2022年山西省定襄縣九年級數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第1頁
2022年山西省定襄縣九年級數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第2頁
2022年山西省定襄縣九年級數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第3頁
2022年山西省定襄縣九年級數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第4頁
2022年山西省定襄縣九年級數(shù)學第一學期期末教學質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.某班抽取6名同學參加體能測試,成績?nèi)缦拢?,95,1,80,80,1.下列表述錯誤的是()A.眾數(shù)是1 B.平均數(shù)是1 C.中位數(shù)是80 D.極差是152.中國“一帶一路”戰(zhàn)略給沿線國家和地區(qū)帶來很大的經(jīng)濟效益,沿線某地區(qū)居民2016年人均年收入300美元,預計2018年人均年收入將達到950美元,設2016年到2018年該地區(qū)居民人均年收入平均增長率為x,可列方程為()A.300(1+x%)2=950 B.300(1+x2)=950 C.300(1+2x)=950 D.300(1+x)2=9503.如圖,⊙O的圓周角∠A=40°,則∠OBC的度數(shù)為()A.80° B.50° C.40° D.30°4.已知二次函數(shù)y=-x2+2mx+2,當x<-2時,y的值隨x的增大而增大,則實數(shù)m()A.m=-2 B.m>-2 C.m≥-2 D.m≤-25.設是方程的兩個實數(shù)根,則的值為()A.2017 B.2018 C.2019 D.20206.如圖,AB為⊙O的直徑,四邊形ABCD為⊙O的內(nèi)接四邊形,點P在BA的延長線上,PD與⊙O相切,D為切點,若∠BCD=125°,則∠ADP的大小為()A.25° B.40° C.35° D.30°7.如圖,在正方形中,繞點順時針旋轉(zhuǎn)后與重合,,,則的長度為()A.4 B. C.5 D.8.同桌讀了:“子非魚焉知魚之樂乎?”后,興高采烈地利用電腦畫出了幾幅魚的圖案,請問:由左圖中所示的圖案平移后得到的圖案是()A. B. C. D.9.如圖,一個直角梯形的堤壩坡長AB為6米,斜坡AB的坡角為60°,為了改善堤壩的穩(wěn)固性,準備將其坡角改為45°,則調(diào)整后的斜坡AE的長度為()A.3米 B.3米 C.(3﹣2)米 D.(3﹣3)米10.把拋物線y=-x2向下平移1個單位長度,再向左平移1個單位長度,得到的拋物線解析式為()A.y=-(x+1)2+1 B.y=-(x+1)2-1 C.y=-(x-1)2+1 D.y=-(x-1)2-111.如圖,小彬收集了三張除正面圖案外完全相同的卡片,其中兩張印有中國國際進口博覽會的標志,另外一張印有進博會吉祥物“進寶”.現(xiàn)將三張卡片背面朝上放置,攪勻后從中一次性隨機抽取兩張,則抽到的兩張卡片圖案不相同的概率為()A. B. C. D.12.如圖,分別是的邊上的點,且,相交于點,若,則的值為()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,邊長為4的正六邊形ABCDEF的中心與坐標原點O重合,AF∥軸,將正六邊形ABCDEF繞原點O順時針旋轉(zhuǎn),每次旋轉(zhuǎn)60°,則第2019次后,頂點A的坐標為_______.14.在一個不透明的盒子中裝有8個白球,若干個黃球,它們除顏色不同外,其余均相同.若從中隨機摸出一個球,它是白球的概率為,則黃球的個數(shù)為______.15.的半徑是,弦,點為上的一點(不與點、重合),則的度數(shù)為______________.16.如圖,已知點A,C在反比例函數(shù)的圖象上,點B,D在反比例函的圖象上,AB∥CD∥x軸,AB,CD在x軸的兩側(cè),AB=5,CD=4,AB與CD的距離為6,則a?b的值是_______.17.已知:a,b在數(shù)軸上的位置如圖所示,化簡代數(shù)式:=_____.18.請寫出一個一元二次方程,使它的兩個根分別為2,﹣2,這個方程可以是_____.三、解答題(共78分)19.(8分)一不透明的布袋里,裝有紅、黃、藍三種顏色的小球(除顏色外其余都相同),其中有紅球2個,籃球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為.(1)求口袋中黃球的個數(shù);(2)甲同學先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,求兩次摸出都是紅球的概率;(3)現(xiàn)規(guī)定:摸到紅球得5分,摸到黃球得3分(每次摸后放回),乙同學在一次摸球游戲中,第一次隨機摸到一個紅球第二次又隨機摸到一個藍球,若隨機,再摸一次,求乙同學三次摸球所得分數(shù)之和不低于10分的概率.20.(8分)解方程:4x2﹣2x﹣1=1.21.(8分)某市某幼兒園“六一”期間舉行親子游戲,主持人請三位家長分別帶自己的孩子參加游戲.主持人準備把家長和孩子重新組合完成游戲,A、B、C分別表示三位家長,他們的孩子分別對應的是a、b、c.(1)若主持人分別從三位家長和三位孩子中各選一人參加游戲,恰好是A、a的概率是多少(直接寫出答案)?(2)若主持人先從三位家長中任選兩人為一組,再從孩子中任選兩人為一組,四人共同參加游戲,恰好是兩對家庭成員的概率是多少.(畫出樹狀圖或列表)22.(10分)如圖所示,線段,,,,點為射線上一點,平分交線段于點(不與端點,重合).(1)當為銳角,且時,求四邊形的面積;(2)當與相似時,求線段的長;(3)設,,求關于的函數(shù)關系式,并寫出定義域.23.(10分)如圖,拋物線y=﹣x2+bx+c與x軸相交于A、B兩點,與y軸相交于點C,且點B與點C的坐標分別為B(3,0),C(0,3),點M是拋物線的頂點.(1)求二次函數(shù)的關系式;(2)點P為線段MB上一個動點,過點P作PD⊥x軸于點D.若OD=m,△PCD的面積為S,①求S與m的函數(shù)關系式,寫出自變量m的取值范圍.②當S取得最值時,求點P的坐標;(3)在MB上是否存在點P,使△PCD為直角三角形?如果存在,請直接寫出點P的坐標;如果不存在,請說明理由.24.(10分)在平面直角坐標系中,已知P(,),R(,)兩點,且,,若過點P作軸的平行線,過點R作軸的平行線,兩平行線交于一點S,連接PR,則稱△PRS為點P,R,S的“坐標軸三角形”.若過點R作軸的平行線,過點P作軸的平行線,兩平行線交于一點,連接PR,則稱△RP為點R,P,的“坐標軸三角形”.右圖為點P,R,S的“坐標軸三角形”的示意圖.(1)已知點A(0,4),點B(3,0),若△ABC是點A,B,C的“坐標軸三角形”,則點C的坐標為;(2)已知點D(2,1),點E(e,4),若點D,E,F(xiàn)的“坐標軸三角形”的面積為3,求e的值.(3)若的半徑為,點M(,4),若在上存在一點N,使得點N,M,G的“坐標軸三角形”為等腰三角形,求的取值范圍.25.(12分)如圖,反比例函數(shù)y1=與一次函數(shù)y2=ax+b的圖象交于點A(﹣2,5)和點B(n,l).(1)求反比例函數(shù)和一次函數(shù)的表達式;(2)請結(jié)合圖象直接寫出當y1≥y2時自變量x的取值范圍;(3)點P是y軸上的一個動點,若S△APB=8,求點P的坐標.26.在矩形ABCD中,AB=12,P是邊AB上一點,把△PBC沿直線PC折疊,頂點B的對應點是點G,過點B作BE⊥CG,垂足為E且在AD上,BE交PC于點F(1)如圖1,若點E是AD的中點,求證:△AEB≌△DEC;(2)如圖2,①求證:BP=BF;②當AD=25,且AE<DE時,求cos∠PCB的值;③當BP=9時,求BE?EF的值.

