![2021版高考文科數學(人教A版)一輪復習高效演練分層突破第二章第7講函數的圖象Word版解析版_第1頁](http://file4.renrendoc.com/view/cf95e995159283996d074a03ec2e1274/cf95e995159283996d074a03ec2e12741.gif)
![2021版高考文科數學(人教A版)一輪復習高效演練分層突破第二章第7講函數的圖象Word版解析版_第2頁](http://file4.renrendoc.com/view/cf95e995159283996d074a03ec2e1274/cf95e995159283996d074a03ec2e12742.gif)
![2021版高考文科數學(人教A版)一輪復習高效演練分層突破第二章第7講函數的圖象Word版解析版_第3頁](http://file4.renrendoc.com/view/cf95e995159283996d074a03ec2e1274/cf95e995159283996d074a03ec2e12743.gif)
![2021版高考文科數學(人教A版)一輪復習高效演練分層突破第二章第7講函數的圖象Word版解析版_第4頁](http://file4.renrendoc.com/view/cf95e995159283996d074a03ec2e1274/cf95e995159283996d074a03ec2e12744.gif)
![2021版高考文科數學(人教A版)一輪復習高效演練分層突破第二章第7講函數的圖象Word版解析版_第5頁](http://file4.renrendoc.com/view/cf95e995159283996d074a03ec2e1274/cf95e995159283996d074a03ec2e12745.gif)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
[基礎題組練]1.小明騎車上學,開始時勻速行駛,途中因交通擁堵逗留了一段時間后,為了趕時間加快速度行駛,與以上事件切合得最好的圖象是( )分析:選C.小明勻速行駛時,所得圖象為一條直線,且距離學校愈來愈近,故消除因交通擁堵逗留了一段時間,與學校的距離不變,故消除D.以后為了趕時間加快速度行駛故消除B.
A.,2.(2020
·北衡水中學第二次調研河
)函數
y=(2x-1)ex的圖象大體是
(
)分析:選A.由于x趨勢于-∞時,y=(2x-1)ex<0,所以C,D錯誤;由于y′=(2x+1)ex,所以當x<-12時,y′<0,y=(2x-1)ex在(-∞,-12)上單調遞減,所以A正確,B錯誤,故選
A.3.(2020函數在區(qū)間
江·西七校第一次聯考(-2,1]上的圖象,則
)設f(x)是定義在R上的周期為f(2018)+f(2019)=( )
3的周期函數,如圖表示該A.2B.1C.-1D.0分析:選C.由于函數f(x)是定義在R上的周期為3的周期函數,所以f(2018)=f(2018-673×3)=f(-1),f(2019)=f(2019-673×3)=f(0),由題圖知f(-1)=-1,f(0)=0,所以f(2018)+f(2019)=f(-1)+f(0)=-1.4.(2020
甘·肅酒泉敦煌中學一診
)已知奇函數
f(x)在
x≥0
時的圖象以以下圖,則不等式xf(x)<0
的解集為
(
)A.(1,2)
B.(-2,-1)C.(-2,-1)∪(1,2)
D.(-1,1)分析:選
C.由于函數
f(x)是奇函數,所以圖象關于原點對稱
,補全當
x<0時的函數圖象,如圖.關于不等式xf(x)<0,當x>0時,f(x)<0,所以1<x<2;當x<0時,f(x)>0,所以-2<x<1,所以不等式xf(x)<0的解集為(-2,-1)∪(1,2),應選C.5.已知函數y=f(-|x|)的圖象以以下圖,則函數y=f(x)的圖象不行能是( )分析:選C.函數y=f(-|x|)=f(-x),x≥0,當x<0時,y=f(-|x|)=f(x),所以函數f(x),x<0,y=f(-|x|)的圖象在y軸左側的部分,就是函數y=f(x)的圖象,故可得函數y=f(x)的圖象不行能是C.6.如圖,函數f(x)的圖象是曲線OAB,此中點O,A,B的坐標分別為(0,0),(1,2),1的值等于.(3,1),則ff(3)分析:由圖象知f(3)=1,所以1=1.所以f1=f(1)=2.f(3)f(3)答案:2ax+b,x<-1,7.若函數f(x)=的圖象以以下圖,則f(-3)=.ln(x+a),x≥-1分析:由題圖可得a(-1)+b=3,ln(-1+a)=0,得a=2,b=5,所以f(x)=2x+5,x<-1故f(-3)=2×(-3)+5=-1.ln(x+2),x≥-1,答案:-18.設函數
f(x)=|x+a|,g(x)=x-1,關于任意的
