版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023中考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫(xiě)在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫(xiě)清楚,線條、符號(hào)等須加黑、加粗.一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,點(diǎn)F是AC的中點(diǎn),AD與FE,CE分別交于點(diǎn)G、H,∠BCE=∠CAD,有下列結(jié)論:①圖中存在兩個(gè)等腰直角三角形;②△AHE≌△CBE;③BC?AD=AE2;④S△ABC=4S△ADF.其中正確的個(gè)數(shù)有()A.1 B.2 C.3 D.42.實(shí)數(shù)的相反數(shù)是()A. B. C. D.3.下列交通標(biāo)志是中心對(duì)稱圖形的為()A. B. C. D.4.如圖,把長(zhǎng)方形紙片ABCD折疊,使頂點(diǎn)A與頂點(diǎn)C重合在一起,EF為折痕.若AB=9,BC=3,試求以折痕EF為邊長(zhǎng)的正方形面積()A.11 B.10 C.9 D.165.工信部發(fā)布《中國(guó)數(shù)字經(jīng)濟(jì)發(fā)展與就業(yè)白皮書(shū)(2018)》)顯示,2017年湖北數(shù)字經(jīng)濟(jì)總量1.21萬(wàn)億元,列全國(guó)第七位、中部第一位.“1.21萬(wàn)”用科學(xué)記數(shù)法表示為()A.1.21×103B.12.1×103C.1.21×104D.0.121×1056.下列計(jì)算正確的是()A.﹣a4b÷a2b=﹣a2bB.(a﹣b)2=a2﹣b2C.a(chǎn)2?a3=a6D.﹣3a2+2a2=﹣a27.如圖,在菱形ABCD中,∠A=60°,E是AB邊上一動(dòng)點(diǎn)(不與A、B重合),且∠EDF=∠A,則下列結(jié)論錯(cuò)誤的是()A.AE=BF B.∠ADE=∠BEFC.△DEF是等邊三角形 D.△BEF是等腰三角形8.下列各數(shù)中,為無(wú)理數(shù)的是()A. B. C. D.9.我國(guó)第一艘航母“遼寧艦”最大排水量為67500噸,用科學(xué)記數(shù)法表示這個(gè)數(shù)字是A.6.75×103噸 B.67.5×103噸 C.6.75×104噸 D.6.75×105噸10.在數(shù)軸上表示不等式組的解集,正確的是()A. B.C. D.11.半徑為的正六邊形的邊心距和面積分別是()A., B.,C., D.,12.一元二次方程的根是()A. B.C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.已知線段厘米,厘米,線段c是線段a和線段b的比例中項(xiàng),線段c的長(zhǎng)度等于________厘米.14.拋物線y=x2+2x+m﹣1與x軸有交點(diǎn),則m的取值范圍是_____.15.甲乙兩人8次射擊的成績(jī)?nèi)鐖D所示(單位:環(huán))根據(jù)圖中的信息判斷,這8次射擊中成績(jī)比較穩(wěn)定的是______(填“甲”或“乙”)16.因式分解:3x2-6xy+3y2=______.17.計(jì)算的結(jié)果是____.18.小李和小林練習(xí)射箭,射完10箭后兩人的成績(jī)?nèi)鐖D所示,通常新手的成績(jī)不太穩(wěn)定,根據(jù)圖中的信息,估計(jì)這兩人中的新手是_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如圖所示,某工程隊(duì)準(zhǔn)備在山坡(山坡視為直線l)上修一條路,需要測(cè)量山坡的坡度,即tanα的值.測(cè)量員在山坡P處(不計(jì)此人身高)觀察對(duì)面山頂上的一座鐵塔,測(cè)得塔尖C的仰角為37°,塔底B的仰角為26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,圖中的點(diǎn)O、B、C、A、P在同一平面內(nèi),求山坡的坡度.