2022-2023學年上海大學附中高三第二次診斷性檢測數(shù)學試卷含解析_第1頁
2022-2023學年上海大學附中高三第二次診斷性檢測數(shù)學試卷含解析_第2頁
2022-2023學年上海大學附中高三第二次診斷性檢測數(shù)學試卷含解析_第3頁
2022-2023學年上海大學附中高三第二次診斷性檢測數(shù)學試卷含解析_第4頁
2022-2023學年上海大學附中高三第二次診斷性檢測數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列{an}滿足a1=3,且aA.22n-1+1 B.22n-1-12.已知無窮等比數(shù)列的公比為2,且,則()A. B. C. D.3.下列函數(shù)中,值域為的偶函數(shù)是()A. B. C. D.4.若實數(shù)滿足不等式組,則的最大值為()A. B. C.3 D.25.已知正方體的棱長為2,點為棱的中點,則平面截該正方體的內切球所得截面面積為()A. B. C. D.6.下列命題為真命題的個數(shù)是()(其中,為無理數(shù))①;②;③.A.0 B.1 C.2 D.37.已知雙曲線的左、右頂點分別為,點是雙曲線上與不重合的動點,若,則雙曲線的離心率為()A. B. C.4 D.28.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度9.設為自然對數(shù)的底數(shù),函數(shù),若,則()A. B. C. D.10.若,,則的值為()A. B. C. D.11.的展開式中的系數(shù)是()A.160 B.240 C.280 D.32012.以下四個命題:①兩個隨機變量的線性相關性越強,相關系數(shù)的絕對值越接近1;②在回歸分析中,可用相關指數(shù)的值判斷擬合效果,越小,模型的擬合效果越好;③若數(shù)據(jù)的方差為1,則的方差為4;④已知一組具有線性相關關系的數(shù)據(jù),其線性回歸方程,則“滿足線性回歸方程”是“,”的充要條件;其中真命題的個數(shù)為()A.4 B.3 C.2 D.1二、填空題:本題共4小題,每小題5分,共20分。13.若、滿足約束條件,則的最小值為______.14.的展開式中的常數(shù)項為______.15.已知,滿足約束條件則的最大值為__________.16.已知橢圓與雙曲線有相同的焦點、,其中為左焦點.點為兩曲線在第一象限的交點,、分別為曲線、的離心率,若是以為底邊的等腰三角形,則的取值范圍為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓,定點,為平面內一動點,以線段為直徑的圓內切于圓,設動點的軌跡為曲線(1)求曲線的方程(2)過點的直線與交于兩點,已知點,直線分別與直線交于兩點,線段的中點是否在定直線上,若存在,求出該直線方程;若不是,說明理由.18.(12分)已知函數(shù).(1)若對任意x0,f(x)0恒成立,求實數(shù)a的取值范圍;(2)若函數(shù)f(x)有兩個不同的零點x1,x2(x1x2),證明:.19.(12分)已知函數(shù).(1)若函數(shù)的圖象與軸有且只有一個公共點,求實數(shù)的取值范圍;(2)若對任意成立,求實數(shù)的取值范圍.20.(12分)已知函數(shù)(為實常數(shù)).(1)討論函數(shù)在上的單調性;(2)若存在,使得成立,求實數(shù)的取值范圍.21.(12分)已知函數(shù).(1)若在處取得極值,求的值;(2)求在區(qū)間上的最小值;(3)在(1)的條件下,若,求證:當時,恒有成立.22.(10分)某精密儀器生產(chǎn)車間每天生產(chǎn)個零件,質檢員小張每天都會隨機地從中抽取50個零件進行檢查是否合格,若較多零件不合格,則需對其余所有零件進行檢查.根據(jù)多年的生產(chǎn)數(shù)據(jù)和經(jīng)驗,這些零件的長度服從正態(tài)分布(單位:微米),且相互獨立.若零件的長度滿足,則認為該零件是合格的,否則該零件不合格.(1)假設某一天小張抽查出不合格的零件數(shù)為,求及的數(shù)學期望;(2)小張某天恰好從50個零件中檢查出2個不合格的零件,若以此頻率作為當天生產(chǎn)零件的不合格率.已知檢查一個零件的成本為10元,而每個不合格零件流入市場帶來的損失為260元.假設充分大,為了使損失盡量小,小張是否需要檢查其余所有零件,試說明理由.附:若隨機變量服從正態(tài)分布,則.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】試題分析:因為an+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考點:數(shù)列的通項公式.2、A【解析】

