2023年保定幼兒師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第1頁(yè)
2023年保定幼兒師范高等專科學(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第2頁(yè)
2023年保定幼兒師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第3頁(yè)
2023年保定幼兒師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第4頁(yè)
2023年保定幼兒師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩41頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年保定幼兒師范高等??茖W(xué)校高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.給出20個(gè)數(shù):87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88它們的和是()A.1789B.1799C.1879D.1899答案:由題意知本題是一個(gè)求和問(wèn)題,87+91+94+88+93+91+89+87+92+86+90+92+88+90+91+86+89+92+95+88=1799,故選B.2.使關(guān)于的不等式有解的實(shí)數(shù)的最大值是(

)A.B.C.D.答案:D解析:令則的最大值為。選D。還可用Cauchy不等式。3.已知圓的極坐標(biāo)方程ρ=2cosθ,直線的極坐標(biāo)方程為ρcosθ-2ρsinθ+7=0,則圓心到直線距離為

______.答案:由ρ=2cosθ?ρ2=2ρcosθ?x2+y2-2x=0?(x-1)2+y2=1,ρcosθ-2ρsinθ+7=0?x-2y+7=0,∴圓心到直線距離為:d=1-2×0+712+22=855.故為:855.4.不等式的解集是(

A.

B.

C.

D.答案:D5.兩條平行直線3x+4y-12=0與ax+8y+11=0之間的距離為(

A.

B.

C.7

D.答案:D6.某校高三年級(jí)舉行一次演講賽共有10位同學(xué)參賽,其中一班有3位,二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學(xué)恰好被排在一起(指演講序號(hào)相連),而二班的2位同學(xué)沒(méi)有被排在一起的概率為:()A.110B.120C.140D.1120答案:由題意知本題是一個(gè)古典概型,∵試驗(yàn)發(fā)生包含的所有事件是10位同學(xué)參賽演講的順序共有:A1010;滿足條件的事件要得到“一班有3位同學(xué)恰好被排在一起而二班的2位同學(xué)沒(méi)有被排在一起的演講的順序”可通過(guò)如下步驟:①將一班的3位同學(xué)“捆綁”在一起,有A33種方法;②將一班的“一梱”看作一個(gè)對(duì)象與其它班的5位同學(xué)共6個(gè)對(duì)象排成一列,有A66種方法;③在以上6個(gè)對(duì)象所排成一列的7個(gè)間隙(包括兩端的位置)中選2個(gè)位置,將二班的2位同學(xué)插入,有A72種方法.根據(jù)分步計(jì)數(shù)原理(乘法原理),共有A33?A66?A72種方法.∴一班有3位同學(xué)恰好被排在一起(指演講序號(hào)相連),而二班的2位同學(xué)沒(méi)有被排在一起的概率為:P=A33?A66?A27A1010=120.故選B.7.若點(diǎn)A分有向線段所成的比是2,則點(diǎn)C分有向線段所成的比是()

A.

B.3

C.-2

D.-3答案:D8.三行三列的方陣.a11a12

a13a21a22

a23a31a32

a33.中有9個(gè)數(shù)aji(i=1,2,3;j=1,2,3),從中任取三個(gè)數(shù),則它們不同行且不同列的概率是()A.37B.47C.114D.1314答案:從給出的9個(gè)數(shù)中任取3個(gè)數(shù),共有C39;從三行三列的方陣中任取三個(gè)數(shù),使它們不同行且不同列:從第一行中任取一個(gè)數(shù)有C13種方法,則第二行只能從另外兩列中的兩個(gè)數(shù)任取一個(gè)有C12種方法,第三行只能從剩下的一列中取即可有1中方法,∴共有C13×C12×C11=6.∴從三行三列的方陣中任取三個(gè)數(shù),則它們不同行且同列的概率P=6C39=114.故選C.9.在直角坐標(biāo)系xOy中,i,j分別是與x軸,y軸平行的單位向量,若在Rt△ABC中,AB=i+j,AC=2i+mj,則實(shí)數(shù)m=______.答案:把AB、AC平移,使得點(diǎn)A與原點(diǎn)重合,則AB=(1,1)、AC=(2,m),故BC=(1,m-1),若∠B=90°時(shí),AB?BC=0,∴(1,1)?(2-1,m-1)=0,得m=0;若∠A=90°時(shí),AB?AC=0,∴(1,1)?(2,m)=0,得m=-2.若∠C=90°時(shí),AC?BC=0,即2+m2-m=0,此方程無(wú)解,綜上,m為-2或0滿足三角形為直角三角形.故為-2或010.如圖,平面內(nèi)有三個(gè)向量OA、OB、OC,其中與OA與OB的夾角為120°,OA與OC的夾角為30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),則λ+μ的值為_(kāi)_____.答案:過(guò)C作OA與OB的平行線與它們的延長(zhǎng)線相交,可得平行四邊形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四邊形的邊長(zhǎng)為2和4,λ+μ=2+4=6.故為6.11.在極坐標(biāo)系中,過(guò)點(diǎn)p(3,)且垂直于極軸的直線方程為()

A.Pcosθ=

B.Psinθ=

C.P=cosθ

D.P=sinθ答案:A12.給出的下列幾個(gè)命題:

①向量共面,則它們所在的直線共面;

②零向量的方向是任意的;

③若則存在唯一的實(shí)數(shù)λ,使

其中真命題的個(gè)數(shù)為()

A.0

B.1

C.2

D.3答案:B13.若直線l經(jīng)過(guò)點(diǎn)A(-1,1),且一個(gè)法向量為n=(3,3),則直線方程是______.答案:設(shè)直線的方向向量m=(1,k)∵直線l一個(gè)法向量為n=(3,3)∴m?n=0∴k=-1∵直線l經(jīng)過(guò)點(diǎn)A(-1,1)∴直線l的方程為y-1=(-1)×(x+1)即x+y=0故為x+y=014.解下列關(guān)于x的不等式

(1)

(2)答案:(1)(2)原不等式的解集為解析:(1)

解:(2)

