2021-2022學(xué)年廣西桂林市全州縣重點名校中考數(shù)學(xué)最后一模試卷含解析_第1頁
2021-2022學(xué)年廣西桂林市全州縣重點名校中考數(shù)學(xué)最后一模試卷含解析_第2頁
2021-2022學(xué)年廣西桂林市全州縣重點名校中考數(shù)學(xué)最后一模試卷含解析_第3頁
2021-2022學(xué)年廣西桂林市全州縣重點名校中考數(shù)學(xué)最后一模試卷含解析_第4頁
2021-2022學(xué)年廣西桂林市全州縣重點名校中考數(shù)學(xué)最后一模試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2021-2022中考數(shù)學(xué)模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.用一根長為a(單位:cm)的鐵絲,首尾相接圍成一個正方形,要將它按圖的方式向外等距擴1(單位:cm)得到新的正方形,則這根鐵絲需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm2.如圖,已知,那么下列結(jié)論正確的是()A. B. C. D.3.若正多邊形的一個內(nèi)角是150°,則該正多邊形的邊數(shù)是()A.6B.12C.16D.184.某班要推選學(xué)生參加學(xué)校的“詩詞達人”比賽,有7名學(xué)生報名參加班級選拔賽,他們的選拔賽成績各不相同,現(xiàn)取其中前3名參加學(xué)校比賽.小紅要判斷自己能否參加學(xué)校比賽,在知道自己成績的情況下,還需要知道這7名學(xué)生成績的()A.眾數(shù) B.中位數(shù) C.平均數(shù) D.方差5.一個幾何體的三視圖如圖所示,則該幾何體的形狀可能是()A.B.C.D.6.下列汽車標(biāo)志中,不是軸對稱圖形的是()A. B. C. D.7.如果,那么代數(shù)式的值為()A.1 B.2 C.3 D.48.如圖,一個幾何體由5個大小相同、棱長為1的正方體搭成,則這個幾何體的左視圖的面積為()A.5 B.4 C.3 D.29.一組數(shù)據(jù)3、2、1、2、2的眾數(shù),中位數(shù),方差分別是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.210.如圖所示,某公司有三個住宅區(qū),A、B、C各區(qū)分別住有職工30人,15人,10人,且這三點在一條大道上(A,B,C三點共線),已知AB=100米,BC=200米.為了方便職工上下班,該公司的接送車打算在此間只設(shè)一個??奎c,為使所有的人步行到??奎c的路程之和最小,那么該??奎c的位置應(yīng)設(shè)在()A.點A B.點B C.A,B之間 D.B,C之間11.某小組5名同學(xué)在一周內(nèi)參加家務(wù)勞動的時間如表所示,關(guān)于“勞動時間”的這組數(shù)據(jù),以下說法正確的是()動時間(小時)33.544.5人數(shù)1121A.中位數(shù)是4,平均數(shù)是3.75 B.眾數(shù)是4,平均數(shù)是3.75C.中位數(shù)是4,平均數(shù)是3.8 D.眾數(shù)是2,平均數(shù)是3.812.如圖是由四個相同的小正方體堆成的物體,它的正視圖是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,學(xué)校環(huán)保社成員想測量斜坡CD旁一棵樹AB的高度,他們先在點C處測得樹頂B的仰角為60°,然后在坡頂D測得樹頂B的仰角為30°,已知DE⊥EA,斜坡CD的長度為30m,DE的長為15m,則樹AB的高度是_____m.14.如圖,的半徑為,點,,,都在上,,將扇形繞點順時針旋轉(zhuǎn)后恰好與扇形重合,則的長為_____.(結(jié)果保留)15.已知二次函數(shù),與的部分對應(yīng)值如下表所示:…-101234……61-2-3-2m…下面有四個論斷:①拋物線的頂點為;②;③關(guān)于的方程的解為;④.其中,正確的有___________________.16.如圖,在平面直角坐標(biāo)系中,四邊形OABC的頂點O是坐標(biāo)原點,點A的坐標(biāo)(6,0),B的坐標(biāo)(0,8),點C的坐標(biāo)(﹣2,4),點M,N分別為四邊形OABC邊上的動點,動點M從點O開始,以每秒1個單位長度的速度沿O→A→B路線向終點B勻速運動,動點N從O點開始,以每秒2個單位長度的速度沿O→C→B→A路線向終點A勻速運動,點M,N同時從O點出發(fā),當(dāng)其中一點到達終點后,另一點也隨之停止運動,設(shè)動點運動的時間為t秒(t>0),△OMN的面積為S.