2022-2023學年廣東省鹽城市毓龍路實驗校中考沖刺卷數(shù)學試題含解析_第1頁
2022-2023學年廣東省鹽城市毓龍路實驗校中考沖刺卷數(shù)學試題含解析_第2頁
2022-2023學年廣東省鹽城市毓龍路實驗校中考沖刺卷數(shù)學試題含解析_第3頁
2022-2023學年廣東省鹽城市毓龍路實驗校中考沖刺卷數(shù)學試題含解析_第4頁
2022-2023學年廣東省鹽城市毓龍路實驗校中考沖刺卷數(shù)學試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列代數(shù)運算正確的是()A.(x+1)2=x2+1 B.(x3)2=x5 C.(2x)2=2x2 D.x3?x2=x52.下列運算結果正確的是()A.(x3﹣x2+x)÷x=x2﹣xB.(﹣a2)?a3=a6C.(﹣2x2)3=﹣8x6D.4a2﹣(2a)2=2a23.某班要從9名百米跑成績各不相同的同學中選4名參加4×100米接力賽,而這9名同學只知道自己的成績,要想讓他們知道自己是否入選,老師只需公布他們成績的()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差4.《九章算術》中注有“今兩算得失相反,要令正負以名之”,意思是:今有兩數(shù)若其意義相反,則分別叫做正數(shù)與負數(shù),若氣溫為零上10℃記作+10℃,則﹣3℃表示氣溫為()A.零上3℃ B.零下3℃ C.零上7℃ D.零下7℃5.共享單車為市民出行帶來了方便,某單車公司第一個月投放1000輛單車,計劃第三個月投放單車數(shù)量比第一個月多440輛.設該公司第二、三兩個月投放單車數(shù)量的月平均增長率為x,則所列方程正確的為()A.1000(1+x)2=1000+440 B.1000(1+x)2=440C.440(1+x)2=1000 D.1000(1+2x)=1000+4406.某校有35名同學參加眉山市的三蘇文化知識競賽,預賽分數(shù)各不相同,取前18名同學參加決賽.其中一名同學知道自己的分數(shù)后,要判斷自己能否進入決賽,只需要知道這35名同學分數(shù)的(

