2023屆西雙版納市重點中學九年級數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第1頁
2023屆西雙版納市重點中學九年級數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第2頁
2023屆西雙版納市重點中學九年級數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第3頁
2023屆西雙版納市重點中學九年級數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第4頁
2023屆西雙版納市重點中學九年級數(shù)學第一學期期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.若函數(shù)y=(a﹣1)x2﹣4x+2a的圖象與x軸有且只有一個交點,則a的值為().A.-1 B.2 C.-1或2 D.-1或2或12.已知四邊形ABCD是平行四邊形,下列結(jié)論中正確的有()①當AB=BC時,四邊形ABCD是菱形;②當AC⊥BD時,四邊形ABCD是菱形;③當∠ABC=90°時,四邊形ABCD是菱形:④當AC=BD時,四邊形ABCD是菱形;A.3個 B.4個 C.1個 D.2個3.在70周年國慶閱兵式上有兩輛閱兵車的車牌號如圖所示(每輛閱兵車的車牌號含7位數(shù)字或字母),則“9”這個數(shù)字在這兩輛車牌號中出現(xiàn)的概率為()A. B. C. D.4.下列結(jié)論正確的是()A.三角形的外心是三條角平分線的交點B.平分弦的直線垂直于弦C.弦的垂直平分線必平分弦所對的兩條弧D.直徑是圓的對稱軸5.已知△ABC∽△DEF,∠A=85°;∠F=50°,那么cosB的值是()A.1 B. C. D.6.已知點是一次函數(shù)的圖像和反比例函數(shù)的圖象的交點,當一次函數(shù)的值大于反比例函數(shù)的值時,的取值范圍是()A.或 B.C.或 D.7.如圖,AB為⊙O的直徑,C、D是⊙O上的兩點,∠CDB=25°,過點C作⊙O的切線交AB的延長線于點E,則∠E的度數(shù)為()A.40° B.50° C.55° D.60°8.一個菱形的邊長為,面積為,則該菱形的兩條對角線的長度之和為()A. B. C. D.9.對于拋物線,下列說法中錯誤的是()A.頂點坐標為B.對稱軸是直線C.當時,隨的增大減小D.拋物線開口向上10.對于反比例函數(shù)y=,下列說法正確的是()A.圖象經(jīng)過點(1,﹣1) B.圖象關(guān)于y軸對稱C.圖象位于第二、四象限 D.當x<0時,y隨x的增大而減小11.如圖,?ABCD的對角線相交于點O,且,過點O作交BC于點E,若的周長為10,則?ABCD的周長為A.14 B.16 C.20 D.1812.三角形兩邊的長分別是8和6,第三邊的長是一元二次方程的一個實數(shù)根,則該三角形的面積是A.24 B.24或 C.48或 D.二、填空題(每題4分,共24分)13.一天早上,王霞從家出發(fā)步行上學,出發(fā)6分鐘后王霞想起數(shù)學作業(yè)沒有帶,王霞立即打電話叫爸爸騎自行車把作業(yè)送來(接打電話和爸爸出門的時間忽略不計),同時王霞把速度降低到前面的一半.爸爸騎自行車追上王霞后立即掉頭以原速趕往位于家的另一邊的單位上班,王霞拿到作業(yè)后立即改為慢跑上學,慢跑的速度是最開始步行速度的2倍,最后王霞比爸爸早10分鐘到達目的地.如圖反映了王霞與爸爸之間的距離(米)與王霞出發(fā)后時間(分鐘)之間的關(guān)系,則王霞的家距離學校有__________米.14.點A(﹣2,3)關(guān)于原點對稱的點的坐標是_____.15.如圖,⊙O的半徑為2,正八邊形ABCDEFGH內(nèi)接于⊙O,對角線CE、DF相交于點M,則△MEF的面積是_____.16.A、B為⊙O上兩點,C為⊙O上一點(與A、B不重合),若∠ACB=100°,則∠AOB的度數(shù)為____°.17.小球在如圖6所示的地板上自由滾動,并隨機停留在某塊正方形的地磚上,則它停在白色地磚上的概率是____.