依據(jù)無窮等比數(shù)列求和公式,先求出首項,再求出,利用無窮等比數(shù)列求和公式即可求出結果?!驹斀狻恳驗闊o窮等比數(shù)列的公比為2,則無窮等比數(shù)列的公比為。由有,,解得,所以,,故選A?!军c睛】本題主要考查無窮等比數(shù)列求和公式的應用。3、C【解析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿足條件;B中,函數(shù)為奇函數(shù),不滿足條件;C中,函數(shù)為偶函數(shù)且,滿足條件;D中,函數(shù)為偶函數(shù),但,不滿足條件,故選C.考點:1、函數(shù)的奇偶性;2、函數(shù)的值域.4、C【解析】

作出可行域,直線目標函數(shù)對應的直線,平移該直線可得最優(yōu)解.【詳解】作出可行域,如圖由射線,線段,射線圍成的陰影部分(含邊界),作直線,平移直線,當過點時,取得最大值1.故選:C.【點睛】本題考查簡單的線性規(guī)劃問題,解題關鍵是作出可行域,本題要注意可行域不是一個封閉圖形.5、A【解析】

根據(jù)球的特點可知截面是一個圓,根據(jù)等體積法計算出球心到平面的距離,由此求解出截面圓的半徑,從而截面面積可求.【詳解】如圖所示:設內切球球心為,到平面的距離為,截面圓的半徑為,因為內切球的半徑等于正方體棱長的一半,所以球的半徑為,又因為,所以,又因為,所以,所以,所以截面圓的半徑,所以截面圓的面積為.故選:A.【點睛】本題考查正方體的內切球的特點以及球的截面面積的計算,難度一般.任何一個平面去截球,得到的截面一定是圓面,截面圓的半徑可通過球的半徑以及球心到截面的距離去計算.6、C【解析】

對于①中,根據(jù)指數(shù)冪的運算性質和不等式的性質,可判定值正確的;對于②中,構造新函數(shù),利用導數(shù)得到函數(shù)為單調遞增函數(shù),進而得到,即可判定是錯誤的;對于③中,構造新函數(shù),利用導數(shù)求得函數(shù)的最大值為,進而得到,即可判定是正確的.【詳解】由題意,對于①中,由,可得,根據(jù)不等式的性質,可得成立,所以是正確的;對于②中,設函數(shù),則,所以函數(shù)為單調遞增函數(shù),因為,則又由,所以,即,所以②不正確;對于③中,設函數(shù),則,當時,,函數(shù)單調遞增,當時,,函數(shù)單調遞減,所以當時,函數(shù)取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點睛】本題主要考查了不等式的性質,以及導數(shù)在函數(shù)中的綜合應用,其中解答中根據(jù)題意,合理構造新函數(shù),利用導數(shù)求得函數(shù)的單調性和最值是解答的關鍵,著重考查了構造思想,以及推理與運算能力,屬于中檔試題.7、D【解析】

設,,,根據(jù)可得①,再根據(jù)又②,由①②可得,化簡可得,即可求出離心率.【詳解】解:設,,,∵,∴,即,①又,②,由①②可得,∵,∴,∴,∴,即,故選:D.【點睛】本題考查雙曲線的方程和性質,考查了斜率的計算,離心率的求法,屬于基礎題和易錯題.8、D【解析】

通過變形,通過“左加右減”即可得到答案.【詳解】根據(jù)題意,故只需把函數(shù)的圖象上所有的點向右平移個單位長度可得到函數(shù)的圖象,故答案為D.【點睛】本題主要考查三角函數(shù)的平移變換,難度不大.9、D【解析】