(參考數(shù)據(jù)sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)20.(6分)某快餐店試銷某種套餐,試銷一段時(shí)間后發(fā)現(xiàn),每份套餐的成本為5元,該店每天固定支出費(fèi)用為600元(不含套餐成本).若每份套餐售價(jià)不超過(guò)10元,每天可銷售400份;若每份套餐售價(jià)超過(guò)10元,每提高1元,每天的銷售量就減少40份.為了便于結(jié)算,每份套餐的售價(jià)(元)取整數(shù),用(元)表示該店每天的利潤(rùn).若每份套餐售價(jià)不超過(guò)10元.①試寫(xiě)出與的函數(shù)關(guān)系式;②若要使該店每天的利潤(rùn)不少于800元,則每份套餐的售價(jià)應(yīng)不低于多少元?該店把每份套餐的售價(jià)提高到10元以上,每天的利潤(rùn)能否達(dá)到1560元?若能,求出每份套餐的售價(jià)應(yīng)定為多少元時(shí),既能保證利潤(rùn)又能吸引顧客?若不能,請(qǐng)說(shuō)明理由.21.(6分)計(jì)算:﹣22+(π﹣2018)0﹣2sin60°+|1﹣|22.(8分)如圖,在?ABCD中,∠BAC=90°,對(duì)角線AC,BD相交于點(diǎn)P,以AB為直徑的⊙O分別交BC,BD于點(diǎn)E,Q,連接EP并延長(zhǎng)交AD于點(diǎn)F.(1)求證:EF是⊙O的切線;(2)求證:=4BP?QP.23.(8分)如圖,拋物線與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱軸為=–1,P為拋物線上第二象限的一個(gè)動(dòng)點(diǎn).(1)求拋物線的解析式并寫(xiě)出其頂點(diǎn)坐標(biāo);(2)當(dāng)點(diǎn)P的縱坐標(biāo)為2時(shí),求點(diǎn)P的橫坐標(biāo);(3)當(dāng)點(diǎn)P在運(yùn)動(dòng)過(guò)程中,求四邊形PABC面積最大時(shí)的值及此時(shí)點(diǎn)P的坐標(biāo).24.(10分)如圖所示,已知,試判斷與的大小關(guān)系,并說(shuō)明理由.25.(10分)如圖,已知△ABC中,∠ACB=90°,D是邊AB的中點(diǎn),P是邊AC上一動(dòng)點(diǎn),BP與CD相交于點(diǎn)E.(1)如果BC=6,AC=8,且P為AC的中點(diǎn),求線段BE的長(zhǎng);(2)聯(lián)結(jié)PD,如果PD⊥AB,且CE=2,ED=3,求cosA的值;(3)聯(lián)結(jié)PD,如果BP2=2CD2,且CE=2,ED=3,求線段PD的長(zhǎng).26.(12分)如圖,矩形ABCD中,CE⊥BD于E,CF平分∠DCE與DB交于點(diǎn)F.求證:BF=BC;若AB=4cm,AD=3cm,求CF的長(zhǎng).27.(12分)近日,深圳市人民政府發(fā)布了《深圳市可持續(xù)發(fā)展規(guī)劃》,提出了要做可持續(xù)發(fā)展的全球創(chuàng)新城市的目標(biāo),某初中學(xué)校了解學(xué)生的創(chuàng)新意識(shí),組織了全校學(xué)生參加創(chuàng)新能力大賽,從中抽取了部分學(xué)生成績(jī),分為5組:A組50~60;B組60~70;C組70~80;D組80~90;E組90~100,統(tǒng)計(jì)后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計(jì)圖.抽取學(xué)生的總?cè)藬?shù)是人,扇形C的圓心角是°;補(bǔ)全頻數(shù)直方圖;該校共有2200名學(xué)生,若成績(jī)?cè)?0分以下(不含70分)的學(xué)生創(chuàng)新意識(shí)不強(qiáng),有待進(jìn)一步培養(yǎng),則該校創(chuàng)新意識(shí)不強(qiáng)的學(xué)生約有多少人?
