版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
外文標(biāo)題:FaceRecognition-BasedMobileAutomaticClassroomAttendanceManagementSystem外文作者:RefikSamet,MuhammedTanriverdi文獻(xiàn)出處:2018InternationalConferenceonCyberworlds(如覺得年份太老,可改為近2年,畢竟很多畢業(yè)生都這樣做)英文2937單詞,20013字符(字符就是印刷符),中文4819漢字。FaceRecognition-BasedMobileAutomaticClassroomAttendanceManagementSystemAbstract—Classroomattendancecheckisacontributingfactortostudentparticipationandthefinalsuccessinthecourses.Takingattendancebycallingoutnamesorpassingaroundanattendancesheetarebothtime-consuming,andespeciallythelatterisopentoeasyfraud.Asanalternative,RFID,wireless,fingerprint,andirisandfacerecognition-basedmethodshavebeentestedanddevelopedforthispurpose.Althoughthesemethodshavesomepros,highsysteminstallationcostsarethemaindisadvantage.Thepresentpaperaimstoproposeafacerecognition-basedmobileautomaticclassroomattendancemanagementsystemneedingnoextraequipment.Tothisend,afilteringsystembasedonEuclideandistancescalculatedbythreefacerecognitiontechniques,namelyEigenfaces,FisherfacesandLocalBinaryPattern,hasbeendevelopedforfacerecognition.Theproposedsystemincludesthreedifferentmobileapplicationsforteachers,students,andparentstobeinstalledontheirsmartphonestomanageandperformthereal-timeattendance-takingprocess.TheproposedsystemwastestedamongstudentsatAnkaraUniversity,andtheresultsobtainedwereverysatisfactory.Keywords—facedetection,facerecognition,eigenfaces,fisherfaces,localbinarypattern,attendancemanagementsystem,mobileapplication,accuracyI.INTRODUCTIONMosteducationalinstitutionsareconcernedwithparticipationincoursessincestudentparticipationintheclassroomleadstoeffectivelearningandincreasessuccessrates[1].Also,ahighparticipationrateintheclassroomisamotivatingfactorforteachersandcontributestoasuitableenvironmentformorewillingandinformativeteaching[2].Themostcommonpracticeknowntoincreaseattendanceinacourseistakingattendanceregularly.Therearetwocommonwaystocreateattendancedata.Someteachersprefertocallnamesandputmarksforabsenceorpresence.Otherteachersprefertopassaroundapapersigningsheet.Aftergatheringtheattendancedataviaeitherofthesetwomethods,teachersmanuallyenterthedataintotheexistingsystem.However,thosenon-technologicalmethodsarenotefficientwayssincetheyaretime-consumingandpronetomistakes/fraud.Thepresentpaperaimstoproposeanattendance-takingprocessviatheexistingtechnologicalinfrastructurewithsomeimprovements.Afacerecognition-basedmobileautomaticclassroomattendancemanagementsystemhasbeenproposedwithafacerecognitioninfrastructureallowingtheuseofsmartmobiledevices.Inthisscope,afilteringsystembasedonEuclideandistancescalculatedbythreefacerecognitiontechniques,namelyEigenfaces,Fisherfaces,andLocalBinaryPattern(LBP),hasbeendevelopedforfacerecognition.Theproposedsystemincludesthreedifferentapplicationsforteachers,students,andparentstobeinstalledontheirsmartphonestomanageandperformareal-timepollingprocess,datatracking,andreporting.Thedataisstoredinacloudserverandaccessiblefromeverywhereatanytime.Webservicesareapopularwayofcommunicationforonlinesystems,andRESTfulisanoptimalexampleofwebservicesformobileonlinesystems[3].Intheproposedsystem,RESTfulwebserviceswereusedforcommunicationamongteacher,student,andparentapplicationsandthecloudserver.Attendanceresultsarestoredinadatabaseandaccessiblebytheteacher,studentandparentmobileapplications.Thepaperisorganisedasfollows.SectionIIprovidesabriefliteraturesurvey.SectionIIIintroducestheproposedsystem,andsectionIVfollowsbyimplementationandresults.Thelastsectiongivesthemainconclusions.LITERATURESURVEYFingerprintreadingsystemshavehighinstallationcosts.Furthermore,onlyonestudentatatimecanuseaportablefingerrecognitiondevice,whichmakesitatime-consumingprocess[4].Inthecaseofafixedfingerrecognitiondeviceattheentranceoftheclassroom,attendance-takingshouldbedoneundertheteacher'ssupervisionsothatstudentsdonotleaveafterthefingerrecognition,whichmakestheprocesstime-consumingforboththeteacherandthestudents.IncaseofRFIDcardreadingsystems,attendance-takingisavailableviathecardsdistributedtostudents[5].Insuchsystems,studentsmayresorttofraudulentmethodsbyreadingtheirfriends'cards.Also,ifastudentforgetshis/hercard,anon-trueabsencemaybesavedinthesystem.ThedisadvantageoftheclassroomscanningsystemswithBluetoothorbeaconmethodsisthateachstudentmustcarryadevice.BecausethefieldlimitoftheBluetoothLowEnergy(BLE)systemcannotbedetermined,studentswhoarenotintheclassroomatthemomentbutarewithintheBluetootharealimitsmayappeartobepresentintheattendancesystem[6].Therearedifferentmethodsofclassroomattendancemonitoringusingfacerecognitiontechnology.Oneoftheseisacameraplacedattheclassroomentranceandthestudentsenteringtheclassroomareregisteredintothesystembyfacerecognition[7].However,inthissystemstudents’facescouldberecognised,althoughstudentscanleavetheclassroomafterwards,anderrorscanoccurinthepollinginformation.Anothermethodistheobservationcarriedoutwithacameraplacedintheclassroomandtheclassroomimagetakenduringthecourse.Inthiscase,thecamerasusedinthesystemneedtobechangedfrequentlytokeepproducingbetterqualityimages.Therefore,thissystemisnotveryusefulandcanbecomecostly.Inadditiontoalltheaforementioneddisadvantages,themostcommondisadvantageisthatallthesemethodsneedextraequipment.Theproposedsystemhasbeendevelopedtoaddressthesedisadvantages.Themainadvantagesoftheproposedsystemareflexibleusage,noequipmentcosts,nowastedtime,andeasyaccessibility.PROPOSEDSYSTEMArchitectureoftheProposedSystemTheproposedsystem'sarchitecturebasedonmobilityandflexibilityisshowninFig.1.Figure1.SystemArchitectureThesystemconsistsofthreelayers:ApplicationLayer,CommunicationLayer,andServerLayer.ApplicationLayer:Intheapplicationlayer,therearethreemobileapplicationsconnectedtothecloudserverbywebservices.a)TeacherApplication:Theteacheristheheadofthesystem,sohe/shehastheprivilegetoaccessallthedata.Byhis/hersmartmobiledevice,he/shecantakeaphotoofstudentsinaclassroomatanytime.Afterthetakingthephotograph,theteachercanusethisphototoregisterattendance.Forthisaim,thephotoissenttothecloudserverforfacedetectionandrecognitionprocessing.Theresultsaresavedintoadatabasetogetherwithallthereachabledata.Theteachergetsaresponsebythemobileapplicationandcanimmediatelyseetheresults.Theteachercanalsocreateastudentprofile,addaphotoofeachstudent,andaddorremoveastudentto/fromtheirclassrosters.He/shecanaswellcreateanddeletecourses.Eachcoursehasauniquesix-charactercode.Theteachercansharethiscodewithhis/herstudentssotheycanaccesstheirattendanceresultsviathestudentapplication.Theteachercanaccesstoalldataandresultsbasedoneachstudent'srecognizedphotostampedwithadate.Additionally,anemailmessagewithattendancedataofaclassinExcelformatcanberequested,whiletheanalyticsoftheattendanceresultsisprovidedintheapplication.b)StudentApplication:Studentscansignincourseswiththeteacher'semailaddressandthesix-charactercoursecode.Theycanaddtheirphotosbytakingaphotoora3-secondlongvideo.Incaseoferrors,theiruploadedphotoscanbedeleted.Studentscanonlyseelimitedresultsoftheattendance-takingprocessrelatedtotheirattendance.Toprotectpersonalprivacy,theclassphotosanddetectedportraitphotosofeachstudentcanbeaccessedonlybytheteacher.Ifstudentsarenotintheclassroomwhenanattendance-checkisperformed,theyarenotifiedoftheattendance-check.Incaseoferrors(ifastudentispresent,butnotdetectedbythesystem),he/shecannotifytheteachersohe/shecanfixtheproblem.c)FamilyApplication:Parentscanseetheirchildren'sattendanceresultsforeachclass.Additionalchildrenprofilescanbeaddedintothesystem.Eachparentisaddedtothestudent'sapplicationwithname,surname,andemailaddress.Whenastudentaddshis/herparents,theyareautomaticallyabletoseetheattendanceresults.Theyarealsonotifiedwhentheirchildisnotintheclassroom.CommunicationLayer:RESTfulwebservicesareusedtocommunicatebetweentheapplicationsandserverlayers.RequestsaresentbythePOSTmethod.EachrequestissentwithauniqueIDoftheauthoriseduserofthesession.Onlytheauthoriseduserscanaccessandrespondthethedatatowhichtheyhaverighttoaccess.Duetoitsflexibilityandfastperformance,JSONisusedasthedataformatforwebservicesresponse[8].Withthisabstractwebservicelayer,thesystemcaneasilybeusedforanewitemintheapplicationlayer,suchaswebpagesoranewmobileoperatingsystem.ServerLayer:Theserverlayerisresponsibleforhandlingtherequestsandsendingtheresultstotheclient.Facedetectionandrecognitionalgorithmsareperformedinthislayerandmorethan30differentwebservicesarecreatedforhandlingdifferentrequestsfrommobileapplications.FaceDetectionAccurateandefficientfacedetectionalgorithmsimprovetheaccuracylevelofthefacerecognitionsystems.Ifafaceisnotdetectedcorrectly,thesystemwillfailitsoperation,stopprocessing,andrestart.Knowledge-based,feature-based,template-based,andstatistics-basedmethodsareusedforfacedetection[9].Sincetheclassroomphotoistakenundertheteacher'scontrol,posevariationscouldbelimitedtoasmallrange.Viola-JonesfacedetectionmethodwithAda-boosttrainingisshownasthebestchoiceforreal-timeclassattendancesystems[9,10].Inthemostbasicsense,thedesiredobjectsarefirstlyfoundandintroducedaccordingtoacertainalgorithm.Afterwards,theyarescannedtofindmatcheswithsimilarshapes[11].FaceRecognitionTherearetwobasicclassificationsoffacerecognitionbasedonimageintensity:feature-basedandappearance-based[12].Feature-basedapproachestrytorepresent(approximate)theobjectascompilationsofdifferentfeatures,forexample,eyes,nose,chin,etc.Incontrast,theappearance-basedmodelsonlyusetheappearancecapturedbydifferenttwo-dimensionalviewsoftheobject-of-interest.Feature-basedtechniquesaremoretime-consumingthanappearance-basedtechniques.Thereal-timeattendancemanagementsystemrequireslowcomputationalprocesstime.Therefore,threeappearance-basedfacerecognitiontechniquessuchasEigenfaces,FisherfacesandLBPareusedinthetestedsystem.Fisherfacesandeigenfacestechniqueshaveavaryingsuccessrate,dependingondifferentchallenges,likeposevariation,illumination,orfacialexpression[13].Accordingtoseveralpreviousstudies,facerecognitionusingLBPmethodgivesverygoodresultsregardingspeedanddiscriminationperformanceaswellasindifferentlightingconditions[14,15].Euclideandistanceiscalculatedbyfindingsimilaritiesbetweenimagesforfacerecognition.AfilteringsystembasedonEuclideandistancescalculatedbyEigenfaces,FisherfacesandLBPhasbeendevelopedforfacerecognition.Accordingtothed,,mnsf,sandEigenfacesalgorithmsareevaluatedindefinedorder.IftheEuclideandistanceofLBPalgorithmislessthan40;elseifEuclideandistanceofFisherfacesalgorithmislessthan250;elseifEuclideandistanceofEigenfacesalgorithmislessthan1500,recognizedfaceisrecordedastherightmatch.Secondly,ifthecalculatedEuclideandistancesbythethreemethodsaregreaterthantheminimumEuclideandistances,thesecondlevelEuclideandistances(40-50(forLBP),250-400(forFisherfaces),1500-1800(forEigenfaces))areevaluatedinthesameway.Ifthesecondlevelconditionsarealsonotmet,thefilterreturnsthewrongmatch.Thirdly,ifanytwoalgorithmsgivethesamematchresult,thematchisrecordedcorrectly.Finally,ifnoconditionsaremet,thepriorityisgiventotheLBPalgorithmandthematchisrecordedcorrectly.escarchitectureaimedr,,andtrequiringnoextraequipment.Atthesametime,itsobjectivewastoprovideaccesstoallusersatanytime.Thesystemthusoffersareal-timeattendancemanagementsystemtoallitsusers.IV.IMPLEMENTATIONANDRESULTSThefollowingplatformwasused.Thecloudserverhasa2.5GHzwith4-coreCPU,8GBRAM,and64-bitoperatingsystemcapacity.Viola-JonesfacedetectionalgorithmandEigenfaces,FisherfacesandLBPfacerecognitionalgorithmswereimplementedbasedonOpenCV.TestsweredonewithbothiOSandANDROID.Fortydifferentattendancemonitoringtestswereperformedinarealclassroom,including11students,and264students’facesweredetected.TablesI,II,andIIIshowdetectionandrecognitionaccuracyofallthreedifferenttypesoftestedalgorithmsrelatedtotheEuclideandistance.Priorityorderingfor3algorithmswasarrangedaccordingtoaccuracyrateforeachinterval.Intestresults,123,89,and85falserecognitionsweredetectedforEigenfaces,Fisherfacesandrespectively.Bythehelpofthedevelopedfilteringsystem,thenumberoffalserecognitionsdecreasedto65.Outof40implementedattendancemonitoringtests,10wereconductedwith1facephotoofeachstudentindatabaseinStep-I,20wereconductedwhenthenumberoffacephotosincreasedupto3inStep-II,and10recognitionprocesseswereconductedwithmorethan3facephotosindatabaseinStep-III.TableIVshowstheobtainedresults.Themostimportantlimitationoftestedattendancemonitoringprocessisdecreasedsuccesswithincreasingdistancebetweenthecameraandstudents.Theresultsregardingstudentssittinginfrontseatsaremoreaccurateincomparisontoresultsregardingstudentssittingintheback.Secondly,theaccuracyratesmayhavedecreasedduetotheblurringcausedbyvibrationwhilethephotowastaken.Thirdly,insomecasesonepartofthestudent'sfacemaybecoveredbyanotherstudentsittinginfrontofhim/her,whichmayhamperasuccessfulfacerecognitionprocess.Sincetheclassroomphotosaretakeninuncontrolledenvironments,theilluminationandposecould,toalargeextent,affecttheaccuracyrate.Thedevelopedfilteringsystemminimizestheseeffects.Toincreaseaccuracy,posetolerantfacerecognitionapproachmayalsobeused[16,17].V.CONCLUSIONSThepresentpaperproposesaflexibleandreal-timefacerecognition-basedmobileattendancemanagementsystem.AfilteringsystembasedonEuclideandistancescalculatedbyEigenfaces,Fisherfaces,andLBPhasbeendeveloped.Theproposedsystemeliminatesthecostforextraequipment,minimizesattendance-takingtime,andallowsuserstoaccessthedataanytimeandanywhere.Smartdevicesareveryuser-friendlytoperformclassroomattendancemonitoring.Teachers,students,andparentscanusetheapplicationwithoutanyrestrictionsandinreal-time.Sincetheinternetconnectionspeedhasbeensteadilyincreasing,highquality,largerimagescanbesenttotheserver.Inaddition,processorcapacityoftheserversisalsoincreasingondailybasis.Withthesetechnologicaldevelopments,theaccuracyrateoftheproposedsystemwillalsobeincreased.Facerecognitioncouldbefurthertestedbyotherfacerecognitiontechniques,suchasSupportVectorMachine,HiddenMarkovModel,NeuralNetworks,etc.Additionally,detectionandrecognitionprocessescouldbeperformedonsmartdevicesoncetheirprocessorcapacityissufficientlyincreased.REFERENCES[1]L.Stanca,"TheEffectsofAttendanceonAcademicPerformance:PanelDataEvidenceforIntroductoryMicroeconomics,"J.Econ.Educ.,vol.37,no.3,pp.251–266,2006.PaniandKishore,"AbsenteeismandperformanceinaquantitativemoduleAquantileregressionanalysis,"JournalofAppliedResearchinHigherEducation,vol.8no.3,pp.376-389,2016.[3]U.Thakar,A.Tiwari,andS.Varma,"OnCompositionofSOAPBasedandRESTfulServices,"IEEE6thInt.ConferenceonAdvancedComputing(IACC),2016.BasheerandC.V.Raghu,"Fingerprintattendancesystemforclassroomneeds,"AnnualIEEEIndiaConference(INDICON),pp.433-438,2012.[5]S.Konatham,B.S.Chalasani,N.Kulkarni,andT.E.Taeib,―AttendancegeneratingsystemusingRFIDandGSM,‖IEEELongIslandSystems,ApplicationsandTechnologyConference(LISAT),2016.[6]S.Noguchi,M.Niibori,E.Zhou,andM.Kamada,"StudentAttendanceManagementSystemwithBluetoothLowEnergyBeaconandAndroidDevices,"18thInternationalConferenceonNetwork-BasedInformationSystems,pp.710-713,2015.[7]S.ChintalapatiandM.V.Raghunadh,―Automatedattendancemanagementsystembasedonfacerecognitionalgorithms,‖IEEEInt.ConferenceonComputationalIntelligenceandComputingResearch,2013.[8]G.Wang,"ImprovingDataTransmissioninWebApplicationsviatheTranslationbetweenXMLandJSON,"ThirdInt.ConferenceonCommunicationsandMobileComputing(CMC),pp.182-185,2011.