解:分析該題要設(shè)法去掉絕對(duì)值符號(hào),可由去分類討論當(dāng)時(shí)原不等式等價(jià)于

故得不等式的解集為所以原不等式的解集為15.已知點(diǎn)P在曲線C1:x216-y29=1上,點(diǎn)Q在曲線C2:(x-5)2+y2=1上,點(diǎn)R在曲線C3:(x+5)2+y2=1上,則|PQ|-|PR|的最大值是()A.6B.8C.10D.12答案:由雙曲線的知識(shí)可知:C1x216-y29=1的兩個(gè)焦點(diǎn)分別是F1(-5,0)與F2(5,0),且|PF1|+|PF2|=8而這兩點(diǎn)正好是兩圓(x+5)2+y2=1和(x-5)2+y2=1的圓心,兩圓(x+5)2+y2=4和(x-5)2+y2=1的半徑分別是r1=1,r2=1,∴|PQ|max=|PF1|+1,|PR|min=|PF2|-1,∴|PQ|-|PR|的最大值為:(|PF1|+1)-(|PF2|-1)=|PF1|+|PF2|+2=8+2=10,故選C16.若直線x-y-1=0與直線x-ay=0的夾角為,則實(shí)數(shù)a等于()

A.

B.0

C.

D.0或答案:D17.經(jīng)過(guò)點(diǎn)M(1,1)且在兩軸上截距相等的直線是______.答案:①當(dāng)所求的直線與兩坐標(biāo)軸的截距不為0時(shí),設(shè)該直線的方程為x+y=a,把(1,1)代入所設(shè)的方程得:a=2,則所求直線的方程為x+y=2;②當(dāng)所求的直線與兩坐標(biāo)軸的截距為0時(shí),設(shè)該直線的方程為y=kx,把(1,1)代入所求的方程得:k=1,則所求直線的方程為y=x.綜上,所求直線的方程為:x+y=2或y=x.故為:x+y=2或y=x18.已知:正四棱柱ABCD—A1B1C1D1中,底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為4,E、F分別為棱AB、BC的中點(diǎn).

(1)求證:平面B1EF⊥平面BDD1B1;

(2)求點(diǎn)D1到平面B1EF的距離.答案:(1)證明略(2)解析:(1)

建立如圖所示的空間直角坐標(biāo)系,則D(0,0,0),B(2,2,0),E(2,,0),F(xiàn)(,2,0),D1(0,0,4),B1(2,2,4).=(-,,0),=(2,2,0),=(0,0,4),∴·=0,·=0.∴EF⊥DB,EF⊥DD1,DD1∩BD=D,∴EF⊥平面BDD1B1.又EF平面B1EF,∴平面B1EF⊥平面BDD1B1.(2)

由(1)知=(2,2,0),=(-,,0),=(0,-,-4).設(shè)平面B1EF的法向量為n,且n=(x,y,z)則n⊥,n⊥即n·=(x,y,z)·(-,,0)=-x+y=0,n·=(x,y,z)·(0,-,-4)=-y-4z=0,令x=1,則y=1,z=-,∴n="(1,1,-")∴D1到平面B1EF的距離d===.19.如圖是為求1~1000的所有偶數(shù)的和而設(shè)計(jì)的一個(gè)程序空白框圖,將空白處補(bǔ)上.

①______.②______.答案:本程序的作用是求1~1000的所有偶數(shù)的和而設(shè)計(jì)的一個(gè)程序,由于第一次執(zhí)行循環(huán)時(shí)的循環(huán)變量S初值為0,循環(huán)變量S=S+i,計(jì)數(shù)變量i為2,步長(zhǎng)為2,故空白處:①S=S+i,②i=i+2.故為:①S=S+i,②i=i+2.20.(理)已知函數(shù)f(x)=sinπxx∈[0,1]log2011xx∈(1,+∞)若滿足f(a)=f(b)=f(c),(a、b、c互不相等),則a+b+c的取值范圍是______.答案:作出函數(shù)的圖象如圖,直線y=y0交函數(shù)圖象于如圖,由正弦曲線的對(duì)稱性,可得A(a,y0)與B(b,y0)關(guān)于直線x=12對(duì)稱,因此a+b=1當(dāng)直線線y=y0向上平移時(shí),經(jīng)過(guò)點(diǎn)(2011,1)時(shí)圖象兩個(gè)圖象恰有兩個(gè)公共點(diǎn)(A、B重合)所以0<y0<1時(shí),兩個(gè)圖象有三個(gè)公共點(diǎn),此時(shí)滿足f(a)=f(b)=f(c),(a、b、c互不相等),說(shuō)明1<c<2011,因此可得a+b+c∈(2,2012)故為(2,2012)21.已知點(diǎn)P(x,y)在曲線x=2+cosθy=2sinθ(θ為參數(shù)),則ω=3x+2y的最大值為_(kāi)_____.答案:由題意,ω=3x+2y=3cosθ+4sinθ+6=5sin(θ+?)+6∴當(dāng)sin(θ+?)=1時(shí),ω=3x+2y的最大值為

11故為11.22.不等式的解集是

)A.B.C.D.答案:B解析:當(dāng)時(shí),不等式成立;當(dāng)時(shí),不等式可化為,解得綜上,原不等式解集為故選B23.若2x1+3y1=4,2x2+3y2=4,則過(guò)點(diǎn)A(x1,y1),B(x2,y2)的直線方程是______.答案:∵2x1+3y1=4,2x2+3y2=4,∴點(diǎn)A(x1,y1),B(x2,y2)在直線2x+3y=4上,又因?yàn)檫^(guò)兩點(diǎn)確定一條直線,故所求直線方程為2x+3y=4故為:2x+3y=424.選修4-2:矩陣與變換

已知矩陣M=0110,N=0-110.在平面直角坐標(biāo)系中,設(shè)直線2x-y+1=0在矩陣MN對(duì)應(yīng)的變換作用下得到曲線F,求曲線F的方程.答案:由題設(shè)得MN=01100-111=100-1.…(3分)設(shè)(x,y)是直線2x-y+1=0上任意一點(diǎn),點(diǎn)(x,y)在矩陣MN對(duì)應(yīng)的變換作用下變?yōu)椋▁′,y′),則有1001xy=x′y′,即x-y=x′y′,所以x=x′y=-y′…(7分)因?yàn)辄c(diǎn)(x,y)在直線2x-y+1=0上,從而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲線F的方程為2x+y+1=0.