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】
①圖中有3個(gè)等腰直角三角形,故結(jié)論錯(cuò)誤;②根據(jù)ASA證明即可,結(jié)論正確;③利用面積法證明即可,結(jié)論正確;④利用三角形的中線的性質(zhì)即可證明,結(jié)論正確.【詳解】∵CE⊥AB,∠ACE=45°,∴△ACE是等腰直角三角形,∵AF=CF,∴EF=AF=CF,∴△AEF,△EFC都是等腰直角三角形,∴圖中共有3個(gè)等腰直角三角形,故①錯(cuò)誤,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,∴∠EAH=∠BCE,∵AE=EC,∠AEH=∠CEB=90°,∴△AHE≌△CBE,故②正確,∵S△ABC=BC?AD=AB?CE,AB=AC=AE,AE=CE,∴BC?AD=CE2,故③正確,∵AB=AC,AD⊥BC,∴BD=DC,∴S△ABC=2S△ADC,∵AF=FC,∴S△ADC=2S△ADF,∴S△ABC=4S△ADF.故選C.【點(diǎn)睛】本題考查相似三角形的判定和性質(zhì)、等腰直角三角形的判定和性質(zhì)、三角形的面積等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,屬于中考選擇題中的壓軸題.2、D【解析】
根據(jù)相反數(shù)的定義求解即可.【詳解】的相反數(shù)是-,故選D.【點(diǎn)睛】本題考查了實(shí)數(shù)的性質(zhì),在一個(gè)數(shù)的前面加上負(fù)號(hào)就是這個(gè)數(shù)的相反數(shù).3、C【解析】
根據(jù)中心對(duì)稱圖形的定義即可解答.【詳解】解:A、屬于軸對(duì)稱圖形,不是中心對(duì)稱的圖形,不合題意;
B、是中心對(duì)稱的圖形,但不是交通標(biāo)志,不符合題意;
C、屬于軸對(duì)稱圖形,屬于中心對(duì)稱的圖形,符合題意;
D、不是中心對(duì)稱的圖形,不合題意.
故選C.【點(diǎn)睛】本題考查中心對(duì)稱圖形的定義:繞對(duì)稱中心旋轉(zhuǎn)180度后所得的圖形與原圖形完全重合.4、B【解析】
根據(jù)矩形和折疊性質(zhì)可得△EHC≌△FBC,從而可得BF=HE=DE,設(shè)BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,據(jù)此得出GF=1,由EF2=EG2+GF2可得答案.【詳解】如圖,∵四邊形ABCD是矩形,∴AD=BC,∠D=∠B=90°,根據(jù)折疊的性質(zhì),有HC=AD,∠H=∠D,HE=DE,∴HC=BC,∠H=∠B,又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,∴∠HCE=∠BCF,在△EHC和△FBC中,∵,∴△EHC≌△FBC,∴BF=HE,∴BF=HE=DE,設(shè)BF=EH=DE=x,則AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,解得:x=4,即DE=EH=BF=4,則AG=DE=EH=BF=4,∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,∴EF2=EG2+GF2=32+12=10,故選B.【點(diǎn)睛】本題考查了折疊的性質(zhì)、矩形的性質(zhì)、三角形全等的判定與性質(zhì)、勾股定理等,綜合性較強(qiáng),熟練掌握各相關(guān)的性質(zhì)定理與判定定理是解題的關(guān)鍵.5、C【解析】分析:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值>1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).詳解:1.21萬(wàn)=1.21×104,故選:C.點(diǎn)睛:此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.6、D【解析】
根據(jù)各個(gè)選項(xiàng)中的式子可以計(jì)算出正確的結(jié)果,從而可以解答本題.【詳解】-aa-b2a2-3a故選:D.【點(diǎn)睛】考查整式的除法,完全平方公式,同底數(shù)冪相乘以及合并同類項(xiàng),比較基礎(chǔ),難度不大.7、D【解析】
連接BD,可得△ADE≌△BDF,然后可證得DE=DF,AE=BF,即可得△DEF是等邊三角形,然后可證得∠ADE=∠BEF.【詳解】連接BD,∵四邊形ABCD是菱形,
∴AD=AB,∠ADB=∠ADC,AB∥CD,
∵∠A=60°,
∴∠ADC=120°,∠ADB=60°,
同理:∠DBF=60°,
即∠A=∠DBF,
∴△ABD是等邊三角形,
∴AD=BD,
∵∠ADE+∠BDE=60°,∠BDE+∠BDF=∠EDF=60°,
∴∠ADE=∠BDF,
∵在△ADE和△BDF中,,
∴△ADE≌△BDF(ASA),
∴DE=DF,AE=BF,故A正確;
∵∠EDF=60°,
∴△EDF是等邊三角形,
∴C正確;
∴∠DEF=60°,
∴∠AED+∠BEF=120°,
∵∠AED+∠ADE=180°-∠A=120°,
∴∠ADE=∠BEF;
故B正確.
