版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023中考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.將一副直角三角尺如圖放置,若∠AOD=20°,則∠BOC的大小為()A.140° B.160° C.170° D.150°2.下列圖形中為正方體的平面展開圖的是()A. B.C. D.3.cos30°=()A. B. C. D.4.已知⊙O1與⊙O2的半徑分別是3cm和5cm,兩圓的圓心距為4cm,則兩圓的位置關(guān)系是()A.相交B.內(nèi)切C.外離D.內(nèi)含5.二次函數(shù)y=x2﹣6x+m的圖象與x軸有兩個交點,若其中一個交點的坐標為(1,0),則另一個交點的坐標為()A.(﹣1,0) B.(4,0) C.(5,0) D.(﹣6,0)6.若二次函數(shù)的圖象與軸有兩個交點,坐標分別是(x1,0),(x2,0),且.圖象上有一點在軸下方,則下列判斷正確的是()A. B. C. D.7.如圖,在平面直角坐標中,正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,點A,B,E在x軸上,若正方形BEFG的邊長為6,則C點坐標為()A.(3,2) B.(3,1) C.(2,2) D.(4,2)8.2012﹣2013NBA整個常規(guī)賽季中,科比罰球投籃的命中率大約是83.3%,下列說法錯誤的是A.科比罰球投籃2次,一定全部命中B.科比罰球投籃2次,不一定全部命中C.科比罰球投籃1次,命中的可能性較大D.科比罰球投籃1次,不命中的可能性較小9.下列圖形中,是中心對稱圖形,但不是軸對稱圖形的是()A. B.C. D.10.如圖,直線AB∥CD,則下列結(jié)論正確的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°11.-10-4的結(jié)果是()A.-7B.7C.-14D.1312.如圖,直線a,b被直線c所截,若a∥b,∠1=50°,∠3=120°,則∠2的度數(shù)為()A.80° B.70° C.60° D.50°二、填空題:(本大題共6個小題,每小題4分,共24分.)13.《孫子算經(jīng)》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?設(shè)有x匹大馬,y匹小馬,根據(jù)題意可列方程組為______.14.如下圖,在直徑AB的半圓O中,弦AC、BD相交于點E,EC=2,BE=1.則cos∠BEC=________.15.若向北走5km記作﹣5km,則+10km的含義是_____.16.如圖,AB∥CD,BE交CD于點D,CE⊥BE于點E,若∠B=34°,則∠C的大小為________度.17.如圖,矩形ABCD,AB=2,BC=1,將矩形ABCD繞點A順時針旋轉(zhuǎn)90°得矩形AEFG,連接CG、EG,則∠CGE=________.18.如圖,已知l1∥l2∥l3,相鄰兩條平行直線間的距離相等,若等腰直角三角形ABC的直角頂點C在l1上,另兩個頂點A,B分別在l3,l2上,則sinα的值是_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某船的載重為260噸,容積為1000m1.現(xiàn)有甲、乙兩種貨物要運,其中甲種貨物每噸體積為8m1,乙種貨物每噸體積為2m1,若要充分利用這艘船的載重與容積,求甲、乙兩種貨物應(yīng)各裝的噸數(shù)(設(shè)裝運貨物時無任何空隙).20.(6分)如圖,在矩形ABCD中,點F在邊BC上,且AF=AD,過點D作DE⊥AF,垂足為點E.求證:DE=AB;以D為圓心,DE為半徑作圓弧交AD于點G,若BF=FC=1,試求EG的長.21.(6分)(本題滿分8分)如圖,四邊形ABCD中,,E是邊CD的中點,連接BE并延長與AD的延長線相較于點F.(1)求證:四邊形BDFC是平行四邊形;(2)若△BCD是等腰三角形,求四邊形BDFC的面積.22.(8分)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,下面是水平放置的破裂管道有水部分的截面.若這個輸水管道有水部分的水面寬,水面最深地方的高度為4cm,求這個圓形截面的半徑.23.