2023屆【蘇科版】江蘇省無錫市梁溪區(qū)十校聯(lián)考最后數(shù)學(xué)試題含解析_第1頁
2023屆【蘇科版】江蘇省無錫市梁溪區(qū)十校聯(lián)考最后數(shù)學(xué)試題含解析_第2頁
2023屆【蘇科版】江蘇省無錫市梁溪區(qū)十校聯(lián)考最后數(shù)學(xué)試題含解析_第3頁
2023屆【蘇科版】江蘇省無錫市梁溪區(qū)十校聯(lián)考最后數(shù)學(xué)試題含解析_第4頁
2023屆【蘇科版】江蘇省無錫市梁溪區(qū)十校聯(lián)考最后數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,數(shù)軸A、B上兩點(diǎn)分別對應(yīng)實(shí)數(shù)a、b,則下列結(jié)論正確的是()A.a(chǎn)+b>0 B.a(chǎn)b>0 C.1a+2.如圖,在平面直角坐標(biāo)系中Rt△ABC的斜邊BC在x軸上,點(diǎn)B坐標(biāo)為(1,0),AC=2,∠ABC=30°,把Rt△ABC先繞B點(diǎn)順時(shí)針旋轉(zhuǎn)180°,然后再向下平移2個(gè)單位,則A點(diǎn)的對應(yīng)點(diǎn)A′的坐標(biāo)為()A.(﹣4,﹣2﹣) B.(﹣4,﹣2+) C.(﹣2,﹣2+) D.(﹣2,﹣2﹣)3.的相反數(shù)是()A. B.- C. D.4.如圖,甲從A點(diǎn)出發(fā)向北偏東70°方向走到點(diǎn)B,乙從點(diǎn)A出發(fā)向南偏西15°方向走到點(diǎn)C,則∠BAC的度數(shù)是()A.85° B.105° C.125° D.160°5.如圖,在中,,,,點(diǎn)在以斜邊為直徑的半圓上,點(diǎn)是的三等分點(diǎn),當(dāng)點(diǎn)沿著半圓,從點(diǎn)運(yùn)動到點(diǎn)時(shí),點(diǎn)運(yùn)動的路徑長為()A.或 B.或 C.或 D.或6.如圖,與∠1是內(nèi)錯(cuò)角的是()A.∠2B.∠3C.∠4D.∠57.下列圖形是軸對稱圖形的有()A.2個(gè) B.3個(gè) C.4個(gè) D.5個(gè)8.定義:若點(diǎn)P(a,b)在函數(shù)y=1x的圖象上,將以a為二次項(xiàng)系數(shù),b為一次項(xiàng)系數(shù)構(gòu)造的二次函數(shù)y=ax2+bx稱為函數(shù)y=1x的一個(gè)“派生函數(shù)”.例如:點(diǎn)(2,12)在函數(shù)y=1x的圖象上,則函數(shù)y=2x2+(1)存在函數(shù)y=1x(2)函數(shù)y=1xA.命題(1)與命題(2)都是真命題B.命題(1)與命題(2)都是假命題C.命題(1)是假命題,命題(2)是真命題D.命題(1)是真命題,命題(2)是假命題9.某商店有兩個(gè)進(jìn)價(jià)不同的計(jì)算器都賣了80元,其中一個(gè)贏利60%,另一個(gè)虧本20%,在這次買賣中,這家商店()A.賺了10元 B.賠了10元 C.賺了50元 D.不賠不賺10.函數(shù)中,x的取值范圍是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣2二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.分解因式:4m2﹣16n2=_____.12.求1+2+22+23+…+22007的值,可令s=1+2+22+23+…+22007,則2s=2+22+23+24+…+22018,因此2s﹣s=22018﹣1,即s=22018﹣1,仿照以上推理,計(jì)算出1+3+32+33+…+32018的值為_____.13.如圖,已知l1∥l2∥l3,相鄰兩條平行直線間的距離相等,若等腰直角三角形ABC的直角頂點(diǎn)C在l1上,另兩個(gè)頂點(diǎn)A,B分別在l3,l2上,則sinα的值是_____.14.拋物線y=x2﹣2x+m與x軸只有一個(gè)交點(diǎn),則m的值為_____.15.Rt△ABC中,∠ABC=90°,AB=3,BC=4,過點(diǎn)B的直線把△ABC分割成兩個(gè)三角形,使其中只有一個(gè)是等腰三角形,則這個(gè)等腰三角形的面積是_____.16.如圖,已知等邊△ABC的邊長為6,在AC,BC邊上各取一點(diǎn)E,F(xiàn),使AE=CF,連接AF、BE相交于點(diǎn)P,當(dāng)點(diǎn)E從點(diǎn)A運(yùn)動到點(diǎn)C時(shí),點(diǎn)P經(jīng)過點(diǎn)的路徑長為__.三、解答題(共8題,共72分)17.(8分)如圖,拋物線與y軸交于A點(diǎn),過點(diǎn)A的直線與拋物線交于另一點(diǎn)B,過點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C(3,0).(1)求直線AB的函數(shù)關(guān)系式;(2)動點(diǎn)P在線段OC上從原點(diǎn)出發(fā)以每秒一個(gè)單位的速度向C移動,過點(diǎn)P作PN⊥x軸,交直線AB于點(diǎn)M,交拋物線于點(diǎn)N.