).A.眾數(shù) B.中位數(shù) C.平均數(shù) D.方差7.如果,那么()A. B. C. D.8.學習全等三角形時,數(shù)學興趣小組設計并組織了“生活中的全等”的比賽,全班同學的比賽結果統(tǒng)計如下表:得分(分)60708090100人數(shù)(人)7121083則得分的眾數(shù)和中位數(shù)分別為()A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分9.如圖,在△ABC中,AB=AC=5,BC=8,D是線段BC上的動點(不含端點B,C).若線段AD長為正整數(shù),則點D的個數(shù)共有()A.5個 B.4個 C.3個 D.2個10.在平面直角坐標系xOy中,對于任意三點A,B,C的“矩面積”,給出如下定義:“水平底”a:任意兩點橫坐標差的最大值,“鉛垂高”h:任意兩點縱坐標差的最大值,則“矩面積”S=ah.例如:三點坐標分別為A(1,2),B(﹣3,1),C(2,﹣2),則“水平底”a=5,“鉛垂高”h=4,“矩面積”S=ah=1.若D(1,2)、E(﹣2,1)、F(0,t)三點的“矩面積”為18,則t的值為()A.﹣3或7B.﹣4或6C.﹣4或7D.﹣3或611.下列計算正確的是()A.2m+3n=5mnB.m2?m3=m6C.m8÷m6=m2D.(﹣m)3=m312.小明乘出租車去體育場,有兩條路線可供選擇:路線一的全程是25千米,但交通比較擁堵,路線二的全程是30千米,平均車速比走路線一時的平均車速能提高80%,因此能比走路線一少用10分鐘到達.若設走路線一時的平均速度為x千米/小時,根據(jù)題意,得A.25x-C.30(1+80%)x-二、填空題:(本大題共6個小題,每小題4分,共24分.)13.某校為了解本校九年級學生足球訓練情況,隨機抽查該年級若干名學生進行測試,然后把測試結果分為4個等級:A、B、C、D,并將統(tǒng)計結果繪制成兩幅不完整的統(tǒng)計圖.該年級共有700人,估計該年級足球測試成績?yōu)镈等的人數(shù)為_____人.14.同時擲兩個質地均勻的骰子,觀察向上一面的點數(shù),兩個骰子的點數(shù)相同的概率為.15.同學們設計了一個重復拋擲的實驗:全班48人分為8個小組,每組拋擲同一型號的一枚瓶蓋300次,并記錄蓋面朝上的次數(shù),下表是依次累計各小組的實驗結果.1組1~2組1~3組1~4組1~5組1~6組1~7組1~8組蓋面朝上次數(shù)16533548363280194911221276蓋面朝上頻率0.5500.5580.5370.5270.5340.5270.5340.532根據(jù)實驗,你認為這一型號的瓶蓋蓋面朝上的概率為____,理由是:____.16.如圖,有一個橫截面邊緣為拋物線的水泥門洞,門洞內的地面寬度為,兩側離地面高處各有一盞燈,兩燈間的水平距離為,則這個門洞的高度為_______.(精確到)17.方程的兩個根為、,則的值等于______.18.定義:直線l1與l2相交于點O,對于平面內任意一點M,點M到直線l1,l2的距離分別為p、q,則稱有序實數(shù)對(p,q)是點M的“距離坐標”.根據(jù)上述定義,“距離坐標”是(1,2)的點的個數(shù)共有______個.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,AB=AC,AE是角平分線,BM平分∠ABC交AE于點M,經(jīng)過B、M兩點的⊙O交BC于點G,交AB于點F,F(xiàn)B恰為⊙O的直徑.(1)判斷AE與⊙O的位置關系,并說明理由;(2)若BC=6,AC=4CE時,求⊙O的半徑.20.(6分)如圖,AB=16,O為AB中點,點C在線段OB上(不與點O,B重合),將OC繞點O逆時針旋轉270°后得到扇形COD,AP,BQ分別切優(yōu)弧CD于點P,Q,且點P,Q在AB異側,連接OP.求證:AP=BQ;當BQ=時,求的長(結果保留);若△APO的外心在扇形COD的內部,求OC的取值范圍.21.(6分)某中學為了提高學生的消防意識,舉行了消防知識競賽,所有參賽學生分別設有一、二、三等獎和紀念獎,獲獎情況已繪制成如圖所示的兩幅不完整的統(tǒng)計圖,根據(jù)圖中所經(jīng)信息解答下列問題:(1)這次知識競賽共有多少名學生?(2)“二等獎”對應的扇形圓心角度數(shù),并將條形統(tǒng)計圖補充完整;(3)小華參加了此次的知識競賽,請你幫他求出獲得“一等獎或二等獎”的概率.22.(8分)如圖,是5×5正方形網(wǎng)格,每個小正方形的邊長為1,請按要求畫出下列圖形,所畫圖形的各個頂點均在所給小正方形的頂點上.(1)在圖(1)中畫出一個等腰△ABE,使其面積為3.5;(2)在圖(2)中畫出一個直角△CDF,使其面積為5,并直接寫出DF的長.23.(8分)為落實黨中央“長江大保護”新發(fā)展理念,我市持續(xù)推進長江岸線保護,還洞庭湖和長江水清岸綠的自然生態(tài)原貌.某工程隊負責對一面積為33000平方米的非法砂石碼頭進行拆除,回填土方和復綠施工,為了縮短工期,該工程隊增加了人力和設備,實際工作效率比原計劃每天提高了20%,結果提前11天完成任務,求實際平均每天施工多少平方米?24.(10分)如圖,在平面直角坐標系中,拋物線與x軸交于點A、B,與y軸交于點C,直線y=x+4經(jīng)過點A、C,點P為拋物線上位于直線AC上方的一個動點.(1)求拋物線的表達式;(2)如圖,當CP//AO時,求∠PAC的正切值;(3)當以AP、AO為鄰邊的平行四邊形第四個頂點恰好也在拋物線上時,求出此時點P的坐標.25.(10分)如圖1,在△ABC中,點P為邊AB所在直線上一點,連結CP,M為線段CP的中點,若滿足∠ACP=∠MBA,則稱點P為△ABC的“好點”.(1)如圖2,當∠ABC=90°時,命題“線段AB上不存在“好點”為(填“真”或“假”)命題,并說明理由;(2)如圖3,P是△ABC的BA延長線的一個“好點”,若PC=4,PB=5,求AP的值;(3)如圖4,在Rt△ABC中,∠CAB=90°,點P是△ABC的“好點”,若AC=4,AB=5,求AP的值.26.(12分)已知關于x的一元二次方程x2+(2m+3)x+m2=1有兩根α,β求m的取值范圍;若α+β+αβ=1.求m的值.27.(12分)“千年古都,大美西安”.某校數(shù)學興趣小組就“最想去的西安旅游景點”隨機調查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的景點,(景點對應的名稱分別是:A:大雁塔B:兵馬俑C:陜西歷史博物館D:秦嶺野生動物園E:曲江海洋館).下面是根據(jù)調查結果進行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:請根據(jù)圖中提供的信息,解答下列問題:(1)求被調查的學生總人數(shù);(2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);(3)若該校共有800名學生,請估計“最想去景點B”的學生人數(shù).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