參考答案一、選擇題(每題4分,共48分)1、C【分析】本題考查統(tǒng)計的有關知識.找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.利用平均數(shù)和極差的定義可分別求出.【詳解】解:這組數(shù)據(jù)中1出現(xiàn)了3次,出現(xiàn)的次數(shù)最多,所以這組數(shù)據(jù)的眾數(shù)位1;由平均數(shù)公式求得這組數(shù)據(jù)的平均數(shù)位1,極差為95-80=15;將這組數(shù)據(jù)按從大到校的順序排列,第3,4個數(shù)是1,故中位數(shù)為1.所以選項C錯誤.故選C.【點睛】本題考查了統(tǒng)計學中的平均數(shù),眾數(shù),中位數(shù)與極差的定義.解答這類題學生常常對中位數(shù)的計算方法掌握不好而錯選.2、D【解析】設2016年到2018年該地區(qū)居民年人均收入平均增長率為x,那么根據(jù)題意得2018年年收入為:300(1+x)2,列出方程為:300(1+x)2=1.故選D.3、B【分析】然后根據(jù)圓周角定理即可得到∠OBC的度數(shù),由OB=OC,得到∠OBC=∠OCB,根據(jù)三角形內(nèi)角和定理計算出∠OBC.【詳解】∵∠A=40°.