18.已知△ABC∽△DEF,其中頂點A、B、C分別對應頂點D、E、F,如果∠A=40°,∠E=60°,那么∠C=_______度.三、解答題(共78分)19.(8分)如圖所示是我國古代城市用以滯洪或分洪系統(tǒng)的局部截面原理圖,圖中為下水管道口直徑,為可繞轉(zhuǎn)軸自由轉(zhuǎn)動的閥門,平時閥門被管道中排出的水沖開,可排出城市污水:當河水上漲時,閥門會因河水壓迫而關(guān)閉,以防止河水倒灌入城中.若閥門的直徑,為檢修時閥門開啟的位置,且.(1)直接寫出閥門被下水道的水沖開與被河水關(guān)閉過程中的取值范圍;(2)為了觀測水位,當下水道的水沖開閥門到達位置時,在點處測得俯角,若此時點恰好與下水道的水平面齊平,求此時下水道內(nèi)水的深度.(結(jié)果保留根號)20.(8分)某小學為每個班級配備了一種可以加熱的飲水機,該飲水機的工作程序是:放滿水后,接通電源,則自動開始加熱,每分鐘水溫上升10℃,待加熱到100℃,飲水機自動停止加熱,水溫開始下降,水溫y(℃)和通電時間x(min)成反比例關(guān)系,直至水溫降至室溫,飲水機再次自動加熱,重復上述過程.設某天水溫和室溫為20℃,接通電源后,水溫和時間的關(guān)系如下圖所示,回答下列問題:(1)分別求出當0≤x≤8和8<x≤a時,y和x之間的關(guān)系式;(2)求出圖中a的值;(3)李老師這天早上7:30將飲水機電源打開,若他想再8:10上課前能喝到不超過40℃的開水,問他需要在什么時間段內(nèi)接水.21.(8分)問題提出:如圖1,在等邊△ABC中,AB=9,⊙C半徑為3,P為圓上一動點,連結(jié)AP,BP,求AP+BP的最小值(1)嘗試解決:為了解決這個問題,下面給出一種解題思路,通過構(gòu)造一對相似三角形,將BP轉(zhuǎn)化為某一條線段長,具體方法如下:(請把下面的過程填寫完整)如圖2,連結(jié)CP,在CB上取點D,使CD=1,則有又∵∠PCD=∠△∽△∴∴PD=BP∴AP+BP=AP+PD∴當A,P,D三點共線時,AP+PD取到最小值請你完成余下的思考,并直接寫出答案:AP+BP的最小值為.(2)自主探索:如圖3,矩形ABCD中,BC=6,AB=8,P為矩形內(nèi)部一點,且PB=1,則AP+PC的最小值為.(請在圖3中添加相應的輔助線)(3)拓展延伸:如圖1,在扇形COD中,O為圓心,∠COD=120°,OC=1.OA=2,OB=3,點P是上一點,求2PA+PB的最小值,畫出示意圖并寫出求解過程.22.(10分)已知關(guān)于的方程(1)無論取任何實數(shù),方程總有實數(shù)根嗎?試做出判斷并證明你的結(jié)論.(2)拋物線的圖象與軸兩個交點的橫坐標均為整數(shù),且也為正整數(shù).若,是此拋物線上的兩點,且,請結(jié)合函數(shù)圖象確定實數(shù)的取值范圍.23.(10分)據(jù)媒體報道,我國2009年公民出境旅游總?cè)藬?shù)約5000萬人次,2011年公民出境旅游總?cè)藬?shù)約7200萬人次,若2010年、2011年公民出境旅游總?cè)藬?shù)逐年遞增,請解答下列問題:(1)求這兩年我國公民出境旅游總?cè)藬?shù)的年平均增長率;(2)如果2012年仍保持相同的年平均增長率,請你預測2012年我國公民出境旅游總?cè)藬?shù)約多少萬人次.24.(10分)計算:|2﹣|+()﹣1+﹣2cos45°25.(12分)某經(jīng)銷商銷售一種成本價為10元/kg的商品,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不得高于18元/kg.在銷售過程中發(fā)現(xiàn)銷量y(kg)與售價x(元/kg)之間滿足一次函數(shù)關(guān)系,對應關(guān)系如下表所示:⑴求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;⑵若該經(jīng)銷商想使這種商品獲得平均每天168元的利潤,求售價應定為多少元/kg?⑶設銷售這種商品每天所獲得的利潤為W元,求W與x之間的函數(shù)關(guān)系式;并求出該商品銷售單價定為多少元時,才能使經(jīng)銷商所獲利潤最大?最大利潤是多少?26.如圖,矩形中,為原點,點在軸上,點在軸上,點的坐標為(4,3),拋物線與軸交于點,與直線交于點,與軸交于兩點.(1)求拋物線的表達式;(2)點從點出發(fā),在線段上以每秒1個單位長度的速度向點運動,與此同時,點從點出發(fā),在線段上以每秒個單位長度的速度向點運動,當其中一點到達終點時,另一點也停止運動.連接,設運動時間為(秒).①當為何值時,得面積最???②是否存在某一時刻,使為直角三角形?若存在,直接寫出的值;若不存在,請說明理由.