分別根據(jù)同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式進行逐一計算即可.【詳解】解:A.(x+1)2=x2+2x+1,故A錯誤;B.(x3)2=x6,故B錯誤;C.(2x)2=4x2,故C錯誤.D.x3?x2=x5,故D正確.故本題選D.【點睛】本題考查的是同底數(shù)冪的乘法、冪的乘方與積的乘方、完全平方公式,熟練掌握他們的定義是解題的關鍵.2、C【解析】

根據(jù)多項式除以單項式法則、同底數(shù)冪的乘法、積的乘方與冪的乘方及合并同類項法則計算可得.【詳解】A、(x3-x2+x)÷x=x2-x+1,此選項計算錯誤;B、(-a2)?a3=-a5,此選項計算錯誤;C、(-2x2)3=-8x6,此選項計算正確;D、4a2-(2a)2=4a2-4a2=0,此選項計算錯誤.故選:C.【點睛】本題主要考查整式的運算,解題的關鍵是掌握多項式除以單項式法則、同底數(shù)冪的乘法、積的乘方與冪的乘方及合并同類項法則.3、B【解析】

總共有9名同學,只要確定每個人與成績的第五名的成績的多少即可判斷,然后根據(jù)中位數(shù)定義即可判斷.【詳解】要想知道自己是否入選,老師只需公布第五名的成績,即中位數(shù).故選B.4、B【解析】試題分析:由題意知,“-”代表零下,因此-3℃表示氣溫為零下3℃.故選B.考點:負數(shù)的意義5、A【解析】

根據(jù)題意可以列出相應的一元二次方程,從而可以解答本題.【詳解】解:由題意可得,1000(1+x)2=1000+440,故選:A.【點睛】此題主要考查一元二次方程的應用,解題的關鍵是根據(jù)題意找到等量關系進行列方程.6、B【解析】分析:由于比賽取前18名參加決賽,共有35名選手參加,根據(jù)中位數(shù)的意義分析即可.詳解:35個不同的成績按從小到大排序后,中位數(shù)及中位數(shù)之后的共有18個數(shù),故只要知道自己的成績和中位數(shù)就可以知道是否進入決賽了.故選B.點睛:本題考查了統(tǒng)計量的選擇,以及中位數(shù)意義,解題的關鍵是正確的求出這組數(shù)據(jù)的中位數(shù)7、B【解析】試題分析:根據(jù)二次根式的性質,由此可知2-a≥0,解得a≤2.故選B點睛:此題主要考查了二次根式的性質,解題關鍵是明確被開方數(shù)的符號,然后根據(jù)性質可求解.8、C【解析】

解:根據(jù)表格中的數(shù)據(jù),可知70出現(xiàn)的次數(shù)最多,可知其眾數(shù)為70分;把數(shù)據(jù)按從小到大排列,可知其中間的兩個的平均數(shù)為80分,故中位數(shù)為80分.故選C.【點睛】本題考查數(shù)據(jù)分析.9、C【解析】試題分析:過A作AE⊥BC于E,∵AB=AC=5,BC=8,∴BE=EC=4,∴AE=3,∵D是線段BC上的動點(不含端點B,C),∴AE≤AD<AB,即3≤AD<5,∵AD為正整數(shù),∴AD=3或AD=4,當AD=4時,E的左右兩邊各有一個點D滿足條件,∴點D的個數(shù)共有3個.故選C.考點:等腰三角形的性質;勾股定理.10、C【解析】

由題可知“水平底”a的長度為3,則由“矩面積”為18可知“鉛垂高”h=6,再分>2或t<1兩種情況進行求解即可.【詳解】解:由題可知a=3,則h=18÷3=6,則可知t>2或t<1.當t>2時,t-1=6,解得t=7;當t<1時,2-t=6,解得t=-4.綜上,t=-4或7.故選擇C.【點睛】本題考查了平面直角坐標系的內容,理解題意是解題關鍵.11、C【解析】