∴∠BOC=80°,

∵OB=OC,

∴∠OBC=∠OCB=50°,

故選:B.【點睛】本題考查了圓周角定理:一條弧所對的圓周角是它所對的圓心角的一半;也考查了等腰三角形的性質(zhì)以及三角形的內(nèi)角和定理.4、C【解析】根據(jù)二次函數(shù)的性質(zhì),確定拋物線的對稱軸及開口方向得出函數(shù)的增減性,結(jié)合題意確定m值的范圍.【詳解】解:拋物線的對稱軸為直線∵,拋物線開口向下,∴當時,y的值隨x值的增大而增大,∵當時,y的值隨x值的增大而增大,∴,故選:C.【點睛】本題考查了二次函數(shù)的性質(zhì),主要利用了二次函數(shù)的增減性,由系數(shù)的符號特征得出函數(shù)性質(zhì)是解答此題的關鍵.5、D【分析】首先根據(jù)根與系數(shù)的關系,求出a+b=-3;然后根據(jù)a是方程的實數(shù)根,可得,據(jù)此求出,利用根與系數(shù)關系得:=-3,變形為()-(),代入即可得到答案.【詳解】解:∵a、b是方程的兩個實數(shù)根,

∴=-3;

又∵,

∴,∴

=()-()=2017-(-3)

=1

即的值為1.