參考答案一、選擇題(每題4分,共48分)1、D【分析】當a-1=0,即a=1時,函數(shù)為一次函數(shù),與x軸有一個交點;當a﹣1≠0時,利用判別式的意義得到,再求解關(guān)于a的方程即可得到答案.【詳解】當a﹣1=0,即a=1,函數(shù)為一次函數(shù)y=-4x+2,它與x軸有一個交點;當a﹣1≠0時,根據(jù)題意得解得a=-1或a=2綜上所述,a的值為-1或2或1.故選:D.【點睛】本題考察了一次函數(shù)、二次函數(shù)圖像、一元二次方程的知識;求解的關(guān)鍵是熟練掌握一次函數(shù)、二次函數(shù)的性質(zhì),從而完成求解.2、D【分析】根據(jù)菱形的判定定理判斷即可.【詳解】解:∵四邊形ABCD是平行四邊形,∴①當AB=BC時,四邊形ABCD是菱形;故符合題意;②當AC⊥BD時,四邊形ABCD是菱形;故符合題意;③當∠ABC=90°時,四邊形ABCD是矩形;故不符合題意;④當AC=BD時,四邊形ABCD是矩形;故不符合題意;故選:D.【點睛】本題考查了菱形的判定定理,熟練掌握菱形的判定定理是解題的關(guān)鍵.3、B【分析】兩輛閱兵車的車牌號共含14位數(shù)字或字母,其中數(shù)字9出現(xiàn)了3次,根據(jù)概率公式即可求解.【詳解】解:兩輛閱兵車的車牌號共含14位數(shù)字或字母,其中數(shù)字9出現(xiàn)了3次,所以“9”這個數(shù)字在這兩輛車牌號中出現(xiàn)的概率為.故選:B.【點睛】本題考查了概率的計算,掌握概率計算公式是解題關(guān)鍵.4、C【分析】根據(jù)三角形的外心定義可以對A判斷;根據(jù)垂徑定理的推論即可對B判斷;根據(jù)垂徑定理即可對C判斷;根據(jù)對稱軸是直線即可對D判斷.【詳解】A.三角形的外心是三邊垂直平分線的交點,所以A選項錯誤;B.平分弦(不是直徑)的直徑垂直于弦,所以B選項錯誤;C.弦的垂直平分線必平分弦所對的兩條弧,所以C選項正確;D.直徑所在的直線是圓的對稱軸,所以D選項錯誤.故選:C.【點睛】本題考查了三角形的外接圓與外心、垂徑定理、圓的有關(guān)概念,解決本題的關(guān)鍵是掌握圓的知識.5、C【分析】由題意首先根據(jù)相似三角形求得∠B的度數(shù),然后根據(jù)特殊角的三角函數(shù)值確定正確的選項即可.【詳解】解:△ABC∽△DEF,∠A=85°,∠F=50°,∴∠C=∠F=50°,∴∠B=180°-∠A-∠C=180°-85°-50°=45°,∴cosB=cos45°=.故選:C.【點睛】本題主要考查相似三角形的性質(zhì)以及三角函數(shù)相關(guān),解題的關(guān)鍵是熟練掌握相似三角形的對應角相等.6、C【分析】把代入一次函數(shù)和反比例函數(shù)分別求出k和m,再將這兩個函數(shù)解析式聯(lián)立組成方程組,解出方程組再結(jié)合圖象進行判斷即可.