設(shè)點(diǎn)P移動的時(shí)間為t秒,MN的長度為s個(gè)單位,求s與t的函數(shù)關(guān)系式,并寫出t的取值范圍;(3)設(shè)在(2)的條件下(不考慮點(diǎn)P與點(diǎn)O,點(diǎn)C重合的情況),連接CM,BN,當(dāng)t為何值時(shí),四邊形BCMN為平行四邊形?問對于所求的t值,平行四邊形BCMN是否菱形?請說明理由18.(8分)如圖1,2分別是某款籃球架的實(shí)物圖與示意圖,已知底座BC的長為0.60m,底座BC與支架AC所成的角∠ACB=75°,點(diǎn)A、H、F在同一條直線上,支架AH段的長為1m,HF段的長為1.50m,籃板底部支架HE的長為0.75m.求籃板底部支架HE與支架AF所成的角∠FHE的度數(shù).求籃板頂端F到地面的距離.(結(jié)果精確到0.1m;參考數(shù)據(jù):cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)19.(8分)如圖,在平面直角坐標(biāo)系xOy中,直線y=x+b與雙曲線y=相交于A,B兩點(diǎn),已知A(2,5).求:b和k的值;△OAB的面積.20.(8分)如圖1,點(diǎn)O是正方形ABCD兩對角線的交點(diǎn),分別延長OD到點(diǎn)G,OC到點(diǎn)E,使OG=1OD,OE=1OC,然后以O(shè)G、OE為鄰邊作正方形OEFG,連接AG,DE.(1)求證:DE⊥AG;(1)正方形ABCD固定,將正方形OEFG繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α角(0°<α<360°)得到正方形OE′F′G′,如圖1.①在旋轉(zhuǎn)過程中,當(dāng)∠OAG′是直角時(shí),求α的度數(shù);②若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求AF′長的最大值和此時(shí)α的度數(shù),直接寫出結(jié)果不必說明理由.21.(8分)如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c(a≠0)與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(﹣1,0),拋物線的對稱軸直線x=交x軸于點(diǎn)D.(1)求拋物線的解析式;(2)點(diǎn)E是線段BC上的一個(gè)動點(diǎn),過點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,交x軸于點(diǎn)G,當(dāng)點(diǎn)E運(yùn)動到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo);(3)在(2)的條件下,將線段FG繞點(diǎn)G順時(shí)針旋轉(zhuǎn)一個(gè)角α(0°<α<90°),在旋轉(zhuǎn)過程中,設(shè)線段FG與拋物線交于點(diǎn)N,在線段GB上是否存在點(diǎn)P,使得以P、N、G為頂點(diǎn)的三角形與△ABC相似?如果存在,請直接寫出點(diǎn)P的坐標(biāo);如果不存在,請說明理由.22.(10分)如圖,拋物線y=-x2+bx+c的頂點(diǎn)為C,對稱軸為直線x=1,且經(jīng)過點(diǎn)A(3,-1),與y軸交于點(diǎn)B.求拋物線的解析式;判斷△ABC的形狀,并說明理由;經(jīng)過點(diǎn)A的直線交拋物線于點(diǎn)P,交x軸于點(diǎn)Q,若S△OPA=2S△OQA,試求出點(diǎn)P的坐標(biāo).23.(12分)如圖,在邊長為1的小正方形組成的方格紙上,將△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°畫出旋轉(zhuǎn)之后的△AB′C′;求線段AC旋轉(zhuǎn)過程中掃過的扇形的面積.24.如圖,正方形OABC的面積為9,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C上y軸上,點(diǎn)B在反比例函數(shù)y=(k>0,x>0)的圖象上,點(diǎn)E從原點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度向x軸正方向運(yùn)動,過點(diǎn)E作x的垂線,交反比例函數(shù)y=(k>0,x>0)的圖象于點(diǎn)P,過點(diǎn)P作PF⊥y軸于點(diǎn)F;記矩形OEPF和正方形OABC不重合部分的面積為S,點(diǎn)E的運(yùn)動時(shí)間為t秒.(1)求該反比例函數(shù)的解析式.(2)求S與t的函數(shù)關(guān)系式;并求當(dāng)S=時(shí),對應(yīng)的t值.(3)在點(diǎn)E的運(yùn)動過程中,是否存在一個(gè)t值,使△FBO為等腰三角形?若有,有幾個(gè),寫出t值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

