版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在矩形AOBC中,O為坐標原點,OA、OB分別在x軸、y軸上,點B的坐標為(0,3),∠ABO=30°,將△ABC沿AB所在直線對折后,點C落在點D處,則點D的坐標為()A.(,) B.(2,) C.(,) D.(,3﹣)2.四張分別畫有平行四邊形、菱形、等邊三角形、圓的卡片,它們的背面都相同。現(xiàn)將它們背面朝上,從中任取一張,卡片上所畫圖形恰好是中心對稱圖形的概率是()A. B.1 C. D.3.函數(shù)的圖象上有兩點,,若,則()A. B. C. D.、的大小不確定4.下列計算正確的是()A. B. C. D.5.某單位若干名職工參加普法知識競賽,將成績制成如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖,根據(jù)圖中提供的信息,這些職工成績的中位數(shù)和平均數(shù)分別是()A.94分,96分 B.96分,96分C.94分,96.4分 D.96分,96.4分6.若關(guān)于x的一元二次方程(k﹣1)x2+2x﹣2=0有兩個不相等的實數(shù)根,則k的取值范圍是()A.k> B.k≥ C.k>且k≠1 D.k≥且k≠17.在下列四個新能源汽車車標的設計圖中,屬于中心對稱圖形的是()A. B. C. D.8.下列運算正確的是()A.a(chǎn)2?a3=a6 B.()﹣1=﹣2 C.=±4 D.|﹣6|=69.不等式組1-x≤0,3x-6<0A. B. C. D.10.若一次函數(shù)的圖像過第一、三、四象限,則函數(shù)()A.有最大值 B.有最大值 C.有最小值 D.有最小值二、填空題(共7小題,每小題3分,滿分21分)11.如圖,AB為圓O的直徑,弦CD⊥AB,垂足為點E,連接OC,若OC=5,CD=8,則AE=______.12.如果關(guān)于x的方程(m為常數(shù))有兩個相等實數(shù)根,那么m=______.13.如圖,為了測量河寬AB(假設河的兩岸平行),測得∠ACB=30°,∠ADB=60°,CD=60m,則河寬AB為m(結(jié)果保留根號).14.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,點D、E分別在邊AC、BC上,且CD:CE=3︰1.將△CDE繞點D順時針旋轉(zhuǎn),當點C落在線段DE上的點F處時,BF恰好是∠ABC的平分線,此時線段CD的長是________.15.若關(guān)于x的一元二次方程kx2+2(k+1)x+k-1=0有兩個實數(shù)根,則k的取值范圍是16.如圖,等邊△ABC的邊長為1cm,D、E分別是AB、AC邊上的點,將△ADE沿直線DE折疊,點A落在點處,且點在△ABC的外部,則陰影部分圖形的周長為_____cm.17.因式分解:2m2﹣8n2=.三、解答題(共7小題,滿分69分)18.(10分)如圖,某中學數(shù)學課外學習小組想測量教學樓的高度,組員小方在處仰望教學樓頂端處,測得,小方接著向教學樓方向前進到處,測得,已知,,.(1)求教學樓的高度;(2)求的值.19.(5分)定義:若四邊形中某個頂點與其它三個頂點的距離相等,則這個四邊形叫做等距四邊形,這個頂點叫做這個四邊形的等距點.(1)判斷:一個內(nèi)角為120°的菱形等距四邊形.(填“是”或“不是”)(2)如圖2,在5×5的網(wǎng)格圖中有A、B兩點,請在答題卷給出的兩個網(wǎng)格圖上各找出C、D兩個格點,使得以A、B、C、D為頂點的四邊形為互不全等的“等距四邊形”,畫出相應的“等距四邊形”,并寫出該等距四邊形的端點均為非等距點的對角線長.端點均為非等距點的對角線長為端點均為非等距點的對角線長為(3)如圖1,已知△ABE與△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,連結(jié)AD,AC,BC,若四邊形ABCD是以A為等距點的等距四邊形,求∠BCD的度數(shù).20.