【詳解】解:依題意,得:2k+1=3和解得,k=1,m=6∴解得,或,函數(shù)圖象如圖所示:∴當一次函數(shù)的值大于反比例函數(shù)的值時,的取值范圍是或.故選C.【點睛】本題考查了一次函數(shù)與反比例函數(shù)的交點問題,利用圖象確定不等式的取值范圍,準確畫出圖形,利用數(shù)形結(jié)合是解題的關(guān)鍵.7、A【分析】首先連接OC,由切線的性質(zhì)可得OC⊥CE,又由圓周角定理,可求得∠COB的度數(shù),繼而可求得答案.【詳解】解:連接OC,∵CE是⊙O的切線,∴OC⊥CE,即∠OCE=90°,∵∠COB=2∠CDB=50°,∴∠E=90°﹣∠COB=40°.故選:A.【點睛】本題考查了切線性質(zhì),三角形的外角性質(zhì),圓周角定理,等腰三角形的性質(zhì),正確的作出輔助線是解題的關(guān)鍵.8、C【分析】如圖,根據(jù)菱形的性質(zhì)可得,,,再根據(jù)菱形的面積為,可得①,由邊長結(jié)合勾股定理可得②,由①②兩式利用完全平方公式的變形可求得,進行求得,即可求得答案.【詳解】如圖所示:四邊形是菱形,,,,面積為,①菱形的邊長為,②,由①②兩式可得:,,,即該菱形的兩條對角線的長度之和為,故選C.【點睛】本題考查了菱形的性質(zhì),菱形的面積,勾股定理等,熟練掌握相關(guān)知識是解題的關(guān)鍵.9、C【分析】A.將拋物線一般式化為頂點式即可得出頂點坐標,由此可判斷A選項是否正確;B.根據(jù)二次函數(shù)的對稱軸公式即可得出對稱軸,由此可判斷B選項是否正確;C.由函數(shù)的開口方向和頂點坐標即可得出當時函數(shù)的增減性,由此可判斷C選項是否正確;D.根據(jù)二次項系數(shù)a可判斷開口方向,由此可判斷D選項是否正確.【詳解】,∴該拋物線的頂點坐標是,故選項A正確,對稱軸是直線,故選項B正確,當時,隨的增大而增大,故選項C錯誤,,拋物線的開口向上,故選項D正確,故選:C.【點睛】本題考查二次函數(shù)的性質(zhì).對于二次函數(shù)y=ax2+bx+c(a≠0),若a>0,當x≤時,y隨x的增大而減??;當x≥時,y隨x的增大而增大.若a<0,當x≤時,y隨x的增大而增大;當x≥時,y隨x的增大而減小.在本題中能將二次函數(shù)一般式化為頂點式(或會用頂點坐標公式計算)得出頂點坐標是解決此題的關(guān)鍵.10、D【解析】A選項:∵1×(-1)=-1≠1,∴點(1,-1)不在反比例函數(shù)y=的圖象上,故本選項錯誤;

B選項:反比例函數(shù)的圖象關(guān)于原點中心對稱,故本選項錯誤;

C選項:∵k=1>0,∴圖象位于一、三象限,故本選項錯誤;

D選項:∵k=1>0,∴當x<0時,y隨x的增大而減小,故是正確的.