…(10分)25.(本小題滿分10分)如圖,D、E分別是AB、AC邊上的點(diǎn),且不與頂點(diǎn)重合,已知為方程的兩根

(1)證明四點(diǎn)共圓

(2)若求四點(diǎn)所在圓的半徑答案:(1)見(jiàn)解析;(2)解析:解:(Ⅰ)如圖,連接DE,依題意在中,,由因?yàn)樗?,?四點(diǎn)C、B、D、E共圓。(Ⅱ)當(dāng)時(shí),方程的根因而,取CE中點(diǎn)G,BD中點(diǎn)F,分別過(guò)G,F做AC,AB的垂線,兩垂線交于點(diǎn)H,連接DH,因?yàn)樗狞c(diǎn)C、B、D、E共圓,所以,H為圓心,半徑為DH.,,所以,,點(diǎn)評(píng):此題考查平面幾何中的圓與相似三角形及方程等概念和性質(zhì)。注意把握判定與性質(zhì)的作用。26.如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長(zhǎng)AB和DC相交于點(diǎn)P.若PB=1,PD=3,則BCAD的值為_(kāi)_____.答案:因?yàn)锳,B,C,D四點(diǎn)共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因?yàn)椤螾為公共角,所以△PBC∽△PAD,所以BCAD=PBPD=13.故為:13.27.已知函數(shù)f(x)=2x,x≥01,

x<0,若f(1-a2)>f(2a),則實(shí)數(shù)a的取值范圍是______.答案:函數(shù)f(x)=2x,x≥01,

x<0,x<0時(shí)是常函數(shù),x≥0時(shí)是增函數(shù),由f(1-a2)>f(2a),所以2a<1-a21-a2>0,解得:-1<a<2-1,故為:-1<a<2-1.28.設(shè)A1,A2,A3,A4是平面直角坐標(biāo)系中兩兩不同的四點(diǎn),若A1A3=λA1A2(λ∈R),A1A4=μA1A2(μ∈R),且1λ+1μ=2,則稱A3,A4調(diào)和分割A(yù)1,A2,已知點(diǎn)C(c,0),D(d,O)(c,d∈R)調(diào)和分割點(diǎn)A(0,0),B(1,0),則下面說(shuō)法正確的是()A.C可能是線段AB的中點(diǎn)B.D可能是線段AB的中點(diǎn)C.C,D可能同時(shí)在線段AB上D.C,D不可能同時(shí)在線段AB的延長(zhǎng)線上答案:由已知可得(c,0)=λ(1,0),(d,0)=μ(1,0),所以λ=c,μ=d,代入1λ+1μ=2得1c+1d=2(1)若C是線段AB的中點(diǎn),則c=12,代入(1)d不存在,故C不可能是線段AB的中,A錯(cuò)誤;同理B錯(cuò)誤;若C,D同時(shí)在線段AB上,則0≤c≤1,0≤d≤1,代入(1)得c=d=1,此時(shí)C和D點(diǎn)重合,與條件矛盾,故C錯(cuò)誤.故選D29.在下列圖象中,二次函數(shù)y=ax2+bx+c與函數(shù)(的圖象可能是()

A.

B.

C.

D.

答案:A30.計(jì)算:x10÷x5=______.答案:根據(jù)有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):x10÷x5=x5故為:x531.一個(gè)路口的紅綠燈,紅燈的時(shí)間為30秒,黃燈的時(shí)間為5秒,綠燈的時(shí)間為40秒,一學(xué)生到達(dá)該路口時(shí),見(jiàn)到紅燈的概率是()A.25B.58C.115D.35答案:由題意知本題是一個(gè)那可能事件的概率,試驗(yàn)發(fā)生包含的事件是總的時(shí)間長(zhǎng)度為30+5+40=75秒,設(shè)紅燈為事件A,滿足條件的事件是紅燈的時(shí)間為30秒,根據(jù)等可能事件的概率得到出現(xiàn)紅燈的概率P(A)=構(gòu)成事件A的時(shí)間長(zhǎng)度總的時(shí)間長(zhǎng)度=3075=25.故選A.32.(文)對(duì)于任意的平面向量a=(x1,y1),b=(x2,y2),定義新運(yùn)算⊕:a⊕b=(x1+x2,y1y2).若a,b,c為平面向量,k∈R,則下列運(yùn)算性質(zhì)一定成立的所有序號(hào)是______.

①a⊕b=b⊕a;

②(ka)⊕b=a⊕(kb);

③a⊕(b⊕c)=(a⊕b)⊕c;

④a⊕(b+c)=a⊕b+a⊕c.答案:①a⊕b=(x1+x2,y1y2)=(x2+x1,y2y1)=b⊕a,故正確;②∵(ka)⊕b=(kx1+x2,ky1y2),a⊕(kb)=(x1+kx2,y1ky2),∴(ka)⊕b≠a⊕(kb),故不正確;③設(shè)c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),(a⊕b)⊕c=(x1+x2,y1y2)⊕c=(x1+x2+x3,y1y2y3),∴a⊕(b⊕c)=(a⊕b)⊕c,故正確;④設(shè)c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),a⊕b+a⊕c=(x1+x2,y1y2)+(x1+x3,y1y3)=(2x1+x2+x3,y1(y2+y3)),∴a⊕(b⊕c)≠a⊕b+a⊕c,故不正確.綜上可知:只有①③正確.故為①③.33.關(guān)于斜二測(cè)畫法畫直觀圖說(shuō)法不正確的是()

A.在實(shí)物圖中取坐標(biāo)系不同,所得的直觀圖有可能不同

B.平行于坐標(biāo)軸的線段在直觀圖中仍然平行于坐標(biāo)軸

C.平行于坐標(biāo)軸的線段長(zhǎng)度在直觀圖中仍然保持不變

D.斜二測(cè)坐標(biāo)系取的角可能是135°答案:C34.設(shè)甲、乙兩名射手各打了10發(fā)子彈,每發(fā)子彈擊中環(huán)數(shù)如下:甲:10,7,7,10,8,9,9,10,5,10;

乙:8,7,9,10,9,8,8,9,8,9則甲、乙兩名射手的射擊技術(shù)評(píng)定情況是()

A.甲比乙好

B.乙比甲好

C.甲、乙一樣好

D.難以確定答案:B35.據(jù)上海中心氣象臺(tái)發(fā)布的天氣預(yù)報(bào),一月上旬某天上海下雨的概率是70%至80%.寫出下列解釋中正確的序號(hào)______.