故選:D.【點睛】本題考查了根與系數(shù)的關系與一元二次方程的解,把化成()-()是解題的關鍵.6、C【分析】連接AC,OD,根據(jù)直徑所對的圓周角是直角得到∠ACB是直角,求出∠ACD的度數(shù),根據(jù)圓周角定理求出∠AOD的度數(shù),再利用切線的性質(zhì)即可得到∠ADP的度數(shù).【詳解】連接AC,OD.∵AB是直徑,∴∠ACB=90°,∴∠ACD=125°﹣90°=35°,∴∠AOD=2∠ACD=70°.∵OA=OD,∴∠OAD=∠ADO,∴∠ADO=55°.∵PD與⊙O相切,∴OD⊥PD,∴∠ADP=90°﹣∠ADO=90°﹣55°=35°.故選:C.【點睛】本題考查了切線的性質(zhì)、圓周角定理及推論,正確作出輔助線是解答本題的關鍵.7、D【分析】先根據(jù)旋轉(zhuǎn)性質(zhì)及正方形的性質(zhì)構(gòu)造方程求正方形的邊長,再利用勾股定理求值即可.【詳解】繞點順時針旋轉(zhuǎn)后與重合四邊形ABCD為正方形在中,故選D.【點睛】本題考查了全等三角形的性質(zhì)、旋轉(zhuǎn)的性質(zhì)、正方形的性質(zhì)、勾股定理,找到直角三角形運用勾股定理求值是解題的關鍵.8、B【解析】根據(jù)平移的性質(zhì):“平移不改變圖形的形狀和大小”來判斷即可.【詳解】解:根據(jù)“平移不改變圖形的形狀和大小”知:左圖中所示的圖案平移后得到的圖案是B項,故選B.【點睛】本題考查了平移的性質(zhì),平移的性質(zhì)是“經(jīng)過平移,對應線段平行(或共線)且相等,對應角相等,對應點所連接的線段平行且相等;平移不改變圖形的形狀、大小和方向”.9、A【分析】如圖(見解析),作于H,在中,由可以求出AH的長,再在中,由即可求出AE的長.【詳解】如圖,作于H在中,則在中,則故選:A.【點睛】本題考查了銳角三角函數(shù),熟記常見角度的三角函數(shù)值是解題關鍵.10、B【解析】試題分析:根據(jù)拋物線的平移規(guī)律“左加右減,上加下減”,可直接求得平移后的拋物線的解析式為:.11、D【分析】根據(jù)題意列出相應的表格,得到所有等可能出現(xiàn)的情況數(shù),進而找出滿足題意的情況數(shù),即可求出所求的概率.【詳解】設印有中國國際進口博覽會的標志為“”,印有進博會吉祥物“進寶”為,由題列表為所有的等可能的情況共有種,抽到的兩卡片圖案不相同的等可能情況共有種,,故選:D.【點睛】本題考查了列表法與樹狀圖法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.12、C【分析】根據(jù)題意可證明,再利用相似三角形的性質(zhì),相似三角形面積的比等于相似比的平方,即可得出對應邊的比值.【詳解】解:∵∴∴根據(jù)相似三角形面積的比等于相似比的平方,可知對應邊的比為.故選:C.【點睛】本題考查的知識點是相似三角形的性質(zhì),主要有①相似三角形周長的比等于相似比;②相似三角形面積的比等于相似比的平方;③相似三角形對應高的比、對應中線的比、對應角平分線的比都等于相似比.二、填空題(每題4分,共24分)13、【分析】將正六邊形ABCDEF繞原點O逆時針旋轉(zhuǎn)2019次時,點A所在的位置就是原D點所在的位置.【詳解】2019×60°÷360°=336…3,即與正六邊形ABCDEF繞原點O逆時針旋轉(zhuǎn)3次時點A的坐標是一樣的.當點A按逆時針旋轉(zhuǎn)180°時,與原D點重合.連接OD,過點D作DH⊥x軸,垂足為H;由已知ED=1,∠DOE=60°(正六邊形的性質(zhì)),∴△OED是等邊三角形,∴OD=DE=OE=1.∵DH⊥OE,∴∠ODH=30°,OH=HE=2,HD=.∵D在第四象限,∴D,即旋轉(zhuǎn)2019后點A的坐標是.故答案為.【點睛】本題考查了正多邊形和圓、旋轉(zhuǎn)變換的性質(zhì),掌握正多邊形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)是解題的關鍵.14、1【解析】首先設黃球的個數(shù)為x個,然后根據(jù)概率公式列方程即可求得答案.解:設黃球的個數(shù)為x個,根據(jù)題意得:=2/3解得:x=1.