故選B.11、C【解析】由平行四邊形的性質(zhì)得出,,,再根據(jù)線段垂直平分線的性質(zhì)得出,由的周長得出,即可求出平行四邊形ABCD的周長.【詳解】解:四邊形ABCD是平行四邊形,,,,,,的周長為10,,平行四邊形ABCD的周長;故選:C.【點睛】本題考查了平行四邊形的性質(zhì)、線段垂直平分線的性質(zhì)以及三角形、平行四邊形周長的計算;熟練掌握平行四邊形的性質(zhì),并能進行推理計算是解決問題的關(guān)鍵.12、B【分析】由,可利用因式分解法求得x的值,然后分別從x=6時,是等腰三角形;與x=10時,是直角三角形去分析求解即可求得答案.【詳解】∵,∴(x?6)(x?10)=0,解得:x1=6,x2=10,當x=6時,則三角形是等腰三角形,如圖①,AB=AC=6,BC=8,AD是高,∴BD=4,AD=,∴S△ABC=BC?AD=×8×2=8;當x=10時,如圖②,AC=6,BC=8,AB=10,∵AC2+BC2=AB2,∴△ABC是直角三角形,∠C=90°,S△ABC=BC?AC=×8×6=24.∴該三角形的面積是:24或8.故選B.【點睛】此題考查勾股定理的逆定理,解一元二次方程-因式分解法,勾股定理,解題關(guān)鍵在于利用勾股定理進行計算.二、填空題(每題4分,共24分)13、1750【分析】設王霞出發(fā)時步行速度為a米/分鐘,爸爸騎車速度為b米/分鐘,根據(jù)爸爸追上王霞的時間可以算出兩者速度關(guān)系,然后利用學校和單位之間距離4750建立方程求出a,即可算出家到學校的距離.【詳解】設王霞出發(fā)時步行速度為a米/分鐘,爸爸騎車速度為b米/分鐘,由圖像可知9分鐘時爸爸追上王霞,則,整理得由圖像可知24分鐘時,爸爸到達單位,∵最后王霞比爸爸早10分鐘到達目的地∴王霞在第14分鐘到達學校,即拿到作業(yè)后用時14-9=5分鐘到達學校爸爸騎車用時24-9=15分鐘到達單位,單位與學校相距4750米,∴將代入可得,解得∴王霞的家與學校的距離為米故答案為:1750.【點睛】本題考查函數(shù)圖像信息問題,解題的關(guān)鍵是讀懂圖像中數(shù)據(jù)的含義,求出王霞的速度.14、(2,﹣3)【分析】根據(jù)兩個點關(guān)于原點對稱,它們的坐標符號相反求解即可.【詳解】點P(-2,3)關(guān)于原點對稱的點的坐標為(2,-3),故本題正確答案為(2,-3).【點睛】本題考查了關(guān)于原點對稱的性質(zhì),掌握兩個點關(guān)于原點對稱,它們的坐標符號相反是解決本題的關(guān)鍵.15、2﹣【分析】設OE交DF于N,由正八邊形的性質(zhì)得出DE=FE,∠EOF==45°,,由垂徑定理得出∠OEF=∠OFE=∠OED,OE⊥DF,得出△ONF是等腰直角三角形,因此ON=FN=OF=,∠OFM=45°,得出EN=OE﹣OM=2﹣,證出△EMN是等腰直角三角形,得出MN=EN,得出MF=OE=2,由三角形面積公式即可得出結(jié)果.【詳解】解:設OE交DF于N,如圖所示:∵正八邊形ABCDEFGH內(nèi)接于⊙O,∴DE=FE,∠EOF==45°,,∴∠OEF=∠OFE=∠OED,OE⊥DF,∴△ONF是等腰直角三角形,∴ON=FN=OF=,∠OFM=45°,∴EN=OE﹣OM=2﹣,∠OEF=∠OFE=∠OED=67.5°,∴∠CED=∠DFE=67.5°﹣45°=22.5°,∴∠MEN=45°,∴△EMN是等腰直角三角形,∴MN=EN,∴MF=MN+FN=ON+EN=OE=2,∴△MEF的面積=MF×EN=×2×(2﹣)=2﹣;故答案為:2﹣.【點睛】本題考查的是圓的綜合,難度系數(shù)較高,解題關(guān)鍵是根據(jù)正八邊形的性質(zhì)得出每個角的度數(shù).16、160°【分析】根據(jù)圓周角定理,由∠ACB=100°,得到它所對的圓心角∠α=2∠ACB=200°,用360°-200°即可得到圓心角∠AOB.【詳解】如圖,∵∠α=2∠ACB,

而∠ACB=100°,

∴∠α=200°,

∴∠AOB=360°-200°=160°.