①上海地區(qū)面積的70%至80%將降雨;

②上海地區(qū)下雨的時(shí)間在16.8小時(shí)至19.2%小時(shí)之間;

③上海地區(qū)在相似的氣候條件下有70%至80%的日子是下雨的;

④上海地區(qū)在相似的氣候條件下有20%至30%的日子是晴,或多云,或陰.答案:據(jù)上海中心氣象臺(tái)發(fā)布的天氣預(yù)報(bào),一月上旬某天上海下雨的概率是70%至80%.表示上海地區(qū)在相似的氣候條件下下雨的可能性很大,是有70%至80%的日子是下雨的.是但不一定下,也不是的70%至80%的時(shí)間與地區(qū).故解釋中正確的序號(hào)③故為:③36.一位運(yùn)動(dòng)員投擲鉛球的成績(jī)是14m,當(dāng)鉛球運(yùn)行的水平距離是6m時(shí),達(dá)到最大高度4m.若鉛球運(yùn)行的路線是拋物線,則鉛球出手時(shí)距地面的高度是()

A.2.25m

B.2.15m

C.1.85m

D.1.75m

答案:D37.設(shè)O是坐標(biāo)原點(diǎn),F(xiàn)是拋物線y2=2px(p>0)的焦點(diǎn),A是拋物線上的一個(gè)動(dòng)點(diǎn),F(xiàn)A與x軸正方向的夾角為60°,求|OA|的值.答案:由題意設(shè)A(x+P2,3x),代入y2=2px得(3x)2=2p(x+p2)解得x=p(負(fù)值舍去).∴A(32p,3p)∴|OA|=(32p)2+3p2=212p38.下列說(shuō)法中正確的有()

①平均數(shù)不受少數(shù)幾個(gè)極端值的影響,中位數(shù)受樣本中的每一個(gè)數(shù)據(jù)影響;

②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大

③用樣本的頻率分布估計(jì)總體分布的過(guò)程中,樣本容量越大,估計(jì)越準(zhǔn)確.

④向一個(gè)圓面內(nèi)隨機(jī)地投一個(gè)點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是古典概型.A.①②B.③C.③④D.④答案:中位數(shù)數(shù)不受少數(shù)幾個(gè)極端值的影響,平均數(shù)受樣本中的每一個(gè)數(shù)據(jù)影響,故①不正確,拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”的概率是14“兩枚都是反面朝上的概率是14、“恰好一枚硬幣正面朝上的概率是12”,故②不正確,用樣本的頻率分布估計(jì)總體分布的過(guò)程中,樣本容量越大,估計(jì)越準(zhǔn)確.正確向一個(gè)圓面內(nèi)隨機(jī)地投一個(gè)點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是幾何概型,故④不正確,故選B.39.向量化簡(jiǎn)后等于()

A.

B.

C.

D.答案:C40.如圖,PA,PB切⊙O于

A,B兩點(diǎn),AC⊥PB,且與⊙O相交于

D,若∠DBC=22°,則∠APB═______.答案:連接AB根據(jù)弦切角有∠DBC=∠DAB=22°

∠PAC=∠DBA因?yàn)榇怪薄螪CB=90°根據(jù)外角∠ADB=∠DBC+∠DCB=112°

∵∠DBC=∠DAB∴∠DBA=180°-∠ADB-∠DAB=46°∴∠PAC=∠DBA=46°∴∠P=180°-∠PAC-∠PCA=44°故為:44°41.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|等于______.答案:解;∵a,b均為單位向量,∴|a|=1,|b|=1又∵兩向量的夾角為60°,∴a?b=|a||b|cos60°=12∴|a+3b|=|a|2+(3b)2+6a?b=1+9+3=13故為1342.方程4x-3×2x+2=0的根的個(gè)數(shù)是(

A.0

B.1

C.2

D.3答案:C43.一個(gè)口袋內(nèi)有4個(gè)不同的紅球,6個(gè)不同的白球,

(1)從中任取4個(gè)球,紅球的個(gè)數(shù)不比白球少的取法有多少種?

(2)若取一個(gè)紅球記2分,取一個(gè)白球記1分,從中任取5個(gè)球,使總分不少于7分的取法有多少種?答案:解(1)由題意知本題是一個(gè)分類計(jì)數(shù)問(wèn)題,將取出4個(gè)球分成三類情況取4個(gè)紅球,沒(méi)有白球,有C44種取3個(gè)紅球1個(gè)白球,有C43C61種;取2個(gè)紅球2個(gè)白球,有C42C62,∴C44+C43C61+C42C62=115種(2)設(shè)取x個(gè)紅球,y個(gè)白球,則x+y=5(0≤x≤4)2x+y≥7(0≤y≤6)∴x=2y=3或x=3y=2或x=4y=1∴符合題意的取法種數(shù)有C42C63+C43C62+C44C61=186種44.一支田徑隊(duì)有男運(yùn)動(dòng)員112人,女運(yùn)動(dòng)員84人,用分層抽樣的方法從全體男運(yùn)動(dòng)員中抽出了32人,則應(yīng)該從女運(yùn)動(dòng)員中抽出的人數(shù)為()

A.12

B.13

C.24

D.28答案:C45.已知有如下兩段程序:

問(wèn):程序1運(yùn)行的結(jié)果為_(kāi)_____.程序2運(yùn)行的結(jié)果為_(kāi)_____.