∴黃球的個數(shù)為1.15、或;【分析】證出△ABO是等邊三角形得出∠AOB=60°.再分兩種情況:點C在優(yōu)弧上,則∠BCA=30°;點C在劣弧上,則∠BCA=(360°?∠AOB)=150°;即可得出結(jié)果.【詳解】如圖,連接OA,OB.∵AO=BO=2,AB=2,∴△ABO是等邊三角形,∴∠AOB=60°.若點C在優(yōu)弧上,則∠BCA=30°;若點C在劣弧上,則∠BCA=(360°?∠AOB)=150°;綜上所述:∠BCA的度數(shù)為30°或150°.故答案為30°或150°.【點睛】此題考查了垂徑定理、等邊三角形的判定與性質(zhì)、三角函數(shù)、弧長公式.熟練掌握垂徑定理,證明△OAB是等邊三角形是解決問題的關鍵.16、【分析】利用反比例函數(shù)k的幾何意義得出a-b=4?OE,a-b=5?OF,求出=6,即可求出答案.【詳解】如圖,∵由題意知:a-b=4?OE,a-b=5?OF,∴OE=,OF=,又∵OE+OF=6,∴=6,∴a-b=,故答案為:.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,能求出方程=6是解此題的關鍵.17、1.【分析】根據(jù)二次根式的性質(zhì)=|a|開平方,再結(jié)合數(shù)軸確定a﹣1,a+b,1﹣b的正負性,然后去絕對值,最后合并同類項即可.【詳解】原式=|a﹣1|﹣|a+b|+|1﹣b|=1﹣a﹣(﹣a﹣b)+(1﹣b)=1﹣a+a+b+1﹣b=1,故答案為:1.【點睛】此題主要考查了二次根式的化簡和性質(zhì),正確把握絕對值的性質(zhì)是解答此題的關鍵.18、x2﹣4=0【分析】根據(jù)一元二次方程的根與系數(shù)的關系,即可求出答案【詳解】設方程x2﹣mx+n=0的兩根是2,﹣2,∴2+(﹣2)=m,2×(﹣2)=n,∴m=0,n=﹣4,∴該方程為:x2﹣4=0,故答案為:x2﹣4=0【點睛】本題主要考查一元二次方程的根與系數(shù)的關系,掌握一元二次方程ax2+bx+c=0的兩個根x1,x2與系數(shù)的關系:x1+x2=,x1x2=,是解題的關鍵.三、解答題(共78分)19、(1)黃球有1個;(2);(3).【分析】(1)首先設口袋中黃球的個數(shù)為x個,根據(jù)題意得:,解此方程即可求得答案.(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與兩次摸出都是紅球的情況,再利用概率公式即可求得答案.(3)由若隨機,再摸一次,求乙同學三次摸球所得分數(shù)之和不低于10分的有3種情況,且共有4種等可能的結(jié)果;直接利用概率公式求解即可求得答案.【詳解】解:(1)設口袋中黃球的個數(shù)為x個,根據(jù)題意得:,解得:x=1.經(jīng)檢驗:x=1是原分式方程的解.∴口袋中黃球的個數(shù)為1個.(2)畫樹狀圖得:∵共有12種等可能的結(jié)果,兩次摸出都是紅球的有2種情況,∴兩次摸出都是紅球的概率為:.(3)∵摸到紅球得5分,摸到黃球得3分,而乙同學在一次摸球游戲中,第一次隨機摸到一個紅球第二次又隨機摸到一個藍球,∴乙同學已經(jīng)得了7分.∴若隨機,再摸一次,求乙同學三次摸球所得分數(shù)之和不低于10分的有3種情況,且共有4種等可能的結(jié)果;∴若隨機,再摸一次,求乙同學三次摸球所得分數(shù)之和不低于10分的概率為:.20、,【分析】根據(jù)一元二次方程的解法,配方法或者公式法解答即可.【詳解】解:由題意可知:a=4,b=﹣2,c=﹣1,∴△=4+16=21,∴x=;【點睛】本題主要考查解一元二次方程,熟練掌握方程各種解法是解答關鍵.21、;【分析】根據(jù)概率的計算法則得出概率,首先根據(jù)題意列出表格,然后求出概率.【詳解】(1)P(恰好是A,a)的概率是=(2)依題意列表如下:共有9種情形,每種發(fā)生可能性相等,其中恰好是兩對家庭成員有(AB,ab),(AC,ac),(BC,bc)3種,故恰好是兩對家庭成員的概率是P=考點:概率的計算.22、(1)16;(2)2或;(3)【分析】(1)過C作CH⊥AB與H,在Rt△BCH中,求出CH、BH,再求出CD即可解決問題;