則:AB的長是_____,BC的長是_____,當(dāng)t=3時,S的值是_____.17.因式分解:=___.18.如圖,矩形ABCD中,AB=2AD,點A(0,1),點C、D在反比例函數(shù)y=(k>0)的圖象上,AB與x軸的正半軸相交于點E,若E為AB的中點,則k的值為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在矩形ABCD中,AB=4,BC=6,M是BC的中點,DE⊥AM于點E.求證:△ADE∽△MAB;求DE的長.20.(6分)如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點,點P在線段AD上,過P作PF⊥AE于F,設(shè)PA=x.(1)求證:△PFA∽△ABE;(2)當(dāng)點P在線段AD上運動時,設(shè)PA=x,是否存在實數(shù)x,使得以點P,F(xiàn),E為頂點的三角形也與△ABE相似?若存在,請求出x的值;若不存在,請說明理由;(3)探究:當(dāng)以D為圓心,DP為半徑的⊙D與線段AE只有一個公共點時,請直接寫出x滿足的條件:.21.(6分)如圖1,三個正方形ABCD、AEMN、CEFG,其中頂點D、C、G在同一條直線上,點E是BC邊上的動點,連結(jié)AC、AM.(1)求證:△ACM∽△ABE.(2)如圖2,連結(jié)BD、DM、MF、BF,求證:四邊形BFMD是平行四邊形.(3)若正方形ABCD的面積為36,正方形CEFG的面積為4,求五邊形ABFMN的面積.22.(8分)先化簡再求值:(a﹣)÷,其中a=1+,b=1﹣.23.(8分)如圖1,在四邊形ABCD中,AB=AD.∠B+∠ADC=180°,點E,F(xiàn)分別在四邊形ABCD的邊BC,CD上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系.圖1圖2圖3(1)思路梳理將△ABE繞點A逆時針旋轉(zhuǎn)至△ADG,使AB與AD重合.由∠B+∠ADC=180°,得∠FDG=180°,即點F,D,G三點共線.易證△AFG,故EF,BE,DF之間的數(shù)量關(guān)系為;(2)類比引申如圖2,在圖1的條件下,若點E,F(xiàn)由原來的位置分別變到四邊形ABCD的邊CB,DC的延長線上,∠EAF=∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系,并給出證明.(3)聯(lián)想拓展如圖3,在△ABC中,∠BAC=90°,AB=AC,點D,E均在邊BC上,且∠DAE=45°.若BD=1,EC=2,則DE的長為.24.(10分)觀察下列各個等式的規(guī)律:第一個等式:=1,第二個等式:=2,第三個等式:=3…請用上述等式反映出的規(guī)律解決下列問題:直接寫出第四個等式;猜想第n個等式(用n的代數(shù)式表示),并證明你猜想的等式是正確的.25.(10分)如圖1,圖2分別是某款籃球架的實物圖與示意圖,已知底座BC=1.5米,底座BC與支架AC所成的角∠ACB=60°,支架AF的長為2.50米,籃板頂端F點到籃筐D的距離FD=1.3米,籃板底部支架HE與支架AF所成的角∠FHE=45°,求籃筐D到地面的距離.(精確到0.01米參考數(shù)據(jù):≈1.73,≈1.41)26.(12分)如圖,在△ABC中,∠ACB=90°,點D是AB上一點,以BD為直徑的⊙O和AB相切于點P.(1)求證:BP平分∠ABC;(2)若PC=1,AP=3,求BC的長.27.(12分)如圖,以△ABC的一邊AB為直徑作⊙O,⊙O與BC邊的交點D恰好為BC的中點,過點D作⊙O的切線交AC邊于點E.(1)求證:DE⊥AC;(2)連結(jié)OC交DE于點F,若,求的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】【分析】根據(jù)題意得出原正方形的邊長,再得出新正方形的邊長,繼而得出答案.【詳解】∵原正方形的周長為acm,∴原正方形的邊長為cm,∵將它按圖的方式向外等距擴1cm,∴新正方形的邊長為(+2)cm,則新正方形的周長為4(+2)=a+8(cm),因此需要增加的長度為a+8﹣a=8cm,故選B.【點睛】本題考查列代數(shù)式,解題的關(guān)鍵是根據(jù)題意表示出新正方形的邊長及規(guī)范書寫代數(shù)式.2、A【解析】