(8分)如圖,AC是的直徑,點B是內(nèi)一點,且,連結(jié)BO并延長線交于點D,過點C作的切線CE,且BC平分.求證:;若的直徑長8,,求BE的長.21.(10分)如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).(1)求拋物線的表達式;(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.22.(10分)為做好防汛工作,防汛指揮部決定對某水庫的水壩進行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來的高度BC.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)23.(12分)如圖,點A(m,m+1),B(m+1,2m-3)都在反比例函數(shù)的圖象上.(1)求m,k的值;(2)如果M為x軸上一點,N為y軸上一點,以點A,B,M,N為頂點的四邊形是平行四邊形,試求直線MN的函數(shù)表達式.24.(14分)如圖,在△ABC中,∠ACB=90°,O是AB上一點,以OA為半徑的⊙O與BC相切于點D,與AB交于點E,連接ED并延長交AC的延長線于點F.(1)求證:AE=AF;(2)若DE=3,sin∠BDE=,求AC的長.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】解:∵四邊形AOBC是矩形,∠ABO=10°,點B的坐標為(0,),∴AC=OB=,∠CAB=10°,∴BC=AC?tan10°=×=1.∵將△ABC沿AB所在直線對折后,點C落在點D處,∴∠BAD=10°,AD=.過點D作DM⊥x軸于點M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴點D的坐標為(,).故選A.2、A【解析】∵在:平行四邊形、菱形、等邊三角形和圓這4個圖形中屬于中心對稱圖形的有:平行四邊形、菱形和圓三種,∴從四張卡片中任取一張,恰好是中心對稱圖形的概率=.故選A.3、A【解析】
根據(jù)x1、x1與對稱軸的大小關(guān)系,判斷y1、y1的大小關(guān)系.【詳解】解:∵y=-1x1-8x+m,∴此函數(shù)的對稱軸為:x=-=-=-1,∵x1<x1<-1,兩點都在對稱軸左側(cè),a<0,∴對稱軸左側(cè)y隨x的增大而增大,∴y1<y1.故選A.【點睛】此題主要考查了函數(shù)的對稱軸求法和函數(shù)的單調(diào)性,利用二次函數(shù)的增減性解題時,利用對稱軸得出是解題關(guān)鍵.4、A【解析】
原式各項計算得到結(jié)果,即可做出判斷.【詳解】A、原式=,正確;
B、原式不能合并,錯誤;
C、原式=,錯誤;
D、原式=2,錯誤.
故選A.【點睛】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關(guān)鍵.5、D【解析】
解:總?cè)藬?shù)為6÷10%=60(人),則91分的有60×20%=12(人),98分的有60-6-12-15-9=18(人),第30與31個數(shù)據(jù)都是96分,這些職工成績的中位數(shù)是(96+96)÷2=96;這些職工成績的平均數(shù)是(92×6+91×12+96×15+98×18+100×9)÷60=(552+1128+1110+1761+900)÷60=5781÷60=96.1.故選D.【點睛】本題考查1.中位數(shù);2.扇形統(tǒng)計圖;3.條形統(tǒng)計圖;1.算術(shù)平均數(shù),掌握概念正確計算是關(guān)鍵.6、C【解析】