[9]X.Zhu,D.Ren,Z.Jing,L.Yan,andS.Lei,"ComparativeResearchoftheCommonFaceDetectionMethods,"2ndInternationalConferenceonComputerScienceandNetworkTechnology,pp.1528-1533,2012.[10]V.GuptaandD.Sharma,―AStudyofVariousFaceDetectionMethods,‖InternationalJournalofAdvancedResearchinComputerandCommunicationEngineeringvol.3,no.5,pp.6694-6697,2014.[11]P.ViaolaandM.J.Jones,―RobustReal-TimeFaceDetection,‖InternationalJournalofComputerVision,vol.57,no.2,pp.137-154,2004.[12]L.Masupha,T.Zuva,S.Ngwira,andO.Esan,―Facerecognitiontechniques,theiradvantages,disadvantagesandperformanceevaluation,‖Int.ConferenceonComputing,CommunicationandSecurity(ICCCS),2015.[13]J.Li,S.Zhou,andC.Shekhar,"Acomparisonofsubspaceanalysisforfacerecognition,"InternationalConferenceonMultimediaandExpo,ICME'03,Proceedings,vol.3,pp.121-124,2003.[14]T.Ahonen,A.Hadid,andM.Pietikainen,―FacedescriptionwithLocalBinaryPatterns,‖IEEETransactionsonPatternAnalysisandMachineIntelligence,vol.28,no.12,pp.2037-2041,2006.[15]T.Ahonen,A.Hadid,M.Pietikainen,andT.Maenpaa,―Facerecognitionbasedontheappearanceoflocalregions,‖Proceedingsofthe17thInt.ConferenceonPatternRecognition,vol.3,pp.153-156,2004.[16]R.Samet,S.Sakhi,andK.B.Baskurt,―AnEfficientPoseTolerantFaceRecognitionApproach‖,TransactionsonComput.ScienceXXVI,LNCS9550,pp.161-172,2016.[17]R.Samet,G.S.Shokouh,J.Li,―ANovelPoseTolerantFaceRecognitionApproach‖,2014InternationalConferenceonCyberworlds,pp.308-312,2014.基于人臉識(shí)別的移動(dòng)自動(dòng)課堂考勤管理系統(tǒng)摘要-課堂出勤檢查是學(xué)生參與和課程最終成功的一個(gè)因素。通過呼叫姓名或繞過考勤表來參加考勤都是非常耗時(shí)的,尤其是后者容易欺詐。作為替代方案,已經(jīng)為此目的測試和開發(fā)了RFID,無線,指紋,虹膜和基于面部識(shí)別的方法。雖然這些方法有一些優(yōu)點(diǎn),但高系統(tǒng)安裝成本是主要缺點(diǎn)。本文旨在提出一種基于人臉識(shí)別的移動(dòng)自動(dòng)教室考勤管理系統(tǒng),無需額外設(shè)備。為此,已經(jīng)開發(fā)了一種基于歐幾里德距離的濾波系統(tǒng),該系統(tǒng)通過三種人臉識(shí)別技術(shù)(即特征臉,F(xiàn)isherfaces和局部二值模式)計(jì)算,用于人臉識(shí)別。建議的系統(tǒng)包括三個(gè)不同的移動(dòng)應(yīng)用程序,供教師,學(xué)生和家長安裝在他們的智能手機(jī)上,以管理和執(zhí)行實(shí)時(shí)考勤過程。擬議的系統(tǒng)在安卡拉大學(xué)的學(xué)生中進(jìn)行了測試,結(jié)果非常令人滿意。關(guān)鍵詞-人臉檢測,人臉識(shí)別,特征臉,漁民,局部二值模式,考勤管理系統(tǒng),移動(dòng)應(yīng)用,準(zhǔn)確性一、引言大多數(shù)教育機(jī)構(gòu)都關(guān)注學(xué)生參與課程,因?yàn)閷W(xué)生參與課堂會(huì)導(dǎo)致有效學(xué)習(xí)并提高成[1]。此外,課堂上的高參與率是教師的激勵(lì)因素,并為更加自愿和信息豐富的教學(xué)創(chuàng)造了合適的環(huán)境[2]。已知增加課程出勤率的最常見做法是定期參加。創(chuàng)建出勤數(shù)據(jù)有兩種常用方法。有些老師喜歡打電話給姓名并留下缺席或存在的標(biāo)記。其他老師喜歡傳遞紙質(zhì)簽名表。在通過這兩種方法之一收集出勤數(shù)據(jù)后,教師手動(dòng)將數(shù)據(jù)輸入現(xiàn)有系統(tǒng)。然而,這些非技術(shù)方法并不是有效的方法,因?yàn)樗鼈兒臅r(shí)并且容易出錯(cuò)或欺詐。本文旨在通過現(xiàn)有的技術(shù)基礎(chǔ)設(shè)施提出一個(gè)考勤接受過程,并進(jìn)行一些改進(jìn)。已經(jīng)提出了一種基于面部識(shí)別的移動(dòng)自動(dòng)教室考勤管理(即特征臉,F(xiàn)isherfaces和局部二值模式(LBP)計(jì)算,用于人臉識(shí)別。建議的系統(tǒng)包括三個(gè)不同的應(yīng)用程序,供教師,學(xué)生和家長安裝在他們的智能手機(jī)上,以管理和執(zhí)行實(shí)時(shí)輪詢過程,數(shù)據(jù)跟蹤和報(bào)告。數(shù)據(jù)存儲(chǔ)在云服務(wù)器中,可隨時(shí)隨地訪問。Web服務(wù)是在線系統(tǒng)的一種流行的通信方式,RESTful是移動(dòng)在線系統(tǒng)的Web服務(wù)的最佳示例[3]。在所提出的系統(tǒng)中,RESTfulWeb服務(wù)用于教師,學(xué)生和父應(yīng)用程序與云服務(wù)器之間的通信。出勤結(jié)果存儲(chǔ)在數(shù)據(jù)庫中,可供教師,學(xué)生和家長移動(dòng)應(yīng)用程序訪問。該論文的組織如下。第二節(jié)提供了簡要的文獻(xiàn)調(diào)查。第三節(jié)介紹了擬議的系統(tǒng),第四節(jié)介紹了實(shí)施和結(jié)果。