已知AB∥CD∥EF,根據(jù)平行線分線段成比例定理,對各項進行分析即可.【詳解】∵AB∥CD∥EF,∴.故選A.【點睛】本題考查平行線分線段成比例定理,找準(zhǔn)對應(yīng)關(guān)系,避免錯選其他答案.3、B【解析】設(shè)多邊形的邊數(shù)為n,則有(n-2)×180°=n×150°,解得:n=12,故選B.4、B【解析】

由于總共有7個人,且他們的成績互不相同,第4的成績是中位數(shù),要判斷自己能否參加學(xué)校比賽,只需知道中位數(shù)即可.【詳解】由于總共有7個人,且他們的成績互不相同,第4的成績是中位數(shù),要判斷自己能否參加學(xué)校比賽,故應(yīng)知道中位數(shù)是多少.故選B.【點睛】本題考查了統(tǒng)計的有關(guān)知識,掌握平均數(shù)、中位數(shù)、眾數(shù)、方差的意義是解題的關(guān)鍵.5、D【解析】試題分析:由主視圖和左視圖可得此幾何體上面為臺,下面為柱體,由俯視圖為圓環(huán)可得幾何體為.故選D.考點:由三視圖判斷幾何體.視頻6、C【解析】

根據(jù)軸對稱圖形的概念求解.【詳解】A、是軸對稱圖形,故錯誤;B、是軸對稱圖形,故錯誤;C、不是軸對稱圖形,故正確;D、是軸對稱圖形,故錯誤.故選C.【點睛】本題考查了軸對稱圖形的概念:軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合.7、A【解析】

先計算括號內(nèi)分式的減法,再將除法轉(zhuǎn)化為乘法,最后約分即可化簡原式,繼而將3x=4y代入即可得.【詳解】解:∵原式===∵3x-4y=0,∴3x=4y原式==1故選:A.【點睛】本題主要考查分式的化簡求值,解題的關(guān)鍵是熟練掌握分式的混合運算順序和運算法則.8、C【解析】

根據(jù)左視圖是從左面看到的圖形求解即可.【詳解】從左面看,可以看到3個正方形,面積為3,故選:C.【點睛】本題考查三視圖的知識,解決此類圖的關(guān)鍵是由三視圖得到相應(yīng)的平面圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖.9、B【解析】試題解析:從小到大排列此數(shù)據(jù)為:1,2,2,2,3;數(shù)據(jù)2出現(xiàn)了三次最多為眾數(shù),2處在第3位為中位數(shù).平均數(shù)為(3+2+1+2+2)÷5=2,方差為[(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位數(shù)是2,眾數(shù)是2,方差為0.1.故選B.10、A【解析】

此題為數(shù)學(xué)知識的應(yīng)用,由題意設(shè)一個??奎c,為使所有的人步行到??奎c的路程之和最小,肯定要盡量縮短兩地之間的里程,就用到兩點間線段最短定理.【詳解】解:①以點A為停靠點,則所有人的路程的和=15×100+10×300=1(米),②以點B為??奎c,則所有人的路程的和=30×100+10×200=5000(米),③以點C為??奎c,則所有人的路程的和=30×300+15×200=12000(米),④當(dāng)在AB之間停靠時,設(shè)停靠點到A的距離是m,則(0<m<100),則所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,⑤當(dāng)在BC之間??繒r,設(shè)??奎c到B的距離為n,則(0<n<200),則總路程為30(100+n)+15n+10(200﹣n)=5000+35n>1.∴該??奎c的位置應(yīng)設(shè)在點A;故選A.【點睛】此題為數(shù)學(xué)知識的應(yīng)用,考查知識點為兩點之間線段最短.11、C【解析】試題解析:這組數(shù)據(jù)中4出現(xiàn)的次數(shù)最多,眾數(shù)為4,∵共有5個人,∴第3個人的勞動時間為中位數(shù),故中位數(shù)為:4,平均數(shù)為:=3.1.故選C.12、A【解析】【分析】根據(jù)正視圖是從物體的正面看得到的圖形即可得.【詳解】從正面看可得從左往右2列正方形的個數(shù)依次為2,1,如圖所示:故選A.【點睛】本題考查了三視圖的知識,正視圖是從物體的正面看得到的視圖.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】