根據(jù)題意得k-1≠0且△=22-4(k-1)×(-2)>0,解得:k>且k≠1.故選C【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac,關(guān)鍵是熟練掌握:當△>0,方程有兩個不相等的實數(shù)根;當△=0,方程有兩個相等的實數(shù)根;當△<0,方程沒有實數(shù)根.7、D【解析】
根據(jù)中心對稱圖形的概念求解.【詳解】解:A.不是中心對稱圖形,本選項錯誤;B.不是中心對稱圖形,本選項錯誤;C.不是中心對稱圖形,本選項錯誤;D.是中心對稱圖形,本選項正確.故選D.【點睛】本題主要考查了中心對稱圖形的概念.中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.8、D【解析】
運用正確的運算法則即可得出答案.【詳解】A、應該為a5,錯誤;B、為2,錯誤;C、為4,錯誤;D、正確,所以答案選擇D項.【點睛】本題考查了四則運算法則,熟悉掌握是解決本題的關(guān)鍵.9、D【解析】試題分析:1-x≤0①3x-6<0②,由①得:x≥1,由②得:x<2,在數(shù)軸上表示不等式的解集是:,故選D.考點:1.在數(shù)軸上表示不等式的解集;2.解一元一次不等式組.10、B【解析】
解:∵一次函數(shù)y=(m+1)x+m的圖象過第一、三、四象限,∴m+1>0,m<0,即-1<m<0,∴函數(shù)有最大值,∴最大值為,故選B.二、填空題(共7小題,每小題3分,滿分21分)11、2【解析】試題解析:∵AB為圓O的直徑,弦CD⊥AB,垂足為點E.在直角△OCE中,則AE=OA?OE=5?3=2.故答案為2.12、1【解析】析:本題需先根據(jù)已知條件列出關(guān)于m的等式,即可求出m的值.解答:解:∵x的方程x2-2x+m=0(m為常數(shù))有兩個相等實數(shù)根∴△=b2-4ac=(-2)2-4×1?m=04-4m=0m=1故答案為113、【解析】
解:∵∠ACB=30°,∠ADB=60°,
∴∠CAD=30°,
∴AD=CD=60m,
在Rt△ABD中,
AB=AD?sin∠ADB=60×=(m).故答案是:.14、2【解析】分析:設CD=3x,則CE=1x,BE=12﹣1x,依據(jù)∠EBF=∠EFB,可得EF=BE=12﹣1x,由旋轉(zhuǎn)可得DF=CD=3x,再根據(jù)Rt△DCE中,CD2+CE2=DE2,即可得到(3x)2+(1x)2=(3x+12﹣1x)2,進而得出CD=2.詳解:如圖所示,設CD=3x,則CE=1x,BE=12﹣1x.∵=,∠DCE=∠ACB=90°,∴△ACB∽△DCE,∴∠DEC=∠ABC,∴AB∥DE,∴∠ABF=∠BFE.又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠EBF=∠EFB,∴EF=BE=12﹣1x,由旋轉(zhuǎn)可得DF=CD=3x.在Rt△DCE中,∵CD2+CE2=DE2,∴(3x)2+(1x)2=(3x+12﹣1x)2,解得x1=2,x2=﹣3(舍去),∴CD=2×3=2.故答案為2.點睛:本題考查了相似三角形的判定與性質(zhì),勾股定理以及旋轉(zhuǎn)的性質(zhì),解題時注意:對應點到旋轉(zhuǎn)中心的距離相等;對應點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.15、k≥-1【解析】試題解析:∵a=k,b=2(k+1),c=k-1,∴△=4(k+1)2-4×k×(k-1)=3k+1≥1,解得:k≥-13∵原方程是一元二次方程,∴k≠1.考點:根的判別式.16、3【解析】
由折疊前后圖形全等,可將陰影部分圖形的周長轉(zhuǎn)化為三角形周長.【詳解】∵△A'DE與△ADE關(guān)于直線DE對稱,∴AD=A'D,AE=A'E,C陰影=BC+A'D+A'E+BD+EC=BC+AD+AE+BD+EC=BC+AB+AC=3cm.故答案為3.【點睛】由圖形軸對稱可以得到對應的邊相等、角相等.17、2(m+2n)(m﹣2n).【解析】試題分析:根據(jù)因式分解法的步驟,有公因式的首先提取公因式,可知首先提取系數(shù)的最大公約數(shù)2,進一步發(fā)現(xiàn)提公因式后,可以用平方差公式繼續(xù)分解.解:2m2﹣8n2,=2(m2﹣4n2),=2(m+2n)(m﹣2n).考點:提公因式法與公式法的綜合運用.三、解答題(共7小題,滿分69分)18、(1)12m;(2)【解析】