最后一節(jié)給出了主要結(jié)論。二、文獻(xiàn)綜述指紋讀取系統(tǒng)具有高安裝成本。此外,一次只有一個(gè)學(xué)生可以使用便攜式手指識(shí)別設(shè)備,這使得這是一個(gè)耗時(shí)的過程[4]。在教室入口處固定手指識(shí)別裝置的情況下,應(yīng)在老師的監(jiān)督下進(jìn)行考勤,以便學(xué)生在手指識(shí)別后不會(huì)離開,這使得教師和教師都需要花費(fèi)大量時(shí)間。學(xué)生們。在RFID卡讀取系統(tǒng)的情況下,通過分發(fā)給學(xué)生的卡可以獲得考勤[5]。在這樣的系統(tǒng)中,學(xué)生可以通過閱讀朋友的卡片來采用欺詐手段。此外,如果學(xué)生忘記了他/她的卡,可以在系統(tǒng)中保存非真實(shí)缺席。具有藍(lán)牙或信標(biāo)方法的教室掃描系統(tǒng)的缺點(diǎn)是每個(gè)學(xué)生必須攜帶設(shè)備。由于無法確定藍(lán)牙低功耗(BLE)系統(tǒng)的字段限制,目前不在教室但在藍(lán)牙區(qū)域范圍內(nèi)的學(xué)生可能會(huì)出現(xiàn)在考勤系統(tǒng)中[6]。使用人臉識(shí)別技術(shù)有不同的課堂考勤監(jiān)控方法。其中一個(gè)是放置在教室入口處的攝像機(jī),進(jìn)入教室的學(xué)生通過人臉識(shí)別登記到系統(tǒng)中[7]。然而,在這個(gè)系統(tǒng)中,學(xué)生的面孔可以被識(shí)別,盡管學(xué)生之后可以離開教室,并且輪詢信息中可能會(huì)出現(xiàn)錯(cuò)誤。另一種方法是使用放置在教室中的攝像機(jī)和在課程期間拍攝的教室圖像進(jìn)行觀察。在這種情況下,系統(tǒng)中使用的攝像機(jī)需要經(jīng)常更換,以保持產(chǎn)生更高質(zhì)量的圖像。因此,該系統(tǒng)不是非常有用并且可能變得昂貴。除了上述所有缺點(diǎn)之外,最常見的缺點(diǎn)是所有這些方法都需要額外的設(shè)備。已經(jīng)開發(fā)出所提出的系統(tǒng)以解決這些缺點(diǎn)。該系統(tǒng)的主要優(yōu)點(diǎn)是使用靈活,無需設(shè)備成本,不浪費(fèi)時(shí)間,易于訪問。三、擬議的系統(tǒng)擬議系統(tǒng)的架構(gòu)基于移動(dòng)性和靈活性的所提出的系統(tǒng)架構(gòu)如圖1所示。.圖1.系統(tǒng)架構(gòu)該系統(tǒng)由三層組成:應(yīng)用層,通信層和服務(wù)器層。應(yīng)用層:在應(yīng)用層,有三個(gè)移動(dòng)應(yīng)用通過Web服務(wù)連接到云服務(wù)器。a)教師申請:教師是系統(tǒng)的負(fù)責(zé)人,因此他/她有權(quán)訪問所有數(shù)據(jù)。通過他/她的智能移動(dòng)設(shè)備,他/她可以隨時(shí)在教室中拍攝學(xué)生的照片。拍照后,老師可以用這張照片登記出勤。為此目的,將照片發(fā)送到云服務(wù)器以進(jìn)行面部檢測和識(shí)別處理。結(jié)果與所有可到達(dá)的數(shù)據(jù)一起保存到數(shù)據(jù)庫中。教師通過移動(dòng)應(yīng)用程序獲得響應(yīng),并可立即查看結(jié)果。教師還可以創(chuàng)建學(xué)生檔案,添加每個(gè)學(xué)生的照片,以及在班級名單中添加或刪除學(xué)生。他/她也可以創(chuàng)建和刪除課程。每門課程都有一個(gè)獨(dú)特的六字符代碼。教師可以與他她的學(xué)生分享此代碼,以便他們可以通過學(xué)生應(yīng)用程序訪問他們的出勤結(jié)果。教師可以根據(jù)每個(gè)學(xué)生認(rèn)可的帶有日期標(biāo)記的照片訪問所有數(shù)據(jù)和結(jié)果。另外,可以請求具有Excel格式的班級的出勤數(shù)據(jù)的電子郵件消息,同時(shí)在應(yīng)用程序中提供出勤結(jié)果的分析。b)學(xué)生申請:學(xué)生可以使用教3秒長的視頻來添加照片。如果出現(xiàn)錯(cuò)誤,可以刪除他們上傳的照片。學(xué)生只能看片和檢測到的肖像照片只能由老師訪問。如果學(xué)生在進(jìn)行出勤檢查時(shí)不在教室,則會(huì)通知他們出勤檢查。如果出現(xiàn)錯(cuò)誤(如果學(xué)生在場,但系統(tǒng)未檢測到他/她可以通知教師,以便他她可以解決問題。家庭申請:家長可以看到孩子每節(jié)課的出勤率??梢詫⑵渌优渲梦募砑拥较到y(tǒng)中。每個(gè)父母都會(huì)添加到她的父母時(shí),他們會(huì)自動(dòng)查看出勤結(jié)果。當(dāng)他們的孩子不在教室時(shí),他們也會(huì)收到通知。3)通信層:RESTfulWeb服務(wù)用于在應(yīng)用程序和服務(wù)器層之間進(jìn)行通信。請求由POST方法發(fā)送。每個(gè)請求都使用會(huì)話的授權(quán)用戶的唯一ID發(fā)送。只有授權(quán)用戶才能訪問和響應(yīng)他們有權(quán)訪問的數(shù)據(jù)。由于其靈活性和快速性能,JSON被用作Web服務(wù)響應(yīng)的數(shù)據(jù)格式[8]。利用這種抽象的Web服務(wù)層,系統(tǒng)可以很容易地用于應(yīng)用層中的新項(xiàng)目,例如網(wǎng)頁或新的移動(dòng)操作系統(tǒng)。3)部檢測和識(shí)別算法,并且創(chuàng)建了30多種不同的Web服務(wù),用于處理來自移動(dòng)應(yīng)用程序的不同請求。人臉檢測準(zhǔn)確有效的人臉檢測算法提高了人臉識(shí)別系統(tǒng)的準(zhǔn)確度。如果未正確檢測到面部,[9]。由于教室照片是在教師的控制下拍攝的,因此姿勢變化可能僅限于小范圍。使用Ada-boost訓(xùn)練的Viola-Jones面部檢測方法被視為實(shí)時(shí)課堂考勤系統(tǒng)的最佳選擇[9,10]。在最基本的意義上,首先根據(jù)某種算法找到并引入所需的對象。然后,他們被掃描以找到具有相似形狀的匹配[11].人臉識(shí)別[12]。基于特征的方法試圖將對象表示(近似)基于特征的技術(shù)比基于外觀的技術(shù)更耗時(shí)。實(shí)時(shí)考勤管理系統(tǒng)需要較低的計(jì)算處理時(shí)間。因此,在測試系統(tǒng)中使用三種基于外觀的面部識(shí)別技術(shù),例如Eigenfaces,F(xiàn)isherfaces和LBP。Fisherfaces和eigenfaces技術(shù)具有不同[13]。根據(jù)之前的幾項(xiàng)研究,使用LBP方法進(jìn)行人臉識(shí)別可以在速度和辨別性能以及不同的光照條件[14,15]。