(2)分兩種情形①∠BCE=∠BAE=90°,由BE=BE,得△BEC≌△BEA;②∠BEC=∠BAE=90°,延長CE交BA延長線于T,得△BEC≌△BET;分別求解即可;

(3)根據(jù)DM∥AB,得,構(gòu)建函數(shù)關系式即可;【詳解】解:(1)如圖,過作于,∵,,∴四邊形為矩形.在中,,,,∴,∴,則四邊形的面積.(2)∵平分,∴,當與相似時,①,∵,∴,∴,在中,,∴.②,延長交延長線于,∵,,,∴,∴,,∵,∴.令,則在中,,,,∴,解得.綜上,當與相似時,線段的長為2或.(3)延長交延長線于,∵,∴,∴.在中,.則,又∵,∴,即,解得.【點睛】本題考查了全等三角形與相似三角形的判定和性質(zhì),三角函數(shù),勾股定理,以及二次函數(shù)的應用,正確作出輔助線構(gòu)造相似三角形與全等三角形是解題的關鍵.23、(1)y=﹣x2+2x+3;(2)①S=﹣m2+3m,1≤m≤3;②P(,3);(3)存在,點P的坐標為(,3)或(﹣3+3,12﹣6).【分析】(1)將點B,C的坐標代入即可;(2)①求出頂點坐標,直線MB的解析式,由PD⊥x軸且知P(m,﹣2m+6),即可用含m的代數(shù)式表示出S;②在①的情況下,將S與m的關系式化為頂點式,由二次函數(shù)的圖象及性質(zhì)即可寫出點P的坐標;(3)分情況討論,如圖2﹣1,當時,推出,則點P縱坐標為3,即可寫出點P坐標;如圖2﹣2,當時,證,由銳角三角函數(shù)可求出m的值,即可寫出點P坐標;當時,不存在點P.【詳解】(1)將點B(3,0),C(0,3)代入,得,解得,∴二次函數(shù)的解析式為;(2)①∵,∴頂點M(1,4),設直線BM的解析式為,將點B(3,0),M(1,4)代入,得,解得,∴直線BM的解析式為,∵PD⊥x軸且,∴P(m,﹣2m+6),∴,即,∵點P在線段BM上,且B(3,0),M(1,4),∴;②∵,∵,∴當時,S取最大值,∴P(,3);(3)存在,理由如下:①如圖2﹣1,當時,∵,∴四邊形CODP為矩形,∴,將代入直線,得,∴P(,3);②如圖2﹣2,當∠PCD=90°時,∵,,∴,∵,∴,∴,∴,∴,∴,解得(舍去),,∴P(,),③當時,∵PD⊥x軸,∴不存在,綜上所述,點P的坐標為(,3)或(,).【點睛】本題考查了二次函數(shù)的動點問題,掌握二次函數(shù)的性質(zhì)以及解二次函數(shù)的方法是解題的關鍵.24、(1)(3,4);(2)或;(3)m的取值范圍是或.【分析】(1)根據(jù)點C到x軸、y軸的距離解答即可;(2)根據(jù)“坐標軸三角形”的定義求出線段DF和EF,然后根據(jù)三角形的面積公式求解即可;(3)根據(jù)題意可得:符合題意的直線MN應為y=x+b或y=-x+b.①當直線MN為y=x+b時,結(jié)合圖形可得直線MN平移至與⊙O相切,且切點在第四象限時,b取得最小值,根據(jù)等腰直角三角形的性質(zhì)和勾股定理可求得b的最小值,進而可得m的最大值;當直線MN平移至與⊙O相切,且切點在第二象限時,b取得最大值,根據(jù)等腰直角三角形的性質(zhì)和勾股定理可求得b的最大值,進而可得m的最小值,可得m的取值范圍;②當直線MN為y=-x+b時,同①的方法可得m的另一個取值范圍,問題即得解決.【詳解】解:(1)根據(jù)題意作圖如下:由圖可知:點C到x軸距離為4,到y(tǒng)軸距離為3,∴C(3,4);故答案為:(3,4);(2)∵點D(2,1),點E(e,4),點D,E,F(xiàn)的“坐標軸三角形”的面積為3,∴,,∴,即=2,解得:e=4或e=0;(3)由點N,M,G的“坐標軸三角形”為等腰三角形可得:直線MN為y=x+b或y=-x+b.①當直線MN為y=x+b時,由于點M的坐標為(m,4),可得m=4-b,由圖可知:當直線MN平移至與⊙O相切,且切點在第四象限時,b取得最小值.此時直線MN記為M1N1,其中N1為切點,T1為直線M1N1與y軸的交點.∵△ON1T1為等腰直角三角形,ON=,∴,∴b的最小值為-3,∴m的最大值為m=4-b=7;當直線MN平移至與⊙O相切,且切點在第二象限時,b取得最大值.此時直線MN記為M2N2,其中N2為切點,T2為直線M2N2與y軸的交點.∵△ON2T為等腰直角三角形,ON2=,∴,∴b的最大值為3,∴m的最小值為m=4-b=1,∴m的取值范圍是;②當直線MN為y=-x+b時,同理可得,m=b-4,當b=3時,m=-1;當b=-3時,m=-7;∴m的取值范圍是.綜上所述,m的取值范圍是或.【點睛】本題是新定義概念題,主要考查了三角形的面積、直線與圓相切的性質(zhì)、等腰三角形的性質(zhì)和勾股定理等知識,正確理解題意、靈活應用數(shù)形結(jié)合的思想和分類討論思想是解題的關鍵.25、(1)y1=﹣,y2=x+6;(2)x≤﹣10或﹣2≤x<0;(3)點P的坐標為(0,4)或(0,1).【分析】(1)先把A點坐標代入y=中求出k得到反比例函數(shù)解析式為y=﹣,再利用反比例函數(shù)解析式確定B(﹣10,1),然后利用待定系數(shù)法求一次解析式;(2)根據(jù)圖象即可求得;(3)設一次函數(shù)圖象與y軸的交點為Q,易得Q(0,6),設P(0,m),利用三角形面積公式,利用S△APB=S△BPQ﹣S△APQ得到|m﹣6|×(10﹣2)=1,然后解方程求出m即可得到點P的坐標.【詳解】解:(1)把A(﹣2,5)代入反比例函數(shù)y1=得k=﹣2×5=﹣10,∴反比例函數(shù)解析式為y1=﹣,把B(n,1)代入y1=﹣得n=﹣10,則B(﹣10,1),把A(﹣2,5)、B(﹣10,1)代入y2=ax+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論