根據(jù)同底數(shù)冪的除法,底數(shù)不變指數(shù)相減;合并同類項,系數(shù)相加字母和字母的指數(shù)不變;同底數(shù)冪的乘法,底數(shù)不變指數(shù)相加;冪的乘方,底數(shù)不變指數(shù)相乘,對各選項計算后利用排除法求解.【詳解】解:A、2m與3n不是同類項,不能合并,故錯誤;B、m2?m3=m5,故錯誤;C、正確;D、(-m)3=-m3,故錯誤;故選:C.【點睛】本題考查同底數(shù)冪的除法,合并同類項,同底數(shù)冪的乘法,冪的乘方很容易混淆,一定要記準法則才能做題.12、A【解析】若設走路線一時的平均速度為x千米/小時,根據(jù)路線一的全程是25千米,但交通比較擁堵,路線二的全程是30千米,平均車速比走路線一時的平均車速能提高80%,因此能比走路線一少用10分鐘到達可列出方程.解:設走路線一時的平均速度為x千米/小時,25故選A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】試題解析:∵總人數(shù)為14÷28%=50(人),∴該年級足球測試成績?yōu)镈等的人數(shù)為(人).故答案為:1.14、【解析】試題分析:首先列表,然后根據(jù)表格求得所有等可能的結果與兩個骰子的點數(shù)相同的情況,再根據(jù)概率公式求解即可.解:列表得:(1,6)

(2,6)

(3,6)

(4,6)

(5,6)

(6,6)

(1,5)

(2,5)

(3,5)

(4,5)

(5,5)

(6,5)

(1,4)

(2,4)

(3,4)

(4,4)

(5,4)

(6,4)

(1,3)

(2,3)

(3,3)

(4,3)

(5,3)

(6,3)

(1,2)

(2,2)

(3,2)

(4,2)

(5,2)

(6,2)

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(6,1)

∴一共有36種等可能的結果,兩個骰子的點數(shù)相同的有6種情況,∴兩個骰子的點數(shù)相同的概率為:=.故答案為.考點:列表法與樹狀圖法.15、0.532,在用頻率估計概率時,試驗次數(shù)越多越接近,所以取1﹣8組的頻率值.【解析】

根據(jù)用頻率估計概率解答即可.【詳解】∵在用頻率估計概率時,試驗次數(shù)越多越接近,所以取1﹣8組的頻率值,∴這一型號的瓶蓋蓋面朝上的概率為0.532,故答案為:0.532,在用頻率估計概率時,試驗次數(shù)越多越接近,所以取1﹣8組的頻率值.【點睛】本題考查了利用頻率估計概率的知識,解答此題關鍵是用頻率估計概率得到的是近似值,隨實驗次數(shù)的增多,值越來越精確.16、9.1【解析】

建立直角坐標系,得到二次函數(shù),門洞高度即為二次函數(shù)的頂點的縱坐標【詳解】如圖,以地面為x軸,門洞中點為O點,畫出y軸,建立直角坐標系由題意可知各點坐標為A(-4,0)B(4,0)D(-3,4)設拋物線解析式為y=ax2+c(a≠0)把B、D兩點帶入解析式可得解析式為,則C(0,)所以門洞高度為m≈9.1m【點睛】本題考查二次函數(shù)的簡單應用,能夠建立直角坐標系解出二次函數(shù)解析式是本題關鍵17、1.【解析】

根據(jù)一元二次方程根與系數(shù)的關系求解即可.【詳解】解:根據(jù)題意得,,所以===1.故答案為1.【點睛】本題考查了根與系數(shù)的關系:若、是一元二次方程(a≠0)的兩根時,,.18、4【解析】

根據(jù)“距離坐標”和平面直角坐標系的定義分別寫出各點即可.【詳解】距離坐標是(1,2)的點有(1,2),(-1,2),(-1,-2),(1,-2)共四個,所以答案填寫4.【點睛】本題考查了點的坐標,理解題意中距離坐標是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)AE與⊙O相切.理由見解析.(2)2.1【解析】