利用與的關系,求得的值.【詳解】依題意,所以故選:D【點睛】本小題主要考查函數(shù)值的計算,屬于基礎題.10、A【解析】

取,得到,取,則,計算得到答案.【詳解】取,得到;取,則.故.故選:.【點睛】本題考查了二項式定理的應用,取和是解題的關鍵.11、C【解析】

首先把看作為一個整體,進而利用二項展開式求得的系數(shù),再求的展開式中的系數(shù),二者相乘即可求解.【詳解】由二項展開式的通項公式可得的第項為,令,則,又的第為,令,則,所以的系數(shù)是.故選:C【點睛】本題考查二項展開式指定項的系數(shù),掌握二項展開式的通項是解題的關鍵,屬于基礎題.12、C【解析】

①根據(jù)線性相關性與r的關系進行判斷,

②根據(jù)相關指數(shù)的值的性質進行判斷,

③根據(jù)方差關系進行判斷,

④根據(jù)點滿足回歸直線方程,但點不一定就是這一組數(shù)據(jù)的中心點,而回歸直線必過樣本中心點,可進行判斷.【詳解】①若兩個隨機變量的線性相關性越強,則相關系數(shù)r的絕對值越接近于1,故①正確;

②用相關指數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好,故②錯誤;

③若統(tǒng)計數(shù)據(jù)的方差為1,則的方差為,故③正確;

④因為點滿足回歸直線方程,但點不一定就是這一組數(shù)據(jù)的中心點,即,不一定成立,而回歸直線必過樣本中心點,所以當,時,點必滿足線性回歸方程;因此“滿足線性回歸方程”是“,”必要不充分條件.故④錯誤;

所以正確的命題有①③.

故選:C.【點睛】本題考查兩個隨機變量的相關性,擬合性檢驗,兩個線性相關的變量間的方差的關系,以及兩個變量的線性回歸方程,注意理解每一個量的定義,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

作出不等式組所表示的可行域,利用平移直線的方法找出使得目標函數(shù)取得最小時對應的最優(yōu)解,代入目標函數(shù)計算即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯(lián)立,解得,即點,平移直線,當直線經(jīng)過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故答案為:.【點睛】本題考查簡單的線性規(guī)劃問題,考查線性目標函數(shù)的最值問題,考查數(shù)形結合思想的應用,屬于基礎題.14、160【解析】

先求的展開式中通項,令的指數(shù)為3即可求解結論.【詳解】解:因為的展開式的通項公式為:;令,可得;的展開式中的常數(shù)項為:.故答案為:160.【點睛】本題考查二項式系數(shù)的性質,關鍵是熟記二項展開式的通項,屬于基礎題.15、1【解析】

先畫出約束條件的可行域,根據(jù)平移法判斷出最優(yōu)點,代入目標函數(shù)的解析式,易可得到目標函數(shù)的最大值.【詳解】解:由約束條件得如圖所示的三角形區(qū)域,由于,則,要求的最大值,則求的截距的最小值,顯然當平行直線過點時,取得最大值為:.故答案為:1.【點睛】本題考查線性規(guī)劃求最值問題,我們常用幾何法求最值.16、【解析】

設,由橢圓和雙曲線的定義得到,根據(jù)是以為底邊的等腰三角形,得到,從而有,根據(jù),得到,再利用導數(shù)法求的范圍.【詳解】設,由橢圓的定義得,由雙曲線的定義得,所以,因為是以為底邊的等腰三角形,所以,即,因為,所以,因為,所以,所以,即,而,因為,所以在上遞增,所以.故答案為:【點睛】本題主要考查橢圓,雙曲線的定義和幾何性質,還考查了運算求解的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在,.【解析】