(8分)如圖,點P是菱形ABCD的對角線BD上一點,連接CP并延長,交AD于E,交BA的延長線點F.問:圖中△APD與哪個三角形全等?并說明理由;求證:△APE∽△FPA;猜想:線段PC,PE,PF之間存在什么關(guān)系?并說明理由.24.(10分)如圖,一次函數(shù)y=-x+5的圖象與反比例函數(shù)y=(k≠0)在第一象限的圖象交于A(1,n)和B兩點.求反比例函數(shù)的解析式;在第一象限內(nèi),當一次函數(shù)y=-x+5的值大于反比例函數(shù)y=(k≠0)的值時,寫出自變量x的取值范圍.25.(10分)如圖,已知AB是⊙O上的點,C是⊙O上的點,點D在AB的延長線上,∠BCD=∠BAC.求證:CD是⊙O的切線;若∠D=30°,BD=2,求圖中陰影部分的面積.26.(12分)解不等式組,并把解集在數(shù)軸上表示出來.27.(12分)如圖1,在正方形ABCD中,E是AB上一點,F(xiàn)是AD延長線上一點,且DF=BE,求證:CE=CF;如圖2,在正方形ABCD中,E是AB上一點,G是AD上一點,如果∠GCE=45°,請你利用(1)的結(jié)論證明:GE=BE+GD;運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題:如圖3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一點,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面積.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】試題分析:根據(jù)∠AOD=20°可得:∠AOC=70°,根據(jù)題意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.考點:角度的計算2、C【解析】
利用正方體及其表面展開圖的特點依次判斷解題.【詳解】由四棱柱四個側(cè)面和上下兩個底面的特征可知A,B,D上底面不可能有兩個,故不是正方體的展開圖,選項C可以拼成一個正方體,故選C.【點睛】本題是對正方形表面展開圖的考查,熟練掌握正方體的表面展開圖是解題的關(guān)鍵.3、C【解析】
直接根據(jù)特殊角的銳角三角函數(shù)值求解即可.【詳解】故選C.【點睛】考點:特殊角的銳角三角函數(shù)點評:本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握特殊角的銳角三角函數(shù)值,即可完成.4、A【解析】試題分析:∵⊙O1和⊙O2的半徑分別為5cm和3cm,圓心距O1O2=4cm,5﹣3<4<5+3,∴根據(jù)圓心距與半徑之間的數(shù)量關(guān)系可知⊙O1與⊙O2相交.故選A.考點:圓與圓的位置關(guān)系.5、C【解析】
根據(jù)二次函數(shù)解析式求得對稱軸是x=3,由拋物線的對稱性得到答案.【詳解】解:由二次函數(shù)得到對稱軸是直線,則拋物線與軸的兩個交點坐標關(guān)于直線對稱,∵其中一個交點的坐標為,則另一個交點的坐標為,故選C.【點睛】考查拋物線與x軸的交點坐標,解題關(guān)鍵是掌握拋物線的對稱性質(zhì).6、D【解析】
根據(jù)拋物線與x軸有兩個不同的交點,根的判別式△>0,再分a>0和a<0兩種情況對C、D選項討論即可得解.【詳解】A、二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸有兩個交點無法確定a的正負情況,故本選項錯誤;B、∵x1<x2,∴△=b2-4ac>0,故本選項錯誤;C、若a>0,則x1<x0<x2,若a<0,則x0<x1<x2或x1<x2<x0,故本選項錯誤;D、若a>0,則x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,則(x0-x1)與(x0-x2)同號,∴a(x0-x1)(x0-x2)<0,綜上所述,a(x0-x1)(x0-x2)<0正確,故本選項正確.7、A【解析】
∵正方形ABCD與正方形BEFG是以原點O為位似中心的位似圖形,且相似比為,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C點坐標為:(3,2),故選A.8、A【解析】試題分析:根據(jù)概率的意義,概率是反映事件發(fā)生機會的大小的概念,只是表示發(fā)生的機會的大小,機會大也不一定發(fā)生。因此。A、科比罰球投籃2次,不一定全部命中,故本選項正確;B、科比罰球投籃2次,不一定全部命中,正確,故本選項錯誤;C、∵科比罰球投籃的命中率大約是83.3%,∴科比罰球投籃1次,命中的可能性較大,正確,故本選項錯誤;D、科比罰球投籃1次,不命中的可能性較小,正確,故本選項錯誤。故選A。9、A【解析】分析:根據(jù)中心對稱圖形的定義旋轉(zhuǎn)180°后能夠與原圖形完全重合即是中心對稱圖形,以及軸對稱圖形的定義:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形叫做軸對稱圖形,這條直線叫做對稱軸,即可判斷出答案.詳解:A、此圖形是中心對稱圖形,不是軸對稱圖形,故此選項正確;B、此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;C、此圖形是中心對稱圖形,也是軸對稱圖形,故此選項錯誤;D、此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤.故選A.點睛:此題主要考查了中心對稱圖形與軸對稱的定義,關(guān)鍵是找出圖形的對稱中心與對稱軸.10、D【解析】分析:依據(jù)AB∥CD,可得∠3+∠5=180°,再根據(jù)∠5=∠4,即可得出∠3+∠4=180°.詳解:如圖,∵AB∥CD,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故選D.點睛:本題考查了平行線的性質(zhì),解題時注意:兩直線平行,同旁內(nèi)角互補.11、C【解析】解:-10-4=-1.故選C.12、B【解析】
直接利用平行線的性質(zhì)得出∠4的度數(shù),再利用對頂角的性質(zhì)得出答案.【詳解】解:∵a∥b,∠1=50°,∴∠4=50°,∵∠3=120°,∴∠2+∠4=120°,∴∠2=120°-50°=70°.故選B.【點睛】此題主要考查了平行線的性質(zhì),正確得出∠4的度數(shù)是解題關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】分析:根據(jù)題意可以列出相應(yīng)的方程組,從而可以解答本題.詳解:由題意可得,,故答案為點睛:本題考查由實際問題抽象出二元一次方程組,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的方程組.14、【解析】分析:連接BC,則∠BCE=90°,由余弦的定義求解.詳解:連接BC,根據(jù)圓周角定理得,∠BCE=90°,所以cos∠BEC=.故答案為.點睛:本題考查了圓周角定理的余弦的定義,求一個銳角的余弦時,需要把這個銳角放到直角三角形中,再根據(jù)余弦的定義求解,而圓中直徑所對的圓周角是直角.15、向南走10km【解析】
分析:與北相反的方向是南,由題意,負數(shù)表示向北走,則正數(shù)就表示向南走,據(jù)此得出結(jié)論.詳解:∵向北走5km記作﹣5km,∴+10km表示向南走10km.故答案是:向南走10km.點睛:本題考查對相反意義量的認識:在一對具有相反意義的量中,先規(guī)定一個為正數(shù),則另一個就要用負數(shù)表示.16、56【解析】
解:∵AB∥CD,∴又∵CE⊥BE,∴Rt△CDE中,故答案為56.17、45°【解析】試題解析:如圖,連接CE,∵AB=2,BC=1,∴DE=EF=1,CD=GF=2,在△CDE和△GFE中∴△CDE≌△GFE(SAS),∴CE=GE,∠CED=∠GEF,故答案為18、【解析】