(1)連接OM,則OM=OB,利用平行的判定和性質得到OM∥BC,∠AMO=∠AEB,再利用等腰三角形的性質和切線的判定即可得證;(2)設⊙O的半徑為r,則AO=12﹣r,利用等腰三角形的性質和解直角三角形的有關知識得到AB=12,易證△AOM∽△ABE,根據(jù)相似三角形的性質即可求解.【詳解】解:(1)AE與⊙O相切.理由如下:連接OM,則OM=OB,∴∠OMB=∠OBM,∵BM平分∠ABC,∴∠OBM=∠EBM,∴∠OMB=∠EBM,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分線,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∴AE與⊙O相切;(2)在△ABC中,AB=AC,AE是角平分線,∴BE=BC,∠ABC=∠C,∵BC=6,cosC=,∴BE=3,cos∠ABC=,在△ABE中,∠AEB=90°,∴AB===12,設⊙O的半徑為r,則AO=12﹣r,∵OM∥BC,∴△AOM∽△ABE,∴,∴=,解得:r=2.1,∴⊙O的半徑為2.1.20、(1)詳見解析;(2);(3)4<OC<1.【解析】

(1)連接OQ,由切線性質得∠APO=∠BQO=90°,由直角三角形判定HL得Rt△APO≌Rt△BQO,再由全等三角形性質即可得證.(2)由(1)中全等三角形性質得∠AOP=∠BOQ,從而可得P、O、Q三點共線,在Rt△BOQ中,根據(jù)余弦定義可得cosB=,由特殊角的三角函數(shù)值可得∠B=30°,∠BOQ=60°,根據(jù)直角三角形的性質得OQ=4,結合題意可得∠QOD度數(shù),由弧長公式即可求得答案.(3)由直角三角形性質可得△APO的外心是OA的中點,結合題意可得OC取值范圍.【詳解】(1)證明:連接OQ.∵AP、BQ是⊙O的切線,∴OP⊥AP,OQ⊥BQ,∴∠APO=∠BQO=90°,在Rt△APO和Rt△BQO中,,∴Rt△APO≌Rt△BQO,∴AP=BQ.(2)∵Rt△APO≌Rt△BQO,∴∠AOP=∠BOQ,∴P、O、Q三點共線,∵在Rt△BOQ中,cosB=,∴∠B=30°,∠BOQ=60°,∴OQ=OB=4,∵∠COD=90°,∴∠QOD=90°+60°=150°,∴優(yōu)弧QD的長=,(3)解:設點M為Rt△APO的外心,則M為OA的中點,

∵OA=1,

∴OM=4,

∴當△APO的外心在扇形COD的內部時,OM<OC,

∴OC的取值范圍為4<OC<1.【點睛】本題考查了三角形的外接圓與外心、弧長的計算、扇形面積的計算、旋轉的性質以及全等三角形的判定與性質,解題的關鍵是:(1)利用全等三角形的判定定理HL證出Rt△APO≌Rt△BQO;(2)通過解直角三角形求出圓的半徑;(3)牢記直角三角形外心為斜邊的中點是解題的關鍵.21、(1)200;(2)72°,作圖見解析;(3).【解析】

(1)用一等獎的人數(shù)除以所占的百分比求出總人數(shù);(2)用總人數(shù)乘以二等獎的人數(shù)所占的百分比求出二等獎的人數(shù),補全統(tǒng)計圖,再用360°乘以二等獎的人數(shù)所占的百分比即可求出“二等獎”對應的扇形圓心角度數(shù);(3)用獲得一等獎和二等獎的人數(shù)除以總人數(shù)即可得出答案.【詳解】解:(1)這次知識競賽共有學生=200(名);(2)二等獎的人數(shù)是:200×(1﹣10%﹣24%﹣46%)=40(人),補圖如下:“二等獎”對應的扇形圓心角度數(shù)是:360°×=72°;(3)小華獲得“一等獎或二等獎”的概率是:=.【點睛】本題主要考查了條形統(tǒng)計圖以及扇形統(tǒng)計圖,利用統(tǒng)計圖獲取信息是解本題的關鍵.22、(1)見解析;(2)DF=【解析】

(1)直接利用等腰三角形的定義結合勾股定理得出答案;(2)利用直角三角的定義結合勾股定理得出符合題意的答案.【詳解】(1)如圖(1)所示:△ABE,即為所求;(2)如圖(2)所示:△CDF即為所求,DF=.【點睛】此題主要考查了等腰三角形的定義以及三角形面積求法,正確應用網(wǎng)格分析是解題關鍵.23、1平方米【解析】