∵△ADE≌△BDF,
∴AE=BF,
同理:BE=CF,
但BE不一定等于BF.
故D錯(cuò)誤.
故選D.【點(diǎn)睛】本題考查了菱形的性質(zhì)、等邊三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是正確尋找全等三角形解決問(wèn)題.8、D【解析】A.=2,是有理數(shù);B.=2,是有理數(shù);C.,是有理數(shù);D.,是無(wú)理數(shù),故選D.9、C【解析】試題分析:根據(jù)科學(xué)記數(shù)法的定義,科學(xué)記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.在確定n的值時(shí),看該數(shù)是大于或等于1還是小于1.當(dāng)該數(shù)大于或等于1時(shí),n為它的整數(shù)位數(shù)減1;當(dāng)該數(shù)小于1時(shí),-n為它第一個(gè)有效數(shù)字前0的個(gè)數(shù)(含小數(shù)點(diǎn)前的1個(gè)0).67500一共5位,從而67500=6.75×2.故選C.10、C【解析】
解不等式組,再將解集在數(shù)軸上正確表示出來(lái)即可【詳解】解1+x≥0得x≥﹣1,解2x-4<0得x<2,所以不等式的解集為﹣1≤x<2,故選C.【點(diǎn)睛】本題主要考查了一元一次不等式組的求解,求出題中不等式組的解集是解題的關(guān)鍵.11、A【解析】
首先根據(jù)題意畫(huà)出圖形,易得△OBC是等邊三角形,繼而可得正六邊形的邊長(zhǎng)為R,然后利用解直角三角形求得邊心距,又由S正六邊形=求得正六邊形的面積.【詳解】解:如圖,O為正六邊形外接圓的圓心,連接OB,OC,過(guò)點(diǎn)O作OH⊥BC于H,∵六邊形ABCDEF是正六邊形,半徑為,∴∠BOC=,∵OB=OC=R,∴△OBC是等邊三角形,∴BC=OB=OC=R,∵OH⊥BC,∴在中,,即,∴,即邊心距為;∵,∴S正六邊形=,故選:A.【點(diǎn)睛】本題考查了正多邊形和圓的知識(shí);求得正六邊形的中心角為60°,得到等邊三角形是正確解答本題的關(guān)鍵.12、D【解析】試題分析:此題考察一元二次方程的解法,觀察發(fā)現(xiàn)可以采用提公因式法來(lái)解答此題.原方程可化為:,因此或,所以.故選D.考點(diǎn):一元二次方程的解法——因式分解法——提公因式法.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1【解析】
根據(jù)比例中項(xiàng)的定義,列出比例式即可得出中項(xiàng),注意線段不能為負(fù).【詳解】∵線段c是線段a和線段b的比例中項(xiàng),∴,解得(線段是正數(shù),負(fù)值舍去),∴,故答案為:1.【點(diǎn)睛】本題考查比例線段、比例中項(xiàng)等知識(shí),比例中項(xiàng)的平方等于兩條線段的乘積,熟練掌握基本概念是解題關(guān)鍵.14、m≤1.【解析】
由拋物線與x軸有交點(diǎn)可得出方程x1+1x+m-1=0有解,利用根的判別式△≥0,即可得出關(guān)于m的一元一次不等式,解之即可得出結(jié)論.【詳解】∴關(guān)于x的一元二次方程x1+1x+m?1=0有解,∴△=11?4(m?1)=8?4m≥0,解得:m≤1.故答案為:m≤1.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是拋物線與坐標(biāo)軸的交點(diǎn),解題的關(guān)鍵是熟練的掌握拋物線與坐標(biāo)軸的交點(diǎn).15、甲【解析】由圖表明乙這8次成績(jī)偏離平均數(shù)大,即波動(dòng)大,而甲這8次成績(jī),分布比較集中,各數(shù)據(jù)偏離平均小,方差小,則S2甲<S2乙,即兩人的成績(jī)更加穩(wěn)定的是甲.故答案為甲.16、3(x﹣y)1【解析】試題分析:原式提取3,再利用完全平方公式分解即可,得到3x1﹣6xy+3y1=3(x1﹣1xy+y1)=3(x﹣y)1.考點(diǎn):提公因式法與公式法的綜合運(yùn)用17、【解析】原式=,故答案為.18、小李.【解析】