x∈R,不等式
f(x)≥g(x)恒成立,則實數a的取值范圍是
.分析:如圖,作出函數f(x)=|x+a|與g(x)=x-1的圖象,觀察圖象可知:當且僅當-a≤1,即a≥-1時,不等式f(x)≥g(x)恒成立,所以a的取值范圍是[-1,+∞).答案:[-1,+∞)9.作出以下函數的圖象.x+2;(1)y=x-1(2)y=|log2(x+1)|.解:(1)由于y=x+2=1+3,先作出y=3的圖象,將其圖象向右平移1個單位長度,x-1x-1xx+2再向上平移1個單位長度,即得y=的圖象,以以下圖.(2)利用函數y=log2x的圖象進行平移和翻折變換,圖象如圖實線所示.10.已知函數f(x)=x|m-x|(x∈R),且f(4)=0.(1)務實數m的值;(2)作出函數f(x)的圖象;(3)若方程f(x)=a只有一個實數根,求a的取值范圍.解:(1)由于f(4)=0,所以4|m-4|=0,即m=4.(2)f(x)=x|x-4|x(x-4)=(x-2)2-4,x≥4,=-x(x-4)=-(x-2)2+4,x<4,f(x)的圖象以以下圖.(3)從f(x)的圖象可知,當a>4或a<0時,f(x)的圖象與直線y=a只有一個交點,即方程f(x)=a只有一個實數根,即a的取值范圍是(-∞,0)∪(4,+∞).[綜合題組練]x2+2x-1,x≥0,,x2∈R,若0<|x1|<|x2|,以下不等式1.已知函數f(x)=則對任意x1x2-2x-1,x<0,成立的是( )A.f(x1)+f(x2)<0B.f(x1)+f(x2)>0C.f(x1)-f(x2)>0D.f(x1)-f(x2)<0分析:選D.函數f(x)的圖象以以下圖,且f(-x)=f(x),從而函數f(x)是偶函數,且在[0,+∞)上是增函數.又0<|x1|<|x2|,所以f(x2)>f(x1),即f(x1)-f(x2)<0.x+1,x∈R,則不等式f(x2-2x)<f(3x-4)的解集是.2.已知函數f(x)=|x|+11,x≥0,分析:由已知得,f(x)=2其圖象以以下圖:-1-,x<0.x-13x-4≥0,3x-4<0,4≤x<2或x2-2x<0,由圖可知,不等式f(x2-2x)<f(3x-4)等價于解得x2-2x<0x2-2x<3x-4,3或1<x<4(1,2).3,所以所求的解集為答案:(1,2)3.已知函數f(x)=|x|(x-a),a>0,(1)作出函數f(x)的圖象;(2)寫出函數f(x)的單調區(qū)間;(3)當x∈[0,1]時,由圖象寫出f(x)的最小值.x(x-a),x≥0,解:(1)f(x)=x(x-a),x<0,其圖象以以下圖.(2)由圖知,f(x)的單調遞加區(qū)間是a,+∞;單調遞減區(qū)間是a(-∞,0),20,2.a=f(1)=1-a;(3)由圖象知,當2>1,即a>2時,所求最小值f(x)mina當0<≤1,即0<a≤2時,a2所求最小值f(x)min=f2=-4.a2(0<a≤2),綜上,f(x)min=41-a(a>2).4.已知函數f(x)=2x,x∈R.(1)當m取何值時,方程|f(x)-2|=m有一個解?兩個解?(2)若不等式[f(x)]2+f(x)-m>0在R上恒成立,求m的取值范圍.解:(1)令F(x)=|f(x)-2|=|2x-2|,G(x)=m,畫出F(x)的圖象以以下圖,由圖象看出,當m=0或m≥2時,函數F(x)與G(x)的圖象只有一個交點,即原方程有一個解;當0<m<2時,函數F(x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度屋頂光伏系統(tǒng)維護保養(yǎng)合同模板
- 學校安全管理方案
- 2024-2025學年廣西壯族自治區(qū)高三上學期11月聯考歷史試卷
- 2025年公共照明設施合同
- 2025年自動化設備購買與前期策劃協議
- 2025年住宅用地和樓宇訂購合同
- 2025年綠化養(yǎng)護承包合同范本
- 2025年外教聘請合作協議
- 2025年二手房產交易代理協議格式
- 2025年交通運輸中介合同協議書范本
- 運動會活動流程中的醫(yī)療安全保障措施
- 2025年冷鏈物流產品配送及倉儲管理承包合同3篇
- 電鍍產業(yè)園項目可行性研究報告(專業(yè)經典案例)
- 2025年魯泰集團招聘170人高頻重點提升(共500題)附帶答案詳解
- 2024-2025學年成都高新區(qū)七上數學期末考試試卷【含答案】
- 企業(yè)員工食堂管理制度框架
- 【開題報告】中小學校鑄牢中華民族共同體意識教育研究
- 2024-2025學年云南省大理州七年級(上)期末英語試卷(含答案)
- 中國遠洋海運集團招聘筆試沖刺題2025
- 《辣椒主要病蟲害》課件
- 2024年煤礦安全生產知識培訓考試必答題庫及答案(共190題)
評論
0/150
提交評論