通過尋找用于面部識(shí)別的圖像之間的相似性來計(jì)算歐幾里德距離?;跉W幾里德距離的特征面,F(xiàn)isherfaces和LBP計(jì)算的濾LBP,F(xiàn)isherfaces和Eigenfaces算法的最小歐幾里德距離。如果LBP算法的歐幾里德距離小于40;否則,如果Fisherfaces算法的歐幾里德距離小于250;否則,如果Eigenfaces算法的歐幾里德距離小于1500,則識(shí)別的面部被記錄為正確的第二級歐幾里德距離(對于,(對于,(對于特征臉)是以同樣的方式評估。如果也未滿足第二級條件,則過濾器返回錯(cuò)誤的匹配。第三,如果任何兩個(gè)算法給出相同的匹配結(jié)果,則正確記錄匹配。最后,如果沒有滿足條件,則優(yōu)先考慮LBP架構(gòu)旨在通過不需要額外設(shè)備來實(shí)現(xiàn)靈活性,移動(dòng)性和低成本。同時(shí),其目標(biāo)是隨時(shí)為所有用戶提供訪問權(quán)限。因此,該系統(tǒng)為所有用戶提供實(shí)時(shí)考勤管理系統(tǒng)。四、實(shí)施和結(jié)果使用以下平臺(tái)。云服務(wù)器具有2.5GHz,4核CPU,8GBRAM和64位操作系統(tǒng)容量。基于OpenCV實(shí)現(xiàn)了Viola-Jones人臉檢測算法和特征臉,F(xiàn)isherfaces和LBP人臉識(shí)別算法。iOS和ANDROID都進(jìn)行了測試。在真實(shí)的教室中進(jìn)行了40次不同的出勤監(jiān)測測試,包括11名學(xué)生,并檢測到264名學(xué)生的面部。表II和III顯示了與歐氏距離相關(guān)的所有三種不同類型的測試算法的檢測和識(shí)別準(zhǔn)確度。根據(jù)每個(gè)間隔的準(zhǔn)確率安排3種算法的優(yōu)先級排序。在測試結(jié)果中,分別檢測到特征臉,F(xiàn)isherfaces和LBP的123,89和85個(gè)錯(cuò)誤識(shí)別。在開發(fā)的過濾系統(tǒng)的幫助下,錯(cuò)誤識(shí)別的數(shù)量減少到65個(gè)。在40個(gè)實(shí)施的考勤監(jiān)測測試中,10個(gè)進(jìn)行了步驟I1張面部照片,當(dāng)數(shù)量為20時(shí)進(jìn)行在步驟II中,面部照片增加到3,并且在步驟III中在數(shù)據(jù)庫中使用超過3張面部10IV顯示了獲得的結(jié)果。測試考勤監(jiān)控過程中最重要的限制是隨著攝像機(jī)與學(xué)生之間距離的增加而降低成功率。關(guān)于坐在前排座位上的學(xué)生的結(jié)果與坐在后排的學(xué)生的結(jié)果相比更準(zhǔn)確。其次,由于在拍攝照片時(shí)由振動(dòng)引起的模糊,準(zhǔn)確率可能已經(jīng)降低。第三,在某些情況下,學(xué)生面部的一部分可能被坐在他/她面前的另一名學(xué)生所覆蓋,這可能妨礙成功的面部識(shí)別過程。由于教室照片是在不受控制的環(huán)境中拍攝的,因此照明和姿勢可能在很大程度上影響準(zhǔn)確率。開發(fā)的過濾系統(tǒng)使這些影響最小化。為了提高準(zhǔn)確性,也可以使用姿勢容忍的人臉識(shí)別方法[16,17]。五、結(jié)論本文提出了一種靈活,實(shí)時(shí)的基于人臉識(shí)別的移動(dòng)考勤管理系統(tǒng)。已經(jīng)開發(fā)了基于歐幾里德距離的過濾系統(tǒng),該過濾系統(tǒng)由特征臉,F(xiàn)isherfaces和LBP計(jì)算。所提出的系統(tǒng)消除了額外設(shè)備的成本,最大限度地減少了考勤時(shí)間,并允許用戶隨時(shí)隨地訪問數(shù)據(jù)。智能設(shè)備非常易于用戶進(jìn)行課堂出勤監(jiān)控。教師,學(xué)生和家長可以毫無限制地實(shí)時(shí)使用該應(yīng)用程序。由于互聯(lián)網(wǎng)連接速度一直在穩(wěn)步增長,因此可以向服務(wù)器發(fā)送高質(zhì)量,大圖像。此外,服務(wù)器的處理器容量也在日益增加。通過這些技術(shù)發(fā)展,所提出的系統(tǒng)的準(zhǔn)確率也將提高。人臉識(shí)別可以通過其他人臉識(shí)別技術(shù)進(jìn)一步測試,例如支持向量機(jī),隱馬爾可夫模型,神經(jīng)網(wǎng)絡(luò)等。另外,一旦處理器容量充分增加,就可以在智能設(shè)備上執(zhí)行檢測和識(shí)別過程。參考文獻(xiàn)[1]L.Stanca,"TheEffectsofAttendanceonAcademicPerformance:PanelDataEvidenceforIntroductoryMicroeconomics,"J.Econ.Educ.,vol.37,no.3,pp.266,2006.PaniandKishore,"AbsenteeismandperformanceinaquantitativemoduleAquantileregressionanalysis,"JournalofAppliedResearchinHigherEducation,vol.8no.3,pp.376-389,2016.[3]U.Thakar,A.Tiwari,andS.Varm
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 采礦學(xué)課程設(shè)計(jì)華北科技
- 電器課程設(shè)計(jì)前言
- 左支座課程設(shè)計(jì)工藝卡片
- 鋼筆字課程設(shè)計(jì)
- 配電裝置課程設(shè)計(jì)
- 課程設(shè)計(jì)書封面
- 項(xiàng)目管理學(xué)課程設(shè)計(jì)
- 泵與泵站課程設(shè)計(jì)草圖
- 防觸電課程設(shè)計(jì)
- 營銷助理培訓(xùn)課程設(shè)計(jì)
- 高一學(xué)生心理素質(zhì)描述【6篇】
- 給男友的道歉信10000字(十二篇)
- 2020年高級統(tǒng)計(jì)實(shí)務(wù)與案例分析真題及答案
- 全面質(zhì)量管理(TQM)基本知識(shí)
- 練字本方格模板
- 產(chǎn)品供貨質(zhì)量保障措施
- 電力電纜高頻局放試驗(yàn)報(bào)告
- JJG 517-2016出租汽車計(jì)價(jià)器
- JJF 1914-2021金相顯微鏡校準(zhǔn)規(guī)范
- GB/T 32045-2015節(jié)能量測量和驗(yàn)證實(shí)施指南
- GB/T 10001.6-2021公共信息圖形符號(hào)第6部分:醫(yī)療保健符號(hào)
評論
0/150
提交評論