答案:程序1是計(jì)數(shù)變量i=21開(kāi)始,不滿足i≤20,終止循環(huán),累加變量sum=0,這個(gè)程序計(jì)算的結(jié)果:sum=0;程序2計(jì)數(shù)變量i=21,開(kāi)始進(jìn)入循環(huán),sum=0+21=22,其值大于20,循環(huán)終止,累加變量sum從0開(kāi)始,這個(gè)程序計(jì)算的是sum=21.故為:0;21.46.設(shè)全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},則CU(S∪T)等于()A.φB.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}答案:∵S∪T={1,3,5,6},∴CU(S∪T)={2,4,7,8}.故選B.47.如果一個(gè)水平放置的圖形的斜二測(cè)直觀圖是一個(gè)底面為45°,腰和上底均為1的等腰梯形,那么原平面圖形的面積是()

A.2+

B.

C.

D.1+答案:A48.學(xué)校成員、教師、后勤人員、理科教師、文科教師的結(jié)構(gòu)圖正確的是()

A.

B.

C.

D.

答案:A49.命題“當(dāng)AB=AC時(shí),△ABC是等腰三角形”與它的逆命題、否命題、逆否命題這四個(gè)命題中,真命題有______個(gè).答案:原命題為真命題.逆命題“當(dāng)△ABC是等腰三角形時(shí),AB=AC”為假命題.否命題“當(dāng)AB≠AC時(shí),△ABC不是等腰三角形”為假命題.逆否命題“當(dāng)△ABC不是等腰三角形時(shí),AB≠AC”為真命題.故為:2.50.已知△ABC∽△DEF,且相似比為3:4,S△ABC=2cm2,則S△DEF=______cm2.答案:∵△ABC∽△DEF,且相似比為3:4∴S△ABC:S△DEF=9:16∴S△DEF=329.故為:329.第2卷一.綜合題(共50題)1.規(guī)定運(yùn)算.abcd.=ad-bc,則.1i-i2.=______.答案:根據(jù)題目的新規(guī)定知,.1i-i2.=1×2-(-i)i=2+i2=2-1=1.故為:1.2.(理)下列以t為參數(shù)的參數(shù)方程中表示焦點(diǎn)在y軸上的橢圓的是()

A.

B.(a>b>0)

C.

D.

答案:C3.回歸直線方程必定過(guò)點(diǎn)()A.(0,0)B.(.x,0)C.(0,.y)D.(.x,.y)答案:∵線性回歸方程一定過(guò)這組數(shù)據(jù)的樣本中心點(diǎn),∴線性回歸方程y=bx+a表示的直線必經(jīng)過(guò)(.x,.y).故選D.4.圓ρ=5cosθ-5sinθ的圓心的極坐標(biāo)是()

A.(-5,-)

B.(-5,)

C.(5,)

D.(-5,)答案:A5.設(shè)橢圓=1和x軸正方向的交點(diǎn)為A,和y軸的正方向的交點(diǎn)為B,P為第一象限內(nèi)橢圓上的點(diǎn),使四邊形OAPB面積最大(O為原點(diǎn)),那么四邊形OAPB面積最大值為()

A.a(chǎn)b

B.ab

C.a(chǎn)b

D.2ab答案:B6.已知隨機(jī)變量X滿足D(X)=2,則D(3X+2)=()

A.2

B.8

C.18

D.20答案:C7.在極坐標(biāo)系中圓ρ=2cosθ的垂直于極軸的兩條切線方程分別為()

A.θ=0(ρ∈R)和ρcosθ=2

B.θ=(ρ∈R)和ρcosθ=2

C.θ=(ρ∈R)和ρcosθ=1

D.θ=0(ρ∈R)和ρcosθ=1答案:B8.一平面截球面產(chǎn)生的截面形狀是______;它截圓柱面所產(chǎn)生的截面形狀是______.答案:根據(jù)球的幾何特征,一平面截球面產(chǎn)生的截面形狀是圓;當(dāng)平面與圓柱的底面平行時(shí),截圓柱面所產(chǎn)生的截面形狀為圓;當(dāng)平面與圓柱的底面不平行時(shí),截圓柱面所產(chǎn)生的截面形狀為橢圓;故為:圓,圓或橢圓9.A、B為球面上相異兩點(diǎn),則通過(guò)A、B兩點(diǎn)可作球的大圓有()A.一個(gè)B.無(wú)窮多個(gè)C.零個(gè)D.一個(gè)或無(wú)窮多個(gè)答案:如果A,B兩點(diǎn)為球面上的兩極點(diǎn)(即球直徑的兩端點(diǎn))則通過(guò)A、B兩點(diǎn)可作球的無(wú)數(shù)個(gè)大圓如果A,B兩點(diǎn)不是球面上的兩極點(diǎn)(即球直徑的兩端點(diǎn))則通過(guò)A、B兩點(diǎn)可作球的一個(gè)大圓故選:D10.若=(2,-3,1)是平面α的一個(gè)法向量,則下列向量中能作為平面α的法向量的是()

A.(0,-3,1)

B.(2,0,1)

C.(-2,-3,1)