本題要先觀察a,b在數(shù)軸上的位置,得b<-1<0<a<1,然后對四個(gè)選項(xiàng)逐一分析.【詳解】A、因?yàn)閎<-1<0<a<1,所以|b|>|a|,所以a+b<0,故選項(xiàng)A錯(cuò)誤;B、因?yàn)閎<0<a,所以ab<0,故選項(xiàng)B錯(cuò)誤;C、因?yàn)閎<-1<0<a<1,所以1a+1D、因?yàn)閎<-1<0<a<1,所以1a-1故選C.【點(diǎn)睛】本題考查了實(shí)數(shù)與數(shù)軸的對應(yīng)關(guān)系,數(shù)軸上右邊的數(shù)總是大于左邊的數(shù).2、D【解析】解:作AD⊥BC,并作出把Rt△ABC先繞B點(diǎn)順時(shí)針旋轉(zhuǎn)180°后所得△A1BC1,如圖所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=2,∴AD===,∴BD===1.∵點(diǎn)B坐標(biāo)為(1,0),∴A點(diǎn)的坐標(biāo)為(4,).∵BD=1,∴BD1=1,∴D1坐標(biāo)為(﹣2,0),∴A1坐標(biāo)為(﹣2,﹣).∵再向下平移2個(gè)單位,∴A′的坐標(biāo)為(﹣2,﹣﹣2).故選D.點(diǎn)睛:本題主要考查了直角三角形的性質(zhì),勾股定理,旋轉(zhuǎn)的性質(zhì)和平移的性質(zhì),作出圖形利用旋轉(zhuǎn)的性質(zhì)和平移的性質(zhì)是解答此題的關(guān)鍵.3、C【解析】

