版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2022年湖南省常德市普通高校對口單招高等數(shù)學(xué)一自考模擬考試(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.
2.
3.
4.方程x2+2y2+3z2=1表示的二次曲面是
A.圓錐面B.旋轉(zhuǎn)拋物面C.球面D.橢球面
5.過點(1,0,O),(0,1,O),(0,0,1)的平面方程為()A.A.x+y+z=1
B.2x+y+z=1
C.x+2y+z=1
D.x+y+2z=1
6.A.A.-(1/2)B.1/2C.-1D.2
7.
8.
9.方程x2+y2-z=0表示的二次曲面是
A.橢圓面B.圓錐面C.旋轉(zhuǎn)拋物面D.柱面
10.A.A.0
B.
C.arctanx
D.
11.A.A.1B.2C.3D.4
12.A.A.e2/3
B.e
C.e3/2
D.e6
13.A.A.
B.
C.
D.
14.
15.為了提高混凝土的抗拉強度,可在梁中配置鋼筋。若矩形截面梁的彎矩圖如圖所示,梁中鋼筋(圖中虛線所示)配置最為合理的是()。
A.
B.
C.
D.
16.A.A.
B.x2
C.2x
D.2
17.
18.
19.
A.6xarctanx2
B.6xtanx2+5
C.5
D.6xcos2x
20.對于微分方程y"-2y'+y=xex,利用待定系數(shù)法求其特解y*時,下列特解設(shè)法正確的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
二、填空題(20題)21.
22.
23.
24.25.過原點且與直線垂直的平面方程為______.26.27.
28.
29.設(shè)y=ex/x,則dy=________。30.
31.
32.33.34.
35.
36.37.38.39.40.微分方程dy+xdx=0的通解y=_____.三、計算題(20題)41.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.42.
43.
44.
45.求微分方程y"-4y'+4y=e-2x的通解.
46.已知某商品市場需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時,若價格上漲1%,需求量增(減)百分之幾?
47.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達(dá)式;
(2)求S(x)的最大值.
48.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.49.50.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.51.求微分方程的通解.52.當(dāng)x一0時f(x)與sin2x是等價無窮小量,則
53.
54.將f(x)=e-2X展開為x的冪級數(shù).
55.
56.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.57.58.證明:59.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.60.求曲線在點(1,3)處的切線方程.四、解答題(10題)61.設(shè)y=ln(1+x2),求dy。62.63.計算其中區(qū)域D由y=x,y=0,x2+y2=1圍成的在第一象限內(nèi)的區(qū)域.
64.y=xlnx的極值與極值點.
65.
66.
67.
68.求微分方程y"-3y'+2y=0的通解。
69.
70.(本題滿分10分)設(shè)F(x)為f(x)的-個原函數(shù),且f(x)=xlnx,求F(x).五、高等數(shù)學(xué)(0題)71.f(x)在x=0的某鄰域內(nèi)一階導(dǎo)數(shù)連續(xù)且則()。A.x=0不是f(x)的極值點B.x=0是f(x)的極大值點C.x=0是f(x)的極小值點D.x=0是f(x)的拐點六、解答題(0題)72.
參考答案
1.A解析:
2.C
3.A解析:
4.D本題考查了二次曲面的知識點。
5.A
6.A
7.D
8.A解析:
9.C
10.A
11.A
12.D
13.D
14.A
15.D
16.D本題考查的知識點為原函數(shù)的概念.
可知應(yīng)選D.
17.D
18.A解析:
19.C
20.D特征方程為r2-2r+1=0,特征根為r=1(二重根),f(x)=xex,α=1為特征根,因此原方程特解y*=x2(Ax+B)ex,因此選D。
21.y=xe+Cy=xe+C解析:
22.
23.
24.25.2x+y-3z=0本題考查的知識點為平面方程和平面與直線的關(guān)系.
由于已知直線與所求平面垂直,可知所給直線的方向向量s平行于所求平面的法向量n.由于s=(2,1,-3),因此可取n=(2,1,-3).由于平面過原點,由平面的點法式方程,可知所求平面方程為2x+y-3z=0
26.1/3本題考查了定積分的知識點。
27.
28.
解析:
29.
30.
31.+∞(發(fā)散)+∞(發(fā)散)
32.33.1.
本題考查的知識點為函數(shù)連續(xù)性的概念.
34.
35.>36.0.
本題考查的知識點為冪級數(shù)的收斂半徑.
所給冪級數(shù)為不缺項情形
因此收斂半徑為0.
37.In2
38.0本題考查了利用極坐標(biāo)求二重積分的知識點.
39.40.
41.
42.由一階線性微分方程通解公式有
43.
則
44.
45.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
46.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時,價格上漲1%需求量減少2.5%
47.
48.由二重積分物理意義知
49.
50.
列表:
說明
51.52.由等價無窮小量的定義可知
53.
54.
55.
56.
57.
58.
59.函數(shù)的定義域為
注意
60.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
61.
62.63.利用極坐標(biāo)計算,
64.y=xlnx的定義域為x>0y'=1+lnx.令y'=0得駐點x1=e-1.當(dāng)0<x<e-1時y'<0;當(dāng)e-1<x時y'>0.可知x=e-1為y=xlnx的極小值點.極小值為y=xlnx的定義域為x>0y'=1+lnx.令y'=0得駐點x1=e-1.當(dāng)0<x<e-1時,y'<0;當(dāng)e-1<x時,y'>0.可知x=e-1為y=xlnx的極小值點.極小值為
65.66.本題考查的知識點為定積分的換元積分法.
67.
68.y"-3y'+2y=0特征方程為r2-3r+2=0(r-1)(r-2)=0。特征根為r1=1r2=2。方程的通解為y=C1ex+C2e2x。y"-3y'+2y=0,特征方程為r2-3r+2=0,(r-1)(r-2)=0。特征根為r1=1,r2=2。方程的通解為y=C1ex+C2e2x。69.本題考查的知識點為導(dǎo)數(shù)的應(yīng)用.
單調(diào)增加區(qū)間為(0,+∞);
單調(diào)減少區(qū)間為(-∞,0);
極小值為5,極小值點為x=0;
注上述表格填正確,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《唯美模板》課件
- 《禮儀插花的應(yīng)用》課件
- 單位管理制度集粹匯編人員管理十篇
- 《離合器檢修》課件
- 單位管理制度匯編大合集人事管理十篇
- 單位管理制度分享匯編【人力資源管理】十篇
- 單位管理制度分享大全職員管理篇
- 單位管理制度范例選集職員管理篇十篇
- 《中級計量經(jīng)濟學(xué)》課程教學(xué)大綱 (二)
- 八下期中測試卷02【測試范圍:第1-11課】(原卷版)
- 過敏性紫癜課件PPT
- 浙江省紹興市諸暨市2023-2024學(xué)年數(shù)學(xué)三上期末達(dá)標(biāo)檢測試題含答案
- 腳手架質(zhì)量驗收標(biāo)準(zhǔn)
- 小學(xué)思政課《愛國主義教育》
- 中藥材的性狀及真?zhèn)舞b別培訓(xùn)-課件
- 泵站項目劃分
- 綠化養(yǎng)護工作檢查及整改記錄表
- 新能源發(fā)電技術(shù)學(xué)習(xí)通課后章節(jié)答案期末考試題庫2023年
- GB/T 42752-2023區(qū)塊鏈和分布式記賬技術(shù)參考架構(gòu)
- Module 9 (教案)外研版(一起)英語四年級上冊
- 初中物理-初三物理模擬試卷講評課教學(xué)課件設(shè)計
評論
0/150
提交評論