(1)利用即可求解;(2)通過三角形外角的性質(zhì)得出,則,設,則,在中利用勾股定理即可求出BC,BD的長度,最后利用即可求解.【詳解】解:(1)在中,,答:教學樓的高度為;(2)設,則,故,解得:,則故.【點睛】本題主要考查解直角三角形,掌握勾股定理及正切,余弦的定義是解題的關(guān)鍵.19、(1)是;(2)見解析;(3)150°.【解析】
(1)由菱形的性質(zhì)和等邊三角形的判定與性質(zhì)即可得出結(jié)論;(2)根據(jù)題意畫出圖形,由勾股定理即可得出答案;(3)由SAS證明△AEC≌△BED,得出AC=BD,由等距四邊形的定義得出AD=AB=AC,證出AD=AB=BD,△ABD是等邊三角形,得出∠DAB=60°,由SSS證明△AED≌△AEC,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,由等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出∠ACB和∠ACD的度數(shù),即可得出答案.【詳解】解:(1)一個內(nèi)角為120°的菱形是等距四邊形;故答案為是;(2)如圖2,圖3所示:在圖2中,由勾股定理得:在圖3中,由勾股定理得:故答案為(3)解:連接BD.如圖1所示:∵△ABE與△CDE都是等腰直角三角形,∴DE=EC,AE=EB,∠DEC+∠BEC=∠AEB+∠BEC,即∠AEC=∠DEB,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD,∵四邊形ABCD是以A為等距點的等距四邊形,∴AD=AB=AC,∴AD=AB=BD,∴△ABD是等邊三角形,∴∠DAB=60°,∴∠DAE=∠DAB﹣∠EAB=60°﹣45°=15°,在△AED和△AEC中,∴△AED≌△AEC(SSS),∴∠CAE=∠DAE=15°,∴∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,∵AB=AC,AC=AD,∴∴∠BCD=∠ACB+∠ACD=75°+75°=150°.【點睛】本題是四邊形綜合題目,考查了等距四邊形的判定與性質(zhì)、菱形的性質(zhì)、等邊三角形的判定與性質(zhì)、勾股定理、全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、三角形內(nèi)角和定理等知識;本題綜合性強,有一定難度,證明三角形全等是解決問題的關(guān)鍵.20、(1)證明見解析;(2).【解析】
先利用等腰三角形的性質(zhì)得到,利用切線的性質(zhì)得,則CE∥BD,然后證明得到BE=CE;作于F,如圖,在Rt△OBC中利用正弦定義得到BC=5,所以,然后在Rt△BEF中通過解直角三角形可求出BE的長.【詳解】證明:,,,是的切線,,,.平分,,,;解:作于F,如圖,
的直徑長8,.,,,,在中,設,則,,即,解得,.故答案為(1)證明見解析;(2).【點睛】本題考查切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系簡記作:見切點,連半徑,見垂直也考查了解直角三角形.21、(1)拋物線的解析式為:y=﹣x1+x+1(1)存在,P1(,2),P1(,),P3(,﹣)(3)當點E運動到(1,1)時,四邊形CDBF的面積最大,S四邊形CDBF的面積最大=.