)設(shè)計研究
- 潤滑油知識-液壓油
- 2024年江蘇省中醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點(diǎn)附帶答案
- 駱駝祥子-(一)-劇本
- 全國醫(yī)院數(shù)量統(tǒng)計
- 《中國香文化》課件
- 2024年醫(yī)美行業(yè)社媒平臺人群趨勢洞察報告-醫(yī)美行業(yè)觀察星秀傳媒
- 第六次全國幽門螺桿菌感染處理共識報告-
- 天津市2023-2024學(xué)年七年級上學(xué)期期末考試數(shù)學(xué)試題(含答案)
- 經(jīng)濟(jì)學(xué)的思維方式(第13版)
評論
0/150
提交評論