故答案為:160°.【點睛】本題考查了圓周角定理.在同圓或等圓中,同弧和等弧所對的圓周角相等,一條弧所對的圓周角是它所對的圓心角的一半.17、【分析】先求出瓷磚的總數(shù),再求出白色瓷磚的個數(shù),利用概率公式即可得出結(jié)論.【詳解】由圖可知,共有5塊瓷磚,白色的有3塊,所以它停在白色地磚上的概率=.考點:概率.18、80【解析】因為△ABC∽△DEF,所以∠A=∠D,∠B=∠E,∠C=∠F,因為∠A=40°,∠E=60°,所以∠B=60°,所以∠C=180°―40°―60°=80°,故答案為:80.三、解答題(共78分)19、(1);(2)【分析】(1)根據(jù)題意即可得到結(jié)論;

(2)根據(jù)余角的定義得到∠BAO=22.5°,根據(jù)等腰三角形的性質(zhì)得到∠BAO=∠ABO=22.5°,由三角形的外角的性質(zhì)得到∠BOP=45°,解直角三角形即可得到結(jié)論.【詳解】解:(1)閥門被下水道的水沖開與被河水關(guān)閉過程中,.(2)∵,,∴∵,∴,∴.如圖,過點作于點,在中,∵,∴,∴.所以,此時下水道內(nèi)水的深度約為.【點睛】此題考查了俯角的定義,要求學生能借助俯角構(gòu)造直角三角形并解直角三角形.注意方程思想與數(shù)形結(jié)合思想的應用.20、(1)當0≤x≤8時,y=10x+20;當8<x≤a時,y=;(2)40;(3)要在7:50~8:10時間段內(nèi)接水.【分析】(1)當0≤x≤8時,設y=k1x+b,將(0,20),(8,100)的坐標分別代入y=k1x+b,即可求得k1、b的值,從而得一次函數(shù)的解析式;當8<x≤a時,設y=,將(8,100)的坐標代入y=,求得k2的值,即可得反比例函數(shù)的解析式;(2)把y=20代入反比例函數(shù)的解析式,即可求得a值;(3)把y=40代入反比例函數(shù)的解析式,求得對應x的值,根據(jù)想喝到不低于40℃的開水,結(jié)合函數(shù)圖象求得x的取值范圍,從而求得李老師接水的時間范圍.【詳解】解:(1)當0≤x≤8時,設y=k1x+b,將(0,20),(8,100)的坐標分別代入y=k1x+b,可求得k1=10,b=20∴當0≤x≤8時,y=10x+20.當8<x≤a時,設y=,將(8,100)的坐標代入y=,得k2=800∴當8<x≤a時,y=.綜上,當0≤x≤8時,y=10x+20;當8<x≤a時,y=(2)將y=20代入y=,解得x=40,即a=40.(3)當y=40時,x==20∴要想喝到不低于40℃的開水,x需滿足8≤x≤20,即李老師要在7:38到7:50之間接水.【點睛】本題主要考查了一次函數(shù)及反比例函數(shù)的應用題,是一個分段函數(shù)問題,分段函數(shù)是在不同區(qū)間有不同對應方式的函數(shù),要特別注意自變量取值范圍的劃分,既要科學合理,又要符合實際.21、(1)BCP,PCD,BCP,;(2)2;(3)作圖與求解過程見解析,2PA+PB的最小值為.【分析】(1)連結(jié)AD,過點A作AF⊥CB于點F,AP+BP=AP+PD,要使AP+BP最小,AP+AD最小,當點A,P,D在同一條直線時,AP+AD最小,即可求解;(2)在AB上截取BF=2,連接PF,PC,AB=8,PB=1,BF=2,證明△ABP∽△PBF,當點F,點P,點C三點共線時,AP+PC的值最小,即可求解;(3)延長OC,使CF=1,連接BF,OP,PF,過點F作FB⊥OD于點M,確定,且∠AOP=∠AOP,△AOP∽△POF,當點F,點P,點B三點共線時,2AP+PB的值最小,即可求解.