根據(jù)只有符號不同的兩個(gè)數(shù)互為相反數(shù)進(jìn)行解答即可.【詳解】與只有符號不同,所以的相反數(shù)是,故選C.【點(diǎn)睛】本題考查了相反數(shù)的定義,熟練掌握相反數(shù)的定義是解題的關(guān)鍵.4、C【解析】

首先求得AB與正東方向的夾角的度數(shù),即可求解.【詳解】根據(jù)題意得:∠BAC=(90°﹣70°)+15°+90°=125°,故選:C.【點(diǎn)睛】本題考查了方向角,正確理解方向角的定義是關(guān)鍵.5、A【解析】

根據(jù)平行線的性質(zhì)及圓周角定理的推論得出點(diǎn)M的軌跡是以EF為直徑的半圓,進(jìn)而求出半徑即可得出答案,注意分兩種情況討論.【詳解】當(dāng)點(diǎn)D與B重合時(shí),M與F重合,當(dāng)點(diǎn)D與A重合時(shí),M與E重合,連接BD,F(xiàn)M,AD,EM,∵∴∵AB是直徑即∴∴點(diǎn)M的軌跡是以EF為直徑的半圓,∵∴以EF為直徑的圓的半徑為1∴點(diǎn)M運(yùn)動的路徑長為當(dāng)時(shí),同理可得點(diǎn)M運(yùn)動的路徑長為故選:A.【點(diǎn)睛】本題主要考查動點(diǎn)的運(yùn)動軌跡,掌握圓周角定理的推論,平行線的性質(zhì)和弧長公式是解題的關(guān)鍵.6、B【解析】由內(nèi)錯(cuò)角定義選B.7、C【解析】試題分析:根據(jù)軸對稱圖形的概念:如果一個(gè)圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對稱圖形.據(jù)此對圖中的圖形進(jìn)行判斷.解:圖(1)有一條對稱軸,是軸對稱圖形,符合題意;圖(2)不是軸對稱圖形,因?yàn)檎也坏饺魏芜@樣的一條直線,使它沿這條直線折疊后,直線兩旁的部分能夠重合,即不滿足軸對稱圖形的定義.不符合題意;圖(3)有二條對稱軸,是軸對稱圖形,符合題意;圖(3)有五條對稱軸,是軸對稱圖形,符合題意;圖(3)有一條對稱軸,是軸對稱圖形,符合題意.故軸對稱圖形有4個(gè).故選C.考點(diǎn):軸對稱圖形.8、C【解析】試題分析:(1)根據(jù)二次函數(shù)y=ax2+bx的性質(zhì)a、b同號對稱軸在y軸左側(cè),a、b異號對稱軸在y軸右側(cè)即可判斷.(2)根據(jù)“派生函數(shù)”y=ax2+bx,x=0時(shí),y=0,經(jīng)過原點(diǎn),不能得出結(jié)論.(1)∵P(a,b)在y=上,∴a和b同號,所以對稱軸在y軸左側(cè),∴存在函數(shù)y=的一個(gè)“派生函數(shù)”,其圖象的對稱軸在y軸的右側(cè)是假命題.(2)∵函數(shù)y=的所有“派生函數(shù)”為y=ax2+bx,∴x=0時(shí),y=0,∴所有“派生函數(shù)”為y=ax2+bx經(jīng)過原點(diǎn),∴函數(shù)y=的所有“派生函數(shù)”,的圖象都進(jìn)過同一點(diǎn),是真命題.考點(diǎn):(1)命題與定理;(2)新定義型9、A【解析】試題分析:第一個(gè)的進(jìn)價(jià)為:80÷(1+60%)=50元,第二個(gè)的進(jìn)價(jià)為:80÷(1-20%)=100元,則80×2-(50+100)=10元,即盈利10元.考點(diǎn):一元一次方程的應(yīng)用10、B【解析】要使有意義,所以x+1≥0且x+1≠0,

解得x>-1.

故選B.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、4(m+2n)(m﹣2n).【解析】

原式提取4后,利用平方差公式分解即可.【詳解】解:原式=4().故答案為【點(diǎn)睛】本題考查提公因式法與公式法的綜合運(yùn)用,解題的關(guān)鍵是熟練掌握因式分解的方法.12、【解析】

仿照已知方法求出所求即可.【詳解】令S=1+3+32+33+…+32018,則3S=3+32+33+…+32019,因此3S﹣S=32019﹣1,即S=.故答案為:.【點(diǎn)睛】本題考查了有理數(shù)的混合運(yùn)算,熟練掌握運(yùn)算法則是解答本題的關(guān)鍵.13、【解析】

過點(diǎn)A作AD⊥l1于D,過點(diǎn)B作BE⊥l1于E,根據(jù)同角的余角相等求出∠CAD=∠BCE,然后利用“角角邊”證明△ACD和△CBE全等,根據(jù)全等三角形對應(yīng)邊相等可得CD=BE,然后利用勾股定理列式求出AC,然后利用銳角的正弦等于對邊比斜邊列式計(jì)算即可得解.【詳解】如圖,過點(diǎn)A作AD⊥l1于D,過點(diǎn)B作BE⊥l1于E,設(shè)l1,l2,l3間的距離為1,∵∠CAD+∠ACD=90°,∠BCE+∠ACD=90°,∴∠CAD=∠BCE,在等腰直角△ABC中,AC=BC,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),∴CD=BE=1,∴AD=2,∴AC=,∴AB=AC=,∴sinα=,故答案為.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),銳角三角函數(shù)的定義,正確添加輔助線構(gòu)造出全等三角形是解題的關(guān)鍵.14、1【解析】

由拋物線y=x2-2x+m與x軸只有一個(gè)交點(diǎn)可知,對應(yīng)的一元二次方程x2-2x+m=2,根的判別式△=b2-4ac=2,由此即可得到關(guān)于m的方程,解方程即可求得m的值.【詳解】解:∵拋物線y=x2﹣2x+m與x軸只有一個(gè)交點(diǎn),∴△=2,∴b2﹣4ac=22﹣4×1×m=2;∴m=1.故答案為1.【點(diǎn)睛】本題考查了拋物線與x軸的交點(diǎn)問題,注:①拋物線與x軸有兩個(gè)交點(diǎn),則△>2;②拋物線與x軸無交點(diǎn),則△<2;③拋物線與x軸有一個(gè)交點(diǎn),則△=2.15、3.1或4.32或4.2【解析】【分析】在Rt△ABC中,通過解直角三角形可得出AC=5、S△ABC=1,找出所有可能的分割方法,并求出剪出的等腰三角形的面積即可.【詳解】在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴AB==5,S△ABC=AB?BC=1.沿過點(diǎn)B的直線把△ABC分割成兩個(gè)三角形,使其中只有一個(gè)是等腰三角形,有三種情況:①當(dāng)AB=AP=3時(shí),如圖1所示,S等腰△ABP=?S△ABC=×1=3.1;②當(dāng)AB=BP=3,且P在AC上時(shí),如圖2所示,作△ABC的高BD,則BD=,∴AD=DP==1.2,∴AP=2AD=3.1,∴S等腰△ABP=?S△ABC=×1=4.32;③當(dāng)CB=CP=4時(shí),如圖3所示,S等腰△BCP=?S△ABC=×1=4.2;綜上所述:等腰三角形的面積可能為3.1或4.32或4.2,故答案為:3.1或4.32或4.2.【點(diǎn)睛】本題考查了勾股定理、等腰三角形的性質(zhì)以及三角形的面積,找出所有可能的分割方法,并求出剪出的等腰三角形的面積是解題的關(guān)鍵.16、π.【解析】

由等邊三角形的性質(zhì)證明△AEB≌△CFA可以得出∠APB=120°,點(diǎn)P的路徑是一段弧,由弧線長公式就可以得出結(jié)論.【詳解】:∵△ABC為等邊三角形,

∴AB=AC,∠C=∠CAB=60°,

又∵AE=CF,

在△ABE和△CAF中,,

∴△ABE≌△CAF(SAS),

∴∠ABE=∠CAF.

又∵∠APE=∠BPF=∠ABP+∠BAP,

∴∠APE=∠BAP+∠CAF=60°.

∴∠APB=180°-∠APE=120°.

∴當(dāng)AE=CF時(shí),點(diǎn)P的路徑是一段弧,且∠AOB=120°,

又∵AB=6,

∴OA=2,

點(diǎn)P的路徑是l=,

故答案為.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,弧線長公式的運(yùn)用,解題的關(guān)鍵是證明三角形全等.三、解答題(共8題,共72分)17、(1);(2)(0≤t≤3);(3)t=1或2時(shí);四邊形BCMN為平行四邊形;t=1時(shí),平行四邊形BCMN是菱形,t=2時(shí),平行四邊形BCMN不是菱形,理由見解析.【解析】

(1)由A、B在拋物線上,可求出A、B點(diǎn)的坐標(biāo),從而用待定系數(shù)法求出直線AB的函數(shù)關(guān)系式.(2)用t表示P、M、N的坐標(biāo),由等式得到函數(shù)關(guān)系式.(3)由平行四邊形對邊相等的性質(zhì)得到等式,求出t.再討論鄰邊是否相等.【詳解】解:(1)x=0時(shí),y=1,∴點(diǎn)A的坐標(biāo)為:(0,1),∵BC⊥x軸,垂足為點(diǎn)C(3,0),∴點(diǎn)B的橫坐標(biāo)為3,當(dāng)x=3時(shí),y=,∴點(diǎn)B的坐標(biāo)為(3,),設(shè)直線AB的函數(shù)關(guān)系式為y=kx+b,,解得,,則直線AB的函數(shù)關(guān)系式(2)當(dāng)x=t時(shí),y=t+1,∴點(diǎn)M的坐標(biāo)為(t,t+1),當(dāng)x=t時(shí),∴點(diǎn)N的坐標(biāo)為(0≤t≤3);(3)若四邊形BCMN為平行四邊形,則有MN=BC,