過點A作AD⊥l1于D,過點B作BE⊥l1于E,根據(jù)同角的余角相等求出∠CAD=∠BCE,然后利用“角角邊”證明△ACD和△CBE全等,根據(jù)全等三角形對應(yīng)邊相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用銳角的正弦等于對邊比斜邊列式計算即可得解.【詳解】如圖,過點A作AD⊥l1于D,過點B作BE⊥l1于E,設(shè)l1,l2,l3間的距離為1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴AD=2,∴AC=,∴AB=AC=,∴sinα=,故答案為.【點睛】本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),銳角三角函數(shù)的定義,正確添加輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、這艘船裝甲貨物80噸,裝乙貨物180噸.【解析】
根據(jù)題意先列二元一次方程,再解方程即可.【詳解】解:設(shè)這艘船裝甲貨物x噸,裝乙貨物y噸,根據(jù)題意,得.解得.答:這艘船裝甲貨物80噸,裝乙貨物180噸.【點睛】此題重點考查學(xué)生對二元一次方程的應(yīng)用能力,熟練掌握二元一次方程的解法是解題的關(guān)鍵.20、(1)詳見解析;(2)36【解析】∵四邊形ABCD是矩形,∴∠B=∠C=90°,AB=CD,BC=AD,AD∥BC,∴∠EAD=∠AFB,∵DE⊥AF,∴∠AED=90°,在△ADE和△FAB中∠AED=∠B=90∴△ADE≌△FAB(AAS),∴AE=BF=1∵BF=FC=1∴BC=AD=2故在Rt△ADE中,∠ADE=30°,DE=3,∴EG的長=30×π×3180=21、(1)見解析;(2)62或3【解析】試題分析:(1)根據(jù)平行線的性質(zhì)和中點的性質(zhì)證明三角形全等,然后根據(jù)對角線互相平分的四邊形是平行四邊形完成證明;(2)由等腰三角形的性質(zhì),分三種情況:①BD=BC,②BD=CD,③BC=CD,分別求四邊形的面積.試題解析:(1)證明:∵∠A=∠ABC=90°∴AF∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E是邊CD的中點∴CE=DE∴△BCE≌△FDE(AAS)∴BE=EF∴四邊形BDFC是平行四邊形(2)若△BCD是等腰三角形①若BD=DC在Rt△ABD中,AB=B∴四邊形BDFC的面積為S=22×3=62②若BD=DC過D作BC的垂線,則垂足為BC得中點,不可能;③若BC=DC過D作DG⊥BC,垂足為G在Rt△CDG中,DG=D∴四邊形BDFC的面積為S=35考點:三角形全等,平行四邊形的判定,勾股定理,四邊形的面積22、這個圓形截面的半徑為10cm.【解析】分析:先作輔助線,利用垂徑定理求出半徑,再根據(jù)勾股定理計算.解答:解:如圖,OE⊥AB交AB于點D,則DE=4,AB=16,AD=8,設(shè)半徑為R,∴OD=OE-DE=R-4,由勾股定理得,OA2=AD2+OD2,即R2=82+(R-4)2,解得,R=10cm.23、(1)△CPD.理由參見解析;(2)證明參見解析;(3)PC2=PE?PF.理由參見解析.【解析】
(1)根據(jù)菱形的性質(zhì),利用SAS來判定兩三角形全等;(2)根據(jù)第一問的全等三角形結(jié)論及已知,利用兩組角相等則兩三角形相似來判定即可;(3)根據(jù)相似三角形的對應(yīng)邊成比例及全等三角形的對應(yīng)邊相等即可得到結(jié)論.【詳解】解:(1)△APD≌△CPD.理由:∵四邊形ABCD是菱形,∴AD=CD,∠ADP=∠CDP.又∵PD=PD,∴△APD≌△CPD(SAS).(2)∵△APD≌△CPD,∴∠DAP=∠DCP,∵CD∥AB,∴∠DCF=∠DAP=∠CFB,又∵∠FPA=∠FPA,∴△APE∽△FPA(兩組角相等則兩三角形相似).(3)猜想:PC2=PE?PF.理由:∵△APE∽△FPA,∴即PA2=PE?PF.∵△APD≌△CPD,∴PA=PC.∴PC2=PE?PF.【點睛】本題考查1.相似三角形的判定與性質(zhì);2.全等三角形的判定;3.菱形的性質(zhì),綜合性較強.24、(1);(2)1<x<1.【解析】
(1)將點A的坐標(1,1)代入,即可求出反比例函數(shù)的解析式;