D.(-2,3,-1)答案:D11.設(shè)A、B為兩個(gè)事件,若事件A和B同時(shí)發(fā)生的概率為310,在事件A發(fā)生的條件下,事件B發(fā)生的概率為12,則事件A發(fā)生的概率為_(kāi)_____.答案:根據(jù)題意,得∵P(A|B)=P(AB)P(B),P(AB)=310,P(A|B)=12∴12=310P(B),解得P(B)=31012=35故為:3512.已知二項(xiàng)分布ξ~B(4,12),則該分布列的方差Dξ值為_(kāi)_____.答案:∵二項(xiàng)分布ξ~B(4,12),∴該分布列的方差Dξ=npq=4×12×(1-12)=1故為:113.一動(dòng)圓與兩圓x2+y2=1和x2+y2-8x+12=0都外切,則動(dòng)圓圓心軌跡為()A.圓B.橢圓C.雙曲線的一支D.拋物線答案:設(shè)動(dòng)圓的圓心為P,半徑為r,而圓x2+y2=1的圓心為O(0,0),半徑為1;圓x2+y2-8x+12=0的圓心為F(4,0),半徑為2.依題意得|PF|=2+r|,|PO|=1+r,則|PF|-|PO|=(2+r)-(1+r)=1<|FO|,所以點(diǎn)P的軌跡是雙曲線的一支.故選C.14.已知點(diǎn)G是△ABC的重心,O是空間任一點(diǎn),若OA+OB+OC=λOG,則實(shí)數(shù)λ=______.答案:由于G是三角形ABC的重心,則有GA+GB+GC=0,OA-OG+OB-OG+OC-OG=0故OA+OB+OC=3OG又由已知OA+OB+OC=λOG故可得λ=3故為:315.設(shè)集合M={x|0<x≤3},N={x|0<x≤1},那么“a∈M”是“a∈N”的()

A.充分不必要條件

B.必要不充分條件

C.充要條件

D.既不充分也不必要條件答案:B16.在空間直角坐標(biāo)系中,點(diǎn),過(guò)點(diǎn)P作平面xOy的垂線PQ,則Q的坐標(biāo)為()

A.

B.

C.

D.答案:D17.擬定從甲地到乙地通話m分鐘的電話費(fèi)由f(x)=1.06×(0.50×[m]+1)給出,其中m>0,[m]是大于或等于m的最小整數(shù),若通話費(fèi)為10.6元,則通話時(shí)間m∈______.答案:∵10.6=1.06(0.50×[m]+1),∴0.5[m]=9,∴[m]=18,∴m∈(17,18].故為:(17,18].18.若方程x2+ky2=2表示焦點(diǎn)在y軸上的橢圓,那么實(shí)數(shù)k的取值范圍是()A.(0,+∞)B.(0,2)C.(1,+∞)D.(0,1)答案:∵方程x2+ky2=2,即x22+y22k=1表示焦點(diǎn)在y軸上的橢圓∴2k>2故0<k<1故選D.19.已知下列命題(其中a,b為直線,α為平面):

①若一條直線垂直于一個(gè)平面內(nèi)無(wú)數(shù)條直線,則這條直線與這個(gè)平面垂直;

②若一條直線平行于一個(gè)平面,則垂直于這條直線的直線必垂直于這個(gè)平面;

③若a∥α,b⊥α,則a⊥b;

④若a⊥b,則過(guò)b有且只有一個(gè)平面與a垂直.

上述四個(gè)命題中,真命題是()A.①,②B.②,③C.②,④D.③,④答案:①平面內(nèi)無(wú)數(shù)條直線均為平行線時(shí),不能得出直線與這個(gè)平面垂直,將“無(wú)數(shù)條”改為“所有”才正確;故①錯(cuò)誤;②垂直于這條直線的直線與這個(gè)平面可以是任何的位置關(guān)系,有可能是平行、相交、線在面內(nèi),故②錯(cuò)誤.③若a∥α,b⊥α,則必有a⊥b,正確;④若a⊥b,則過(guò)b有且只有一個(gè)平面與a垂直,顯然正確.故選D.20.為了檢查某超市貨架上的奶粉是否含有三聚氰胺,要從編號(hào)依次為1到50的袋裝奶粉中抽取5袋進(jìn)行檢驗(yàn),用每部分選取的號(hào)碼間隔一樣的系統(tǒng)抽樣方法確定所選取的5袋奶粉的編號(hào)可能是()

A.5,10,15,20,25

B.2,4,8,16,32

C.1,2,3,4,5

D.7,17,27,37,47答案:D21.(不等式選講選做題)

已知實(shí)數(shù)a、b、x、y滿足a2+b2=1,x2+y2=3,則ax+by的最大值為_(kāi)_____.答案:因?yàn)閍2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且僅當(dāng)ay=bx時(shí)取等號(hào),所以ax+by的最大值為3.故為:3.22.設(shè)a=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,則實(shí)數(shù)m,n的值分別為_(kāi)_____.答案:因?yàn)閍=(2,2m-3,n+2),b=(4,2m+1,3n-2),且a∥b,根據(jù)空間向量平行的坐標(biāo)表示公式,

所以24=2m-32m+124=n+23n-2,解得:m=12,n=6.故為:m=12,n=6.23.在平面幾何中,四邊形的分類關(guān)系可用以下框圖描述:

則在①中應(yīng)填入______;在②中應(yīng)填入______.答案:由題意知①對(duì)應(yīng)的四邊形是一個(gè)有一組鄰邊相等的平行四邊形,∴這里是一個(gè)菱形,②處的圖形是一個(gè)有一條腰和底邊垂直的梯形,∴②處是一個(gè)直角梯形,故為:菱形;直角梯形.24.設(shè)向量=(0,2),=,則,的夾角等于(

A.

B.

C.

D.答案:A25.某校為了研究學(xué)生的性別和對(duì)待某一活動(dòng)的態(tài)度(支持和不支持兩種態(tài)度)的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計(jì)算K2=7.069,則所得到的統(tǒng)計(jì)學(xué)結(jié)論是:有()的把握認(rèn)為“學(xué)生性別與支持該活動(dòng)有關(guān)系”.