先根據(jù)CD=20米,DE=10m得出∠DCE=30°,故可得出∠DCB=90°,再由∠BDF=30°可知∠DBE=60°,由DF∥AE可得出∠BGF=∠BCA=60°,故∠GBF=30°,所以∠DBC=30°,再由銳角三角函數(shù)的定義即可得出結(jié)論.【詳解】解:作DF⊥AB于F,交BC于G.則四邊形DEAF是矩形,∴DE=AF=15m,∵DF∥AE,∴∠BGF=∠BCA=60°,∵∠BGF=∠GDB+∠GBD=60°,∠GDB=30°,∴∠GDB=∠GBD=30°,∴GD=GB,在Rt△DCE中,∵CD=2DE,∴∠DCE=30°,∴∠DCB=90°,∵∠DGC=∠BGF,∠DCG=∠BFG=90°∴△DGC≌△BGF,∴BF=DC=30m,∴AB=30+15=1(m),故答案為1.【點睛】本題考查的是解直角三角形的應(yīng)用-仰角俯角問題,熟記銳角三角函數(shù)的定義是解答此題的關(guān)鍵.14、.【解析】

根據(jù)題意先利用旋轉(zhuǎn)的性質(zhì)得到∠BOD=120°,則∠AOD=150°,然后根據(jù)弧長公式計算即可.【詳解】解:∵扇形AOB繞點O順時針旋轉(zhuǎn)120°后恰好與扇形COD重合,

∴∠BOD=120°,

∴∠AOD=∠AOB+∠BOD=30°+120°=150°,

∴的長=.

故答案為:.【點睛】本題考查了弧長的計算及旋轉(zhuǎn)的性質(zhì),掌握弧長公式l=(弧長為l,圓心角度數(shù)為n,圓的半徑為R)是解題的關(guān)鍵.15、①③.【解析】

根據(jù)圖表求出函數(shù)對稱軸,再根據(jù)圖表信息和二次函數(shù)性質(zhì)逐一判斷即可.【詳解】由二次函數(shù)y=ax2+bx+c(a≠0),y與x的部分對應(yīng)值可知:該函數(shù)圖象是開口向上的拋物線,對稱軸是直線x=2,頂點坐標(biāo)為(2,-3);與x軸有兩個交點,一個在0與1之間,另一個在3與4之間;當(dāng)y=-2時,x=1或x=3;由拋物線的對稱性可知,m=1;①拋物線y=ax2+bx+c(a≠0)的頂點為(2,-3),結(jié)論正確;②b2﹣4ac=0,結(jié)論錯誤,應(yīng)該是b2﹣4ac>0;③關(guān)于x的方程ax2+bx+c=﹣2的解為x1=1,x2=3,結(jié)論正確;④m=﹣3,結(jié)論錯誤,其中,正確的有.①③故答案為:①③【點睛】本題考查了二次函數(shù)的圖像,結(jié)合圖表信息是解題的關(guān)鍵.16、10,1,1【解析】