【解析】試題分析:(1)將點A、C的坐標分別代入可得二元一次方程組,解方程組即可得出m、n的值;(1)根據(jù)二次函數(shù)的解析式可得對稱軸方程,由勾股定理求出CD的值,以點C為圓心,CD為半徑作弧交對稱軸于P1;以點D為圓心CD為半徑作圓交對稱軸于點P1,P3;作CH垂直于對稱軸與點H,由等腰三角形的性質(zhì)及勾股定理就可以求出結(jié)論;(3)由二次函數(shù)的解析式可求出B點的坐標,從而可求出BC的解析式,從而可設設E點的坐標,進而可表示出F的坐標,由四邊形CDBF的面積=S△BCD+S△CEF+S△BEF可求出S與a的關(guān)系式,由二次函數(shù)的性質(zhì)就可以求出結(jié)論.試題解析:(1)∵拋物線y=﹣x1+mx+n經(jīng)過A(﹣1,0),C(0,1).解得:,∴拋物線的解析式為:y=﹣x1+x+1;(1)∵y=﹣x1+x+1,∴y=﹣(x﹣)1+,∴拋物線的對稱軸是x=.∴OD=.∵C(0,1),∴OC=1.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD為腰的等腰三角形,∴CP1=CP1=CP3=CD.作CH⊥x軸于H,∴HP1=HD=1,∴DP1=2.∴P1(,2),P1(,),P3(,﹣);(3)當y=0時,0=﹣x1+x+1∴x1=﹣1,x1=2,∴B(2,0).設直線BC的解析式為y=kx+b,由圖象,得,解得:,∴直線BC的解析式為:y=﹣x+1.如圖1,過點C作CM⊥EF于M,設E(a,﹣a+1),F(xiàn)(a,﹣a1+a+1),∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).∵S四邊形CDBF=S△BCD+S△CEF+S△BEF=BD?OC+EF?CM+EF?BN,=+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),=﹣a1+2a+(0≤x≤2).=﹣(a﹣1)1+∴a=1時,S四邊形CDBF的面積最大=,∴E(1,1).考點:1、勾股定理;1、等腰三角形的性質(zhì);3、四邊形的面積;2、二次函數(shù)的最值22、水壩原來的高度為12米【解析】試題分析:設BC=x米,用x表示出AB的長,利用坡度的定義得到BD=BE,進而列出x的方程,求出x的值即可.試題解析:設BC=x米,在Rt△ABC中,∠CAB=180°﹣∠EAC=50°,AB=≈=,在Rt△EBD中,∵i=DB:EB=1:1,∴BD=BE,∴CD+BC=AE+AB,即2+x=4+,解得x=12,即BC=12,答:水壩原來的高度為12米..考點:解直角三角形的應用,坡度.23、(1)m=3,k=12;(2)或【解析】【分析】(1)把A(m,m+1),B(m+3,m-1)代入反比例函數(shù)y=,得k=m(m+1)=(m+3)(m-1),再求解;(2)用待定系數(shù)法求一次函數(shù)解析式;(3)過點A作AM⊥x軸于點M,過點B作BN⊥y軸于點N,兩線交于點P.根據(jù)平行四邊形判定和勾股定理可求出M,N的坐標.【詳解】解:(1)∵點A(m,m
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外墻保溫施工方案
- 心衰指南課件教學課件
- 血液灌流課件教學課件
- 經(jīng)驗效應課件教學課件
- 煩惱盒子課件教學課件
- 《數(shù)學物理方法》第4章測試題
- 南京工業(yè)大學浦江學院《商務談判》2022-2023學年第一學期期末試卷
- 分式的通分說課稿
- 噸的認識的說課稿
- 中國廣播電視音像資料館施工組織設計
- 腦缺血再灌注損傷與腦復蘇課件
- 《輕度損傷的自我處理》教學設計
- 船舶設備與管系-船舶系固設備
- 修樹施工方案
- 歷史 小錢幣大歷史教學設計
- 《十八項核心制度 》課件
- 市場營銷-農(nóng)夫山泉營銷策略研究
- 《公共藝術(shù)-音樂篇》教案
- 《一線帶班》讀書分享
- (完整版)政府項目申報及激勵管理辦法3
- 護士護理VTE相關(guān)知識考試試題及答案
評論
0/150
提交評論