P(k2≥k0)

0.100

0.050

0.025

0.010

0.001

k0

2.706

3.841

5.024

6.635

10.828

A.0.1%

B.1%

C.99%

D.99.9%答案:C26.給出命題:

①線性回歸分析就是由樣本點(diǎn)去尋找一條貼近這些點(diǎn)的直線;

②利用樣本點(diǎn)的散點(diǎn)圖可以直觀判斷兩個(gè)變量的關(guān)系是否可以用線性關(guān)系表示;

③通過(guò)回歸方程=bx+a及其回歸系數(shù)b可以估計(jì)和預(yù)測(cè)變量的取值和變化趨勢(shì);

④線性相關(guān)關(guān)系就是兩個(gè)變量間的函數(shù)關(guān)系.其中正確的命題是(

A.①②

B.①④

C.①②③

D.①②③④答案:D27.若點(diǎn)M,A,B,C對(duì)空間任意一點(diǎn)O都滿足則這四個(gè)點(diǎn)()

A.不共線

B.不共面

C.共線

D.共面答案:D28.若a>0,使不等式|x-4|+|x-3|<a在R上的解集不是空集的a的取值是()

A.0<a<1

B.a(chǎn)=1

C.a(chǎn)>1

D.以上均不對(duì)答案:C29.已知向量a與向量b,|a|=2,|b|=3,a、b的夾角為60°,當(dāng)1≤m≤2,0≤n≤2時(shí),|ma+nb|的最大值為_(kāi)_____.答案:∵|a|=2,|b|=3,a、b的夾角為60°,∴|ma+nb|2=m2a2+2mna?b+n2b2=4m2+2mn×2×3×cos60°+9n2=4m2+6mn+9n2,∵1≤m≤2,0≤n≤2,∴當(dāng)m=2且n=2時(shí),|ma+nb|2取到最大值,即|ma+nb|2max=100,∴,|ma+nb|的最大值為10.故為:10.30.①附中高一年級(jí)聰明的學(xué)生;

②直角坐標(biāo)系中橫、縱坐標(biāo)相等的點(diǎn);

③不小于3的正整數(shù);

④3的近似值;

考察以上能組成一個(gè)集合的是______.答案:因?yàn)橹苯亲鴺?biāo)系中橫、縱坐標(biāo)相等的點(diǎn)是確定的,所以②能構(gòu)成集合;不小于3的正整數(shù)是確定的,所以③能構(gòu)成集合;附中高一年級(jí)聰明的學(xué)生,不是確定的,原因是沒(méi)法界定什么樣的學(xué)生為聰明的,所以①不能構(gòu)成集合;3的近似值沒(méi)說(shuō)明精確到哪一位,所以是不確定的,故④不能構(gòu)成集合.31.已知A、B、C三點(diǎn)不共線,O是平面ABC外的任一點(diǎn),下列條件中能確定點(diǎn)M與點(diǎn)A、B、C一定共面的是()A.OM=OA+OB+OCB.OM=2OA-OB-OCC.OM=OA+12OB+13OCD.OM=13OA+13OB+13OC答案:由共面向量定理OM=m?OA+n?OB+p?OC,m+n+p=1,說(shuō)明M、A、B、C共面,可以判斷A、B、C都是錯(cuò)誤的,則D正確.故選D.32.己知集合A={sinα,cosα},則α的取值范圍是______.答案:由元素的互異性可得sinα≠cosα,∴α≠kπ+π4,k∈z.故α的取值范圍是{α|α≠kπ+π4,k∈z},故為{α|α≠kπ+π4,k∈z}.33.如圖,AB是⊙O的直徑,P是AB延長(zhǎng)線上的一點(diǎn).過(guò)P作⊙O的切線,切點(diǎn)為C,PC=23,若∠CAP=30°,則⊙O的直徑AB=______.答案:連接BC,設(shè)圓的直徑是x則三角形ABC是一個(gè)含有30°角的三角形,∴BC=12AB,三角形BPC是一個(gè)等腰三角形,BC=BP=12AB,∵PC是圓的切線,PA是圓的割線,∴PC2=PB?PC=12x?32x=34x2,∵PC=23,∴x=4,故為:434.在極坐標(biāo)系中,點(diǎn)(2,π6)到直線ρsinθ=2的距離等于______.答案:在極坐標(biāo)系中,點(diǎn)(2

,

π6)化為直角坐標(biāo)為(3,1),直線ρsinθ=2化為直角坐標(biāo)方程為y=2,(3,1),到y(tǒng)=2的距離1,即為點(diǎn)(2

,

π6)到直線ρsinθ=2的距離1,故為:1.35.將一枚骰子連續(xù)拋擲600次,請(qǐng)你估計(jì)擲出的點(diǎn)數(shù)大于2的大約是______次.答案:一顆骰子是均勻的,當(dāng)拋這顆骰子時(shí),出現(xiàn)的6個(gè)點(diǎn)數(shù)是等可能的,將一枚骰子連續(xù)拋擲600次,估計(jì)每一個(gè)嗲回溯出現(xiàn)的次數(shù)是100,∴擲出的點(diǎn)數(shù)大于2的大約有400次,故為:400.36.已知兩個(gè)點(diǎn)M(-5,0)和N(5,0),若直線上存在點(diǎn)P,使|PM|-|PN|=6,則稱該直線為“B型直線”給出下列直線①y=x+1;②y=2;③y=x④y=2x+1;其中為“B型直線”的是()

A.①③

B.①②

C.③④

D.①④答案:B37.在極坐標(biāo)系中,曲線ρ=4cosθ圍成的圖形面積為()

A.π

B.4

C.4π

D.16答案:C38.已知圓C的極坐標(biāo)方程是ρ=2sinθ,那么該圓的直角坐標(biāo)方程為

______,半徑長(zhǎng)是

______.答案:把極坐標(biāo)方程是ρ=2sinθ的兩邊同時(shí)乘以ρ得:ρ2=2ρsinθ,∴x2+y2=2y,即x2+(y-1)2=1,表示以(0,1)為圓心,半徑等于1的圓,故為:x2+(y-1)2=1;1.39.拋擲兩顆骰子,所得點(diǎn)數(shù)之和為ξ,那么ξ=4表示的隨機(jī)試驗(yàn)結(jié)果是()

A.一顆是3點(diǎn),一顆是1點(diǎn)

B.兩顆都是2點(diǎn)

C.兩顆都是4點(diǎn)

D.一顆是3點(diǎn),一顆是1點(diǎn)或兩顆都是2點(diǎn)答案:D40.如圖過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F的直線依次交拋物線及準(zhǔn)線于點(diǎn)A,B,C,若|BC|=2|BF|,且|AF|=3,則拋物線的方程為()