∴,解得t1=1,t2=2,∴當(dāng)t=1或2時(shí),四邊形BCMN為平行四邊形,

①當(dāng)t=1時(shí),MP=,PC=2,∴MC==MN,此時(shí)四邊形BCMN為菱形,②當(dāng)t=2時(shí),MP=2,PC=1,∴MC=≠M(fèi)N,此時(shí)四邊形BCMN不是菱形.【點(diǎn)睛】本題考查的是二次函數(shù)的性質(zhì)、待定系數(shù)法求函數(shù)解析式、菱形的判定,正確求出二次函數(shù)的解析式、利用配方法把一般式化為頂點(diǎn)式、求出函數(shù)的最值是解題的關(guān)鍵,注意菱形的判定定理的靈活運(yùn)用.18、(1)∠FHE=60°;(2)籃板頂端F到地面的距離是4.4米.【解析】

(1)直接利用銳角三角函數(shù)關(guān)系得出cos∠FHE=,進(jìn)而得出答案;(2)延長FE交CB的延長線于M,過A作AG⊥FM于G,解直角三角形即可得到結(jié)論.【詳解】(1)由題意可得:cos∠FHE=,則∠FHE=60°;(2)延長FE交CB的延長線于M,過A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC?tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=,∴sin60°==,∴FG≈2.17(m),∴FM=FG+GM≈4.4(米),答:籃板頂端F到地面的距離是4.4米.【點(diǎn)睛】本題考查解直角三角形、銳角三角函數(shù)、解題的關(guān)鍵是添加輔助線,構(gòu)造直角三角形,記住銳角三角函數(shù)的定義.19、(1)b=3,k=10;(2)S△AOB=.【解析】(1)由直線y=x+b與雙曲線y=相交于A、B兩點(diǎn),A(2,5),即可得到結(jié)論;(2)過A作AD⊥x軸于D,BE⊥x軸于E,根據(jù)y=x+3,y=,得到(-5,-2),C(-3,0).求出OC=3,然后根據(jù)三角形的面積公式即可得到結(jié)論.解:()把代入.∴∴.把代入,∴,∴.()∵,.∴時(shí),,∴,.∴.又∵,∴.20、(1)見解析;(1)30°或150°,的長最大值為,此時(shí).【解析】

(1)延長ED交AG于點(diǎn)H,易證△AOG≌△DOE,得到∠AGO=∠DEO,然后運(yùn)用等量代換證明∠AHE=90°即可;(1)①在旋轉(zhuǎn)過程中,∠OAG′成為直角有兩種情況:α由0°增大到90°過程中,當(dāng)∠OAG′=90°時(shí),α=30°,α由90°增大到180°過程中,當(dāng)∠OAG′=90°時(shí),α=150°;②當(dāng)旋轉(zhuǎn)到A、O、F′在一條直線上時(shí),AF′的長最大,AF′=AO+OF′=+1,此時(shí)α=315°.【詳解】(1)如圖1,延長ED交AG于點(diǎn)H,∵點(diǎn)O是正方形ABCD兩對角線的交點(diǎn),∴OA=OD,OA⊥OD,∵OG=OE,在△AOG和△DOE中,,∴△AOG≌△DOE,∴∠AGO=∠DEO,∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°,∴∠AHE=90°,即DE⊥AG;(1)①在旋轉(zhuǎn)過程中,∠OAG′成為直角有兩種情況:(Ⅰ)α由0°增大到90°過程中,當(dāng)∠OAG′=90°時(shí),∵OA=OD=OG=OG′,∴在Rt△OAG′中,sin∠AG′O==,∴∠AG′O=30°,∵OA⊥OD,OA⊥AG′,∴OD∥AG′,∴∠DOG′=∠AG′O=30°°,即α=30°;(Ⅱ)α由90°增大到180°過程中,當(dāng)∠OAG′=90°時(shí),同理可求∠BOG′=30°,∴α=180°?30°=150°.綜上所述,當(dāng)∠OAG′=90°時(shí),α=30°或150°.②如圖3,當(dāng)旋轉(zhuǎn)到A.

O、F′在一條直線上時(shí),AF′的長最大,∵正方形ABCD的邊長為1,∴OA=OD=OC=OB=,∵OG=1OD,∴OG′=OG=,∴OF′=1,∴AF′=AO+OF′=+1,∵∠COE′=45°,∴此時(shí)α=315°.【點(diǎn)睛】本題考查的是正方形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)以及銳角三角函數(shù)的定義,掌握正方形的四條邊相等、四個(gè)角相等,旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵,注意特殊角的三角函數(shù)值的應(yīng)用.21、(1);(1),E(1,1);(3)存在,P點(diǎn)坐標(biāo)可以為(1+,5)或(3,5).【解析】