(2)一次函數(shù)y=-x+5的值大于反比例函數(shù)y=,即反比例函數(shù)的圖象在一次函數(shù)的圖象的下方時自變量的取值范圍即可.【詳解】解:(1)∵一次函數(shù)y=﹣x+5的圖象過點A(1,n),∴n=﹣1+5,解得:n=1,∴點A的坐標為(1,1).∵反比例函數(shù)y=(k≠0)過點A(1,1),∴k=1×1=1,∴反比例函數(shù)的解析式為y=.聯(lián)立,解得:或,∴點B的坐標為(1,1).(2)觀察函數(shù)圖象,發(fā)現(xiàn):當1<x<1.時,反比例函數(shù)圖象在一次函數(shù)圖象下方,∴當一次函數(shù)y=﹣x+5的值大于反比例函數(shù)y=(k≠0)的值時,x的取值范圍為1<x<1.【點睛】本題考查了反比例函數(shù)和一次函數(shù)的交點問題,以及用待定系數(shù)法求反比例函數(shù)和一次函數(shù)的解析式,是基礎(chǔ)知識要熟練掌握.解題的關(guān)鍵是:(1)聯(lián)立兩函數(shù)解析式成二元一次方程組;(2)求出點C的坐標;(3)根據(jù)函數(shù)圖象上下關(guān)系結(jié)合交點橫坐標解決不等式.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,聯(lián)立兩函數(shù)解析式成方程組,解方程組求出交點的坐標是關(guān)鍵.25、(1)證明見解析;(2)陰影部分面積為【解析】【分析】(1)連接OC,易證∠BCD=∠OCA,由于AB是直徑,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切線;(2)設(shè)⊙O的半徑為r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分別計算△OAC的面積以及扇形OAC的面積即可求出陰影部分面積.【詳解】(1)如圖,連接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直徑,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半徑,∴CD是⊙O的切線(2)設(shè)⊙O的半徑為r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2,易求S△AOC=×2×1=S扇形OAC=,∴陰影部分面積為.【點睛】本題考查圓的綜合問題,涉及圓的切線判定,勾股定理,含30度的直角三角形的性質(zhì),等邊三角形的性質(zhì)等知識,熟練掌握和靈活運用相關(guān)知識是解題的關(guān)鍵.26、不等式組的解集為,在數(shù)軸上表示見解析.【解析】
先求出不等式組中每一個不等式的解集,再求出它們的公共部分,然后把不等式的解集表示在數(shù)軸上即可.【詳解】由2(x+2)≤3x+3,可得:x≥1,由,可得:x<3,則不等式組的解為:1≤x<3,不等式組的解集在數(shù)軸上表示如圖所示:【點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年第八章合同擔保在電子商務(wù)交易保障中的應(yīng)用3篇
- 2024年電子商務(wù)市場調(diào)研與競爭分析服務(wù)合同2篇
- 2024年度國際貿(mào)易出口合同訂立流程與風險控制指南3篇
- 2024年度財務(wù)風險防范及內(nèi)部控制建設(shè)合同3篇
- 2024年度研發(fā)與外包合同3篇
- 2024版二手車回收與再制造合同樣本2篇
- 2024版出租車公司股權(quán)轉(zhuǎn)讓與乘客安全保障系統(tǒng)建設(shè)合同3篇
- 2024版農(nóng)業(yè)科技示范園堰塘承包與技術(shù)創(chuàng)新合同3篇
- 2024年度藝術(shù)品買賣及授權(quán)合同5篇
- 2024版懸疑科幻電影拍攝合同2篇
- 2024-淘寶商城入駐協(xié)議標準版
- 中國青少年籃球訓(xùn)練教學(xué)大綱-姚維
- 長方體的表面積說課市公開課一等獎省賽課微課金獎?wù)n件
- 中國石油天然氣集團有限公司投標人失信行為管理辦法(試行)
- 中醫(yī)藥與中華傳統(tǒng)文化智慧樹知到期末考試答案2024年
- 產(chǎn)品質(zhì)量保證函模板
- 模板支撐腳手架集中線荷載、施工總荷載計算表(修正)
- GB/T 43700-2024滑雪場所的運行和管理規(guī)范
- 新媒體部門崗位配置人員架構(gòu)圖
- 水電站廠房設(shè)計-畢業(yè)設(shè)計
- 綜合金融服務(wù)方案課件
評論
0/150
提交評論