【詳解】解:(1)如圖1,連結(jié)AD,過點A作AF⊥CB于點F,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,當點A,P,D在同一條直線時,AP+AD最小,即:AP+BP最小值為AD,∵AC=9,AF⊥BC,∠ACB=60°∴CF=3,AF=;∴DF=CF﹣CD=3﹣1=2,∴AD=,∴AP+BP的最小值為;故答案為:;(2)如圖2,在AB上截取BF=2,連接PF,PC,∵AB=8,PB=1,BF=2,∴,且∠ABP=∠ABP,∴△ABP∽△PBF,∴,∴PF=AP,∴AP+PC=PF+PC,∴當點F,點P,點C三點共線時,AP+PC的值最小,∴CF=,∴AP+PC的值最小值為2,故答案為:2;(3)如圖3,延長OC,使CF=1,連接BF,OP,PF,過點F作FB⊥OD于點M,∵OC=1,F(xiàn)C=1,∴FO=8,且OP=1,OA=2,∴,且∠AOP=∠AOP∴△AOP∽△POF∴,∴PF=2AP∴2PA+PB=PF+PB,∴當點F,點P,點B三點共線時,2AP+PB的值最小,∵∠COD=120°,∴∠FOM=60°,且FO=8,F(xiàn)M⊥OM∴OM=1,F(xiàn)M=1,∴MB=OM+OB=1+3=7∴FB=,∴2PA+PB的最小值為.【點睛】本題主要考查了圓的有關(guān)知識,勾股定理,相似三角形的判定和性質(zhì),解本題的關(guān)鍵是根據(jù)材料中的思路構(gòu)造出相似三角形..22、(1)無論取任何實數(shù),方程總有實數(shù)根;證明見解析;(2).【分析】(1)由題意分當時以及當時,利用根的判別式進行分析即可;(2)根據(jù)題意令,代入拋物線解析式,并利用二次函數(shù)圖像性質(zhì)確定實數(shù)的取值范圍.【詳解】解:(1)①當時,方程為時,,所以方程有實數(shù)根;②當時,所以方程有實數(shù)根綜上所述,無論取任何實數(shù),方程總有實數(shù)根.(2)令,則,解方程,∵二次函數(shù)圖象與軸兩個交點的橫坐標均為整數(shù),且為正整數(shù)∴∴該拋物線解析式∴對稱軸∵,是拋物錢上的兩點,且∴【點睛】本題考查二次函數(shù)圖像的綜合問題,熟練掌握二次函數(shù)圖像的相關(guān)性質(zhì)是解題關(guān)鍵.23、(1)20%(2)8640萬人次【分析】(1)設年平均增長率為x.根據(jù)題意2010年公民出境旅游總?cè)藬?shù)為5000(1+x)萬人次,2011年公民出境旅游總?cè)藬?shù)5000(1+x)2萬人次.根據(jù)題意得方程求解.(2)2012年我國公民出境旅游總?cè)藬?shù)約1(1+x)萬人次.【詳解】解:(1)設這兩年我國公民出境旅游總?cè)藬?shù)的年平均增長率為x.根據(jù)題意得5000(1+x)2=1.解得x1=0.2=20%,x2=﹣2.2(不合題意,舍去).答:這兩年我國公民出境旅游總?cè)藬?shù)的年平均增長率為20%.(2)如果2012年仍保持相同的年平均增長率,則2012年我國公民出境旅游總?cè)藬?shù)為1(1+x)=1×120%=8640萬人次.答:預測2012年我國公民出境旅游總?cè)藬?shù)約8640萬人次.24、1【分析】根據(jù)絕對值、負次數(shù)冪、二次根式、三角函數(shù)的性質(zhì)計算即可.【詳解】原式=2﹣+3+2﹣2×=2﹣+3+2﹣=(2+3)+(﹣+2﹣)=1+0=1.【點睛】本題考查絕對值、負次數(shù)冪、二次根式、三角函數(shù)的計算,關(guān)鍵在于牢記相關(guān)基礎知識.25、(1)y=-2x+1,10≤x≤2;(2)16元/kg;(3)W=-2(x-20)2+200,2元,192元.【分析】(1)根據(jù)一次函數(shù)過(12,36)(14,32)可求出函數(shù)關(guān)系式,然后驗證其它數(shù)據(jù)是否符合關(guān)系式,進而確定函數(shù)關(guān)系式,(2)根據(jù)總利潤為168元列方程解答即可,(3)先求出總利潤W與x的函數(shù)關(guān)系式,再依據(jù)函數(shù)的增減性和自變量的取值范圍確定何時獲得最大利潤,但應注意拋物線的對稱軸,不能使用頂

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論