設原計劃平均每天施工x平方米,則實際平均每天施工1.2x平方米,根據(jù)時間=工作總量÷工作效率結合提前11天完成任務,即可得出關于x的分式方程,解之即可得出結論.【詳解】解:設原計劃平均每天施工x平方米,則實際平均每天施工1.2x平方米,根據(jù)題意得:﹣=11,解得:x=500,經(jīng)檢驗,x=500是原方程的解,∴1.2x=1.答:實際平均每天施工1平方米.【點睛】考查了分式方程的應用,解題的關鍵是找準等量關系,正確列出分式方程.24、(1)拋物線的表達式為;(2);(3)P點的坐標是.【解析】

分析:(1)由題意易得點A、C的坐標分別為(-1,0),(0,1),將這兩點坐標代入拋物線列出方程組,解得b、c的值即可求得拋物線的解析式;(2)如下圖,作PH⊥AC于H,連接OP,由已知條件先求得PC=2,AC=,結合S△APC,可求得PH=,再由OA=OC得到∠CAO=15°,結合CP∥OA可得∠PCA=15°,即可得到CH=PH=,由此可得AH=,這樣在Rt△APH中由tan∠PAC=即可求得所求答案了;(3)如圖,當四邊形AOPQ為符合要求的平行四邊形時,則此時PQ=AO=1,且點P、Q關于拋物線的對稱軸x=-1對稱,由此可得點P的橫坐標為-3,代入拋物線解析即可求得此時的點P的坐標.詳解:(1)∵直線y=x+1經(jīng)過點A、C,點A在x軸上,點C在y軸上∴A點坐標是(﹣1,0),點C坐標是(0,1),又∵拋物線過A,C兩點,∴解得,∴拋物線的表達式為;(2)作PH⊥AC于H,∵點C、P在拋物線上,CP//AO,C(0,1),A(-1,0)∴P(-2,1),AC=,∴PC=2,,∴PH=,∵A(﹣1,0),C(0,1),∴∠CAO=15°.∵CP//AO,∴∠ACP=∠CAO=15°,∵PH⊥AC,∴CH=PH=,∴.∴;(3)∵,∴拋物線的對稱軸為直線,∵以AP,AO為鄰邊的平行四邊形的第四個頂點Q恰好也在拋物線上,∴PQ∥AO,且PQ=AO=1.∵P,Q都在拋物線上,∴P,Q關于直線對稱,∴P點的橫坐標是﹣3,∵當x=﹣3時,,∴P點的坐標是.點睛:(1)解第2小題的關鍵是:作出如圖所示的輔助線,構造出Rt△APH,并結合題中的已知條件求出PH和AH的長;(2)解第3小題的關鍵是:根據(jù)題意畫出符合要求的示意圖,并由PQ∥AO,PQ=AO及P、Q關于拋物線的對稱軸對稱得到點P的橫坐標.【詳解】請在此輸入詳解!25、(1)真;(2);(3)或或.【解析】

(1)先根據(jù)直角三角形斜邊的中線等于斜邊的一半可知MP=MB,從而∠MPB=∠MBP,然后根據(jù)三角形外角的性質說明即可;(2)先證明△PAC∽△PMB,然后根據(jù)相似三角形的性質求解即可;(3)分三種情況求解:P為線段AB上的“好點”,P為線段AB延長線上的“好點”,P為線段BA延長線上的“好點”.【詳解】(1)真.理由如下:如圖,當∠ABC=90°時,M為PC中點,BM=PM,則∠MPB=∠MBP>∠ACP,所以在線段AB上不存在“好點”;(2)∵P為BA延長線上一個“好點”;∴∠ACP=∠MBP;∴△PAC∽△PMB;∴即;∵M為PC中點,∴MP=2;∴;∴.(3)第一種情況,P為線段AB上的“好點”,則∠ACP=∠MBA,找AP中點D,連結MD;∵M為CP中點;∴MD為△CPA中位線;∴MD=2,MD//CA;∴∠DMP=∠ACP=∠MBA;∴△DMP∽△DBM;∴DM2=DP·DB即4=DP·(5DP);解得DP=1,DP=4(不在AB邊上,舍去;)∴AP=2第二種情況(1),P為線段AB延長線上的“好點”,則∠ACP=∠MBA,找AP中點D,此時,D在線段AB上,如圖,連結MD;∵M為CP中點;∴M

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論