作CD⊥x軸于D,CE⊥OB于E,由勾股定理得出AB=10,OC==1,求出BE=OB﹣OE=4,得出OE=BE,由線段垂直平分線的性質(zhì)得出BC=OC=1;當(dāng)t=3時,N到達C點,M到達OA的中點,OM=3,ON=OC=1,由三角形面積公式即可得出△OMN的面積.【詳解】解:作CD⊥x軸于D,CE⊥OB于E,如圖所示:由題意得:OA=1,OB=8,∵∠AOB=90°,∴AB==10;∵點C的坐標(biāo)(﹣2,4),∴OC==1,OE=4,∴BE=OB﹣OE=4,∴OE=BE,∴BC=OC=1;當(dāng)t=3時,N到達C點,M到達OA的中點,OM=3,ON=OC=1,∴△OMN的面積S=×3×4=1;故答案為:10,1,1.【點睛】本題考查了勾股定理、坐標(biāo)與圖形性質(zhì)、線段垂直平分線的性質(zhì)、三角形面積公式等知識;熟練掌握勾股定理是解題的關(guān)鍵.17、【解析】分析:先提公因式,再利用平方差公式因式分解即可.詳解:a2(a-b)-4(a-b)=(a-b)(a2-4)=(a-b)(a-2)(a+2),故答案為:(a-b)(a-2)(a+2).點睛:本題考查的是因式分解,掌握提公因式法、平方差公式進行因式分解是解題的關(guān)鍵.18、【解析】解:如圖,作DF⊥y軸于F,過B點作x軸的平行線與過C點垂直與x軸的直線交于G,CG交x軸于K,作BH⊥x軸于H,∵四邊形ABCD是矩形,∴∠BAD=90°,∴∠DAF+∠OAE=90°,∵∠AEO+∠OAE=90°,∴∠DAF=∠AEO,∵AB=2AD,E為AB的中點,∴AD=AE,在△ADF和△EAO中,∵∠DAF=∠AEO,∠AFD=∠AOE=90°,AD=AE,∴△ADF≌△EAO(AAS),∴DF=OA=1,AF=OE,∴D(1,k),∴AF=k﹣1,同理;△AOE≌△BHE,△ADF≌△CBG,∴BH=BG=DF=OA=1,EH=CG=OE=AF=k﹣1,∴OK=2(k﹣1)+1=2k﹣1,CK=k﹣2,∴C(2k﹣1,k﹣2),∴(2k﹣1)(k﹣2)=1k,解得k1=,k2=,∵k﹣1>0,∴k=.故答案為.點睛:本題考查了矩形的性質(zhì)和反比例函數(shù)圖象上點的坐標(biāo)特征.圖象上的點(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2).【解析】試題分析:利用矩形角相等的性質(zhì)證明△DAE∽△AMB.試題解析:(1)證明:∵四邊形ABCD是矩形,∴AD∥BC,∴∠DAE=∠AMB,又∵∠DEA=∠B=90°,∴△DAE∽△AMB.(2)由(1)知△DAE∽△AMB,∴DE:AD=AB:AM,∵M是邊BC的中點,BC=6,∴BM=3,又∵AB=4,∠B=90°,∴AM=5,∴DE:6=4:5,∴DE=.20、(1)證明見解析;(2)3或.(3)或0<【解析】

(1)根據(jù)矩形的性質(zhì),結(jié)合已知條件可以證明兩個角對應(yīng)相等,從而證明三角形相似;

(2)由于對應(yīng)關(guān)系不確定,所以應(yīng)針對不同的對應(yīng)關(guān)系分情況考慮:當(dāng)時,則得到四邊形為矩形,從而求得的值;當(dāng)時,再結(jié)合(1)中的結(jié)論,得到等腰.再根據(jù)等腰三角形的三線合一得到是的中點,運用勾股定理和相似三角形的性質(zhì)進行求解.

(3)此題首先應(yīng)針對點的位置分為兩種大情況:①與AE相切,②與線段只有一個公共點,不一定必須相切,只要保證和線段只有一個公共點即可.故求得相切時的情況和相交,但其中一個交點在線段外的情況即是的取值范圍.【詳解】(1)證明:∵矩形ABCD,∴AD∥BC.∴∠PAF=∠AEB.又∵PF⊥AE,∴△PFA∽△ABE.(2)情況1,當(dāng)△EFP∽△ABE,且∠PEF=∠EAB時,則有PE∥AB∴四邊形ABEP為矩形,∴PA=EB=3,即x=3.情況2,當(dāng)△PFE∽△ABE,且∠PEF=∠AEB時,∵∠PAF=∠AEB,∴∠PEF=∠PAF.∴PE=PA.∵PF⊥AE,∴點F為AE的中點,即∴滿足條件的x的值為3或(3)或【點睛】兩組角對應(yīng)相等,兩三角形相似.21、(1)證明見解析;(2)證明見解析;(3)74.【解析】

(1)根據(jù)四邊形ABCD和四邊形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可證△ACM∽△ABE;(2)連結(jié)AC,由△ACM∽△ABE得∠ACM=∠B=90°,易證∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,F(xiàn)C=CE,得MF=BD,從而可以證明四邊形BFMD是平行四邊形;(3)根據(jù)S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.【詳解】(1)證明:∵四邊形ABCD和四邊形AEMN都是正方形,∴,∠CAB=∠MAC=45°,∴∠CAB-∠CAE=∠MAC-∠CAE,∴∠BAE=∠CAM,∴△ACM∽△ABE.(2)證明:連結(jié)AC因為△ACM∽△ABE,則∠ACM=∠B=90°,因為∠ACB=∠ECF=45°,所以∠ACM+∠ACB+∠ECF=180°,所以點M,C,F在同一直線上,所以∠MCD=∠BDC=45°,所以BD平行MF,又因為MC=BE,F(xiàn)C=CE,所以MF=BC=BD,所以四邊形BFMD是平行四邊形(3)S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM=62+42+(2+6)4+26=74.【點睛】本題主要考查了正方形的性質(zhì)的應(yīng)用,解此題的關(guān)鍵是能正確作出輔助線,綜合性比較強,有一定的難度.22、原式=【解析】