(1)設以為直徑的圓心為,切點為,取關于軸的對稱點,連接,計算得到,故軌跡為橢圓,計算得到答案.(2)設直線的方程為,設,聯(lián)立方程得到,,計算,得到答案.【詳解】(1)設以為直徑的圓心為,切點為,則,取關于軸的對稱點,連接,故,所以點的軌跡是以為焦點,長軸為4的橢圓,其中,曲線方程為.(2)設直線的方程為,設,直線的方程為,同理,所以,即,聯(lián)立,所以,代入得,所以點都在定直線上.【點睛】本題考查了軌跡方程,定直線問題,意在考查學生的計算能力和綜合應用能力.18、(1);(2)證明見解析.【解析】

(1)求出,判斷函數(shù)的單調性,求出函數(shù)的最大值,即求的范圍;(2)由(1)可知,.對分和兩種情況討論,構造函數(shù),利用放縮法和基本不等式證明結論.【詳解】(1)由,得.令.當時,;當時,;在上單調遞增,在上單調遞減,.對任意恒成立,.(2)證明:由(1)可知,在上單調遞增,在上單調遞減,.若,則,令在上單調遞增,,.又,在上單調遞減,.若,則顯然成立.綜上,.又以上兩式左右兩端分別相加,得,即,所以.【點睛】本題考查利用導數(shù)解決不等式恒成立問題,利用導數(shù)證明不等式,屬于難題.19、(1)(2)【解析】

(1)求出及其導函數(shù),利用研究的單調性和最值,根據(jù)零點存在定理和零點定義可得的范圍.(2)令,題意說明時,恒成立.同樣求出導函數(shù),由研究的單調性,通過分類討論可得的單調性得出結論.【詳解】解(1)函數(shù)所以討論:①當時,無零點;②當時,,所以在上單調遞增.取,則又,所以,此時函數(shù)有且只有一個零點;③當時,令,解得(舍)或當時,,所以在上單調遞減;當時,所以在上單調遞增.據(jù)題意,得,所以(舍)或綜上,所求實數(shù)的取值范圍為.(2)令,根據(jù)題意知,當時,恒成立.又討論:①若,則當時,恒成立,所以在上是增函數(shù).又函數(shù)在上單調遞增,在上單調遞增,所以存在使,不符合題意.②若,則當時,恒成立,所以在上是增函數(shù),據(jù)①求解知,不符合題意.③若,則當時,恒有,故在上是減函數(shù),于是“對任意成立”的充分條件是“”,即,解得,故綜上,所求實數(shù)的取值范圍是.【點睛】本題考查函數(shù)零點問題,考查不等式恒成立問題,考查用導數(shù)研究函數(shù)的單調性.解題關鍵是通過分類討論研究函數(shù)的單調性.本題難度較大,考查掌握轉化與化歸思想,考查學生分析問題解決問題的能力.20、(1)見解析(2)【解析】

(1)分類討論的值,利用導數(shù)證明單調性即可;(2)利用導數(shù)分別得出,,時,的最小值,即可得出實數(shù)的取值范圍.【詳解】(1),.當即時,,,此時,在上單調遞增;當即時,時,,在上單調遞減;時,,在上單調遞增;當即時,,,此時,在上單調遞減;(2)當時,因為在上單調遞增,所以的最小值為,所以當時,在上單調遞減,在上單調遞增所以的最小值為.因為,所以,.所以,所以.當時,在上單調遞減所以的最小值為因為,所以,所以,綜上,.【點睛】本題主要考查了利用導數(shù)證明函數(shù)的單調性以及利用導數(shù)研究函數(shù)的存在性問題,屬于中檔題.21、(1)2;(2);(3)證明見解析【解析】

(1)先求出函數(shù)的定義域和導數(shù),由已知函數(shù)在處取得極值,得到,即可求解的值;(2)由(1)得,定義域為,分,和三種情況討論,分別求得函數(shù)的最小值,即可得到結論;(3)由,得到,把,只需證,構造新函數(shù),利用導數(shù)求得函數(shù)的單調性與最值,即可求解.【詳解】(1)由,定義域為,則,因為函數(shù)在處取得極

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論