解:根據(jù)圖中的信息找出波動(dòng)性大的即可:根據(jù)圖中的信息可知,小李的成績(jī)波動(dòng)性大,則這兩人中的新手是小李.故答案為:小李.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、【解析】
過(guò)點(diǎn)P作PD⊥OC于D,PE⊥OA于E,則四邊形ODPE為矩形,先解Rt△PBD,得出BD=PD?tan26.6°;解Rt△CBD,得出CD=PD?tan37°;再根據(jù)CD﹣BD=BC,列出方程,求出PD=2,進(jìn)而求出PE=4,AE=5,然后在△APE中利用三角函數(shù)的定義即可求解.【詳解】解:如圖,過(guò)點(diǎn)P作PD⊥OC于D,PE⊥OA于E,則四邊形ODPE為矩形.在Rt△PBD中,∵∠BDP=90°,∠BPD=26.6°,∴BD=PD?tan∠BPD=PD?tan26.6°.在Rt△CBD中,∵∠CDP=90°,∠CPD=37°,∴CD=PD?tan∠CPD=PD?tan37°.∵CD﹣BD=BC,∴PD?tan37°﹣PD?tan26.6°=1.∴0.75PD﹣0.50PD=1,解得PD=2.∴BD=PD?tan26.6°≈2×0.50=3.∵OB=220,∴PE=OD=OB﹣BD=4.∵OE=PD=2,∴AE=OE﹣OA=2﹣200=5.∴.20、(1)①y=400x﹣1.(5<x≤10);②9元或10元;(2)能,11元.【解析】
(1)、根據(jù)利潤(rùn)=(售價(jià)-進(jìn)價(jià))×數(shù)量-固定支出列出函數(shù)表達(dá)式;(2)、根據(jù)題意得出不等式,從而得出答案;(2)、根據(jù)題意得出函數(shù)關(guān)系式,然后將y=1560代入函數(shù)解析式,從而求出x的值得出答案.【詳解】解:(1)①y=400(x﹣5)﹣2.(5<x≤10),②依題意得:400(x﹣5)﹣2≥800,解得:x≥8.5,∵5<x≤10,且每份套餐的售價(jià)x(元)取整數(shù),∴每份套餐的售價(jià)應(yīng)不低于9元.(2)依題意可知:每份套餐售價(jià)提高到10元以上時(shí),y=(x﹣5)[400﹣40(x﹣10)]﹣2,當(dāng)y=1560時(shí),(x﹣5)[400﹣40(x﹣10)]﹣2=1560,解得:x1=11,x2=14,為了保證凈收入又能吸引顧客,應(yīng)取x1=11,即x2=14不符合題意.故該套餐售價(jià)應(yīng)定為11元.【點(diǎn)睛】本題主要考查的是一次函數(shù)和二次函數(shù)的實(shí)際應(yīng)用問(wèn)題,屬于中等難度的題型.理解題意,列出關(guān)系式是解決這個(gè)問(wèn)題的關(guān)鍵.21、-4【解析】分析:第一項(xiàng)根據(jù)乘方的意義計(jì)算,第二項(xiàng)非零數(shù)的零次冪等于1,第三項(xiàng)根據(jù)特殊角銳角三角函數(shù)值計(jì)算,第四項(xiàng)根據(jù)絕對(duì)值的意義化簡(jiǎn).詳解:原式=-4+1-2×+-1=-4點(diǎn)睛:本題考查了實(shí)數(shù)的運(yùn)算,熟練掌握乘方的意義,零指數(shù)冪的意義,及特殊角銳角三角函數(shù),絕對(duì)值的意義是解答本題的關(guān)鍵.22、(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.