括號內(nèi)先通分進行分式的加減運算,然后再進行分式的乘除法運算,最后將數(shù)個代入進行計算即可.【詳解】原式===,當(dāng)a=1+,b=1﹣時,原式==.【點睛】本題考查了分式的化簡求值,熟練掌握分式混合運算的運算順序以及運算法則是解題的關(guān)鍵.23、(1)△AFE.EF=BE+DF.(2)BF=DF-BE,理由見解析;(3)【解析】試題分析:(1)先根據(jù)旋轉(zhuǎn)得:計算即點共線,再根據(jù)SAS證明△AFE≌△AFG,得EF=FG,可得結(jié)論EF=DF+DG=DF+AE;

(2)如圖2,同理作輔助線:把△ABE繞點A逆時針旋轉(zhuǎn)至△ADG,證明△EAF≌△GAF,得EF=FG,所以EF=DF?DG=DF?BE;

(3)如圖3,同理作輔助線:把△ABD繞點A逆時針旋轉(zhuǎn)至△ACG,證明△AED≌△AEG,得,先由勾股定理求的長,從而得結(jié)論.試題解析:(1)思路梳理:如圖1,把△ABE繞點A逆時針旋轉(zhuǎn)至△ADG,可使AB與AD重合,即AB=AD,由旋轉(zhuǎn)得:∠ADG=∠A=,BE=DG,∠DAG=∠BAE,AE=AG,∴∠FDG=∠ADF+∠ADG=+=,即點F.D.

G共線,∵四邊形ABCD為矩形,∴∠BAD=,∵∠EAF=,∴∴∴在△AFE和△AFG中,∵∴△AFE≌△AFG(SAS),∴EF=FG,∴EF=DF+DG=DF+AE;故答案為:△AFE,EF=DF+AE;(2)類比引申:如圖2,EF=DF?BE,理由是:把△ABE繞點A逆時針旋轉(zhuǎn)至△ADG,可使AB與AD重合,則G在DC上,由旋轉(zhuǎn)得:BE=DG,∠DAG=∠BAE,AE=AG,∵∠BAD=,∴∠BAE+∠BAG=,∵∠EAF=,∴∠FAG=?=,∴∠EAF=∠FAG=,在△EAF和△GAF中,∵∴△EAF≌△GAF(SAS),∴EF=FG,∴EF=DF?DG=DF?BE;(3)聯(lián)想拓展:如圖3,把△ABD繞點A逆時針旋轉(zhuǎn)至△ACG,可使AB與AC重合,連接EG,由旋轉(zhuǎn)得:AD=AG,∠BAD=∠CAG,BD=CG,∵∠BAC=,AB=AC,∴∠B=∠ACB=,∴∠ACG=∠B=,∴∠BCG=∠ACB+∠ACG=+=,∵EC=2,CG=BD=1,由勾股定理得:∵∠BAD=∠CAG,∠BAC=,∴∠DAG=,∵∠BAD+∠EAC=,∴∠CAG+∠EAC==∠EAG,∴∠DAE=,∴∠DAE=∠EAG=,∵AE=AE,∴△AED≌△AEG,∴24、(1)=4;(2)=n.【解析】

試題分析:(1)根據(jù)題目中的式子的變化規(guī)律可以寫出第四個等式;(2)根據(jù)題目中的式子的變化規(guī)律可以猜想出第n等式并加以證明.試題解析:解:(1)由題目中式子的變化規(guī)律可得,第四個等式是:=4;(2)第n個等式是:=n.證明如下:∵===n∴第n個等式是:=n.點睛:本題考查規(guī)律型:數(shù)字的變化類,解答本題的關(guān)鍵是明確題目中式子的變化規(guī)律,求出相應(yīng)的式子.25、3.05米【解析】

延長FE交CB的延長線于M,過A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論