(1)設(shè)B(x1,5),由已知條件得,進(jìn)而得到B(2,5).又由對稱軸求得b.最終得到拋物線解析式.(1)先求出直線BC的解析式,再設(shè)E(m,=﹣m+1.),F(xiàn)(m,﹣m1+m+1.)求得FE的值,得到S△CBF﹣m1+2m.又由S四邊形CDBF=S△CBF+S△CDB,得S四邊形CDBF最大值,最終得到E點(diǎn)坐標(biāo).(3)設(shè)N點(diǎn)為(n,﹣n1+n+1),1<n<2.過N作NO⊥x軸于點(diǎn)P,得PG=n﹣1.又由直角三角形的判定,得△ABC為直角三角形,由△ABC∽△GNP,得n=1+或n=1﹣(舍去),求得P點(diǎn)坐標(biāo).又由△ABC∽△GNP,且時(shí),得n=3或n=﹣2(舍去).求得P點(diǎn)坐標(biāo).【詳解】解:(1)設(shè)B(x1,5).由A(﹣1,5),對稱軸直線x=.∴解得,x1=2.∴B(2,5).又∵∴b=.∴拋物線解析式為y=,(1)如圖1,∵B(2,5),C(5,1).∴直線BC的解析式為y=﹣x+1.由E在直線BC上,則設(shè)E(m,=﹣m+1.),F(xiàn)(m,﹣m1+m+1.)∴FE=﹣m1+m+1﹣(﹣n+1)=﹣m1+1m.由S△CBF=EF?OB,∴S△CBF=(﹣m1+1m)×2=﹣m1+2m.又∵S△CDB=BD?OC=×(2﹣)×1=∴S四邊形CDBF=S△CBF+S△CDB═﹣m1+2m+.化為頂點(diǎn)式得,S四邊形CDBF=﹣(m﹣1)1+.當(dāng)m=1時(shí),S四邊形CDBF最大,為.此時(shí),E點(diǎn)坐標(biāo)為(1,1).(3)存在.如圖1,由線段FG繞點(diǎn)G順時(shí)針旋轉(zhuǎn)一個(gè)角α(5°<α<95°),設(shè)N(n,﹣n1+n+1),1<n<2.過N作NO⊥x軸于點(diǎn)P(n,5).∴NP=﹣n1+n+1,PG=n﹣1.又∵在Rt△AOC中,AC1=OA1+OC1=1+2=5,在Rt△BOC中,BC1=OB1+OC1=16+2=15.AB1=51=15.∴AC1+BC1=AB1.∴△ABC為直角三角形.當(dāng)△ABC∽△GNP,且時(shí),即,整理得,n1﹣1n﹣6=5.解得,n=1+或n=1﹣(舍去).此時(shí)P點(diǎn)坐標(biāo)為(1+,5).當(dāng)△ABC∽△GNP,且時(shí),即,整理得,n1+n﹣11=5.解得,n=3或n=﹣2(舍去).此時(shí)P點(diǎn)坐標(biāo)為(3,5).綜上所述,滿足題意的P點(diǎn)坐標(biāo)可以為,(1+,5),(3,5).【點(diǎn)睛】本題考查求拋物線,三角形的性質(zhì)和面積的求法,直角三角形的判定,以及三角形相似的性質(zhì),屬于較難題.22、(1)y=-x2+2x+2;(2)詳見解析;(3)點(diǎn)P的坐標(biāo)為(1+,1)、(1-,1)、(1+,-3)或(1-,-3).【解析】

(1)根據(jù)題意得出方程組,求出b、c的值,即可求出答案;(2)求出B、C的坐標(biāo),根據(jù)點(diǎn)的坐標(biāo)求出AB、BC、AC的值,根據(jù)勾股定理的逆定理求出即可;(3)分為兩種情況,畫出圖形,根據(jù)相似三角形的判定和性質(zhì)求出PE的長,即可得出答案.【詳解】解:(1)由題意得:,解得:,∴拋物線的解析式為y=-x2+2x+2;(2)∵由y=-x2+2x+2得:當(dāng)x=0時(shí),y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴AB=3,BC=,AC=2,∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如圖,當(dāng)點(diǎn)Q在線段AP上時(shí),過點(diǎn)P作PE⊥x軸于點(diǎn)E,AD⊥x軸于點(diǎn)D∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴==1,∴PE=AD=1∵由-x2+2x+2=1得:x=1,∴P(1+,1)或(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論