【解析】試題分析:(1)連接OE,AE,由AB是⊙O的直徑,得到∠AEB=∠AEC=90°,根據(jù)四邊形ABCD是平行四邊形,得到PA=PC推出∠OEP=∠OAC=90°,根據(jù)切線的判定定理即可得到結(jié)論;(2)由AB是⊙O的直徑,得到∠AQB=90°根據(jù)相似三角形的性質(zhì)得到=PB?PQ,根據(jù)全等三角形的性質(zhì)得到PF=PE,求得PA=PE=EF,等量代換即可得到結(jié)論.試題解析:(1)連接OE,AE,∵AB是⊙O的直徑,∴∠AEB=∠AEC=90°,∵四邊形ABCD是平行四邊形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切線;(2)∵AB是⊙O的直徑,∴∠AQB=90°,∴△APQ∽△BPA,∴,∴=PB?PQ,在△AFP與△CEP中,∵∠PAF=∠PCE,∠APF=∠CPE,PA=PC,∴△AFP≌△CEP,∴PF=PE,∴PA=PE=EF,∴=4BP?QP.考點(diǎn):切線的判定;平行四邊形的性質(zhì);相似三角形的判定與性質(zhì).23、(1)二次函數(shù)的解析式為,頂點(diǎn)坐標(biāo)為(–1,4);(2)點(diǎn)P橫坐標(biāo)為––1;(3)當(dāng)時(shí),四邊形PABC的面積有最大值,點(diǎn)P().【解析】試題分析:(1)已知拋物線與軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱軸為=﹣1,由此列出方程組,解方程組求得a、b、c的值,即可得拋物線的解析式,把解析式化為頂點(diǎn)式,直接寫(xiě)出頂點(diǎn)坐標(biāo)即可;(2)把y=2代入解析式,解方程求得x的值,即可得點(diǎn)P的橫坐標(biāo),從而求得點(diǎn)P的坐標(biāo);(3)設(shè)點(diǎn)P(,),則,根據(jù)得出四邊形PABC與x之間的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)求得x的值,即可求得點(diǎn)P的坐標(biāo).試題解析:(1)∵拋物線與軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱軸為=﹣1,∴,解得:,∴二次函數(shù)的解析式為=,∴頂點(diǎn)坐標(biāo)為(﹣1,4)(2)設(shè)點(diǎn)P(,2),即=2,解得=﹣1(舍去)或=﹣﹣1,∴點(diǎn)P(﹣﹣1,2).(3)設(shè)點(diǎn)P(,),則,,∴=∴當(dāng)時(shí),四邊形PABC的面積有最大值.所以點(diǎn)P().點(diǎn)睛:本題是二次函數(shù)綜合題,主要考查學(xué)生對(duì)二次函數(shù)解決動(dòng)點(diǎn)問(wèn)題綜合運(yùn)用能力,動(dòng)點(diǎn)問(wèn)題為中考??碱}型,注意培養(yǎng)數(shù)形結(jié)合思想,培養(yǎng)綜合分析歸納能力,解決這類問(wèn)題要會(huì)建立二次函數(shù)模型,利用二次函數(shù)的性質(zhì)解決問(wèn)題.24、.【解析】
首先判斷∠AED與∠ACB是一對(duì)同位角,然后根據(jù)已知條件推出DE∥BC,得出兩角相等.【詳解】解:∠AED=∠ACB.理由:如圖,分別標(biāo)記∠1,∠2,∠3,∠1.∵∠1+∠1=180°(平角定義),∠1+∠2=180°(已知).
∴∠2=∠1.
∴EF∥AB(內(nèi)錯(cuò)角相等,兩直線平行).
∴∠3=∠ADE(兩直線平行,內(nèi)錯(cuò)角相等).
∵∠3=∠B(已知),
∴∠B=∠ADE(等量代換).
∴DE∥BC(同位角相等,兩直線平行).
∴∠AED=∠ACB(兩直線平行,同位角相等).【點(diǎn)睛】本題重點(diǎn)考查平行線的性質(zhì)和判定,難度適中.25、(1)(2)(3).【解析】
(1)由勾股定理求出BP的長(zhǎng),D是邊AB的中點(diǎn),P為AC的中點(diǎn),所以點(diǎn)E是△ABC的重心,然后求得BE的長(zhǎng).(2)過(guò)點(diǎn)B作BF∥CA交CD的延長(zhǎng)線于點(diǎn)F,所以,然后可求得EF=8,所以,所以,因?yàn)镻D⊥AB,D是邊AB的中點(diǎn),在△ABC中可求得cosA的值.(3)由,∠PBD=∠ABP,證得△PBD∽△ABP,再證明△DPE∽△DCP得到,PD可求.【詳解】解:(1)∵P為AC的中點(diǎn),AC=8,∴CP=4,∵∠ACB=90°,BC=6,∴BP=,∵D是邊AB的中點(diǎn),P為AC的中點(diǎn),∴點(diǎn)E是△ABC的重心,∴,(2)過(guò)點(diǎn)B作BF∥CA交CD的延長(zhǎng)線于點(diǎn)F,∴,∵BD=DA,∴FD=DC,BF=AC,∵CE=2,ED=3,則CD=5,∴EF=8,∴,∴,∴,設(shè)CP=k,則PA=3k,∵PD⊥AB,D是邊AB的中點(diǎn),∴PA=PB=3k,∴,∴,∵,∴,(3)∵∠ACB=90°,D是邊AB的中點(diǎn),∴,∵,∴,∵∠PBD=∠ABP,∴△PBD∽△ABP,∴∠BPD=∠A,∵∠A=∠DCA,∴∠DPE=∠DCP,∵∠PDE=∠CDP,△DPE∽△DCP,∴,∵DE=3,DC=5,∴.【點(diǎn)睛】本題
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東理工學(xué)院《數(shù)字繪畫(huà)訓(xùn)練Ⅱ》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東科技學(xué)院《著作權(quán)法》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東理工職業(yè)學(xué)院《工程結(jié)構(gòu)》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東機(jī)電職業(yè)技術(shù)學(xué)院《新能源材料》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東財(cái)貿(mào)職業(yè)學(xué)院《機(jī)器人技術(shù)及應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 贛西科技職業(yè)學(xué)院《統(tǒng)計(jì)軟件SAS及其應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 4歲兒童編程培訓(xùn)課件
- 七年級(jí)語(yǔ)文上冊(cè)第五單元?jiǎng)游锸澜?7動(dòng)物笑談教案新人教版
- 三年級(jí)品德與社會(huì)下冊(cè)第二單元第三課分享快樂(lè)教案新人教版
- 三年級(jí)數(shù)學(xué)下冊(cè)六年月日第1課時(shí)認(rèn)識(shí)年月日教案新人教版
- 林業(yè)專業(yè)知識(shí)考試試題及答案
- 2024年湖南省長(zhǎng)沙市中考數(shù)學(xué)試題(含解析)
- 2024年大學(xué)華西醫(yī)院運(yùn)營(yíng)管理部招考聘用3人高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 深圳市南山區(qū)2024-2025學(xué)年數(shù)學(xué)三年級(jí)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析
- 小學(xué)三年級(jí)信息技術(shù)考核方案
- 配電網(wǎng)工程工藝質(zhì)量典型問(wèn)題及解析
- 2023年二輪復(fù)習(xí)解答題專題二:一次函數(shù)的應(yīng)用方案設(shè)計(jì)型(原卷版+解析)
- 2024上海市化工職業(yè)病防治院上海市職業(yè)安全健康研究院工作人員招聘20人(高頻重點(diǎn)復(fù)習(xí)提升訓(xùn)練)共500題附帶答案詳解
- 人教版英語(yǔ)八年級(jí)上冊(cè)Unit 6《Im going to study computer science》說(shuō)課稿
- (完整版)光伏施工質(zhì)量控制重點(diǎn)
- 微積分試卷及規(guī)范標(biāo)準(zhǔn)答案6套
評(píng)論
0/150
提交評(píng)論