A.y2=x

B.y2=9x

C.y2=x

D.y2=3x

答案:D41.如圖,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,以底面正方形ABCD的中心為坐標(biāo)原點(diǎn)O,分別以射線OB,OC,AA1的指向?yàn)閤軸、y軸、z軸的正方向,建立空間直角坐標(biāo)系.試寫出正方體八個(gè)頂點(diǎn)的坐標(biāo).答案:解設(shè)i,j,k分別是與x軸、y軸、z軸的正方向方向相同的單位坐標(biāo)向量.因?yàn)榈酌嬲叫蔚闹行臑镺,邊長(zhǎng)為2,所以O(shè)B=2.由于點(diǎn)B在x軸的正半軸上,所以O(shè)B=2i,即點(diǎn)B的坐標(biāo)為(2,0,0).同理可得C(0,2,0),D(-2,0,0),A(0,-2,0).又OB1=OB+BB1=2i+2k,所以O(shè)B1=(2,0,2).即點(diǎn)B1的坐標(biāo)為(2,0,2).同理可得C1(0,2,2),D1(-2,0,2),A1(0,-2,2).42.底面直徑和高都是4cm的圓柱的側(cè)面積為_(kāi)_____cm2.答案:∵圓柱的底面直徑和高都是4cm,∴圓柱的底面圓的周長(zhǎng)是2π×2=4π∴圓柱的側(cè)面積是4π×4=16π,故為:16π.43.10件產(chǎn)品中有7件正品,3件次品,則在第一次抽到次品條件下,第二次抽到次品的概率______.答案:根據(jù)題意,在第一次抽到次品后,有2件次品,7件正品;則第二次抽到次品的概率為29;故為29.44.設(shè)全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},則(CuA)∩B=()A.{2}B.{4,6}C.{l,3,5}D.{4,6,7,8}答案:∵全集U={1,2,3,4,5,6,7,8},集合A={1,2,3,5},B={2,4,6},∴CUA={4,6,7,8},∴(CuA)∩B={4,6}.故選B.45.某品牌平板電腦的采購(gòu)商指導(dǎo)價(jià)為每臺(tái)2000元,若一次采購(gòu)數(shù)量達(dá)到一定量,還可享受折扣.如圖為某位采購(gòu)商根據(jù)折扣情況設(shè)計(jì)的算法程序框圖,若一次采購(gòu)85臺(tái)該平板電腦,則S=______元.答案:分析程序中各變量、各語(yǔ)句,其作用是:表示一次采購(gòu)共需花費(fèi)的金額,再根據(jù)流程圖所示的順序,可知:該程序的作用是計(jì)算分段函數(shù)S=200×0.8?x,x>100200×0.9?x,50<x≤100200?x,0<x≤50的值,∵x=85,∴S=200×0.9×85=15300(元),故為:15300.46.有一個(gè)正四棱錐,它的底面邊長(zhǎng)與側(cè)棱長(zhǎng)均為a,現(xiàn)用一張正方形包裝紙將其完全包?。ú荒懿眉艏垼梢哉郫B),那么包裝紙的最小邊長(zhǎng)應(yīng)為()A.2+62aB.(2+6)aC.1+32aD.(1+3)a答案:由題意可知:當(dāng)正四棱錐沿底面將側(cè)面都展開(kāi)時(shí)如圖所示:分析易知當(dāng)以PP′為正方形的對(duì)角線時(shí),所需正方形的包裝紙的面積最小,此時(shí)邊長(zhǎng)最?。O(shè)此時(shí)的正方形邊長(zhǎng)為x則:(PP′)2=2x2,又因?yàn)镻P′=a+2×32a=a+3a,∴(

a+3a)2=2x2,解得:x=6+22a.故選A47.應(yīng)用反證法推出矛盾的推導(dǎo)過(guò)程中要把下列哪些作為條件使用()

①結(jié)論相反的判斷,即假設(shè)

②原命題的條件

③公理、定理、定義等

④原結(jié)論

A.①②

B.①②④

C.①②③

D.②③答案:C48.若a2+b2+c2=1,則a+2b+3c的最大值為_(kāi)_____.答案:因?yàn)橐阎猘、b、c是實(shí)數(shù),且a2+b2+c2=1根據(jù)柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(12+22+32)≥(a+2b+3c)2故(a+2b+3c)2≤14,即2a+b+2c≤14.即a+2b+3c的最大值為14.故為:14.49.某學(xué)校為了了解學(xué)生的日平均睡眠時(shí)間(單位:h),隨機(jī)選擇了n名同學(xué)進(jìn)行調(diào)查,下表是這n名同學(xué)的日平均睡眠時(shí)間的頻率分布表:

序號(hào)(i)分組(睡眠時(shí)間)頻數(shù)(人數(shù))頻率1[4,5)40.082[5,6)x0.203[6,7)ay4[7,8)bz5[8,9]m0.O8(1)求n的值;若a=20,試確定x、y、z、m的值;

(2)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值(例如[4,5)的中點(diǎn)值4.5)作為代表.若據(jù)此計(jì)算的這n名學(xué)生的日平均睡眠時(shí)間的平均值為6.68.求a、b的值.答案:(1)樣本容量n=40.08=50,∴x=0.20×50=10,y=0.4,z=0.24,m=4(5分)(2)n=50,P(i=3)=a50,P(i=4)=b50平均時(shí)間為:4.5×0.08+5.5×0.2+6.5×a50+7.5×b50+8.5×0.08=6.68,即13a+15b=454

①(9分)又4+10+a+b+4=50,即a+b=32

②由①,②解得:a=13,b=1.(12分)50.已知f(x)=2x,g(x)=3x.

(1)當(dāng)x為何值時(shí),f(x)=g(x)?

(2)當(dāng)x為何值時(shí),f(x)>1?f(x)=1?f(x)<1?

(3)當(dāng)x為何值時(shí),g(x)>3?g(x)=3?g(x)<3?答案:(1)作出函數(shù)f(x),g(x)的圖象,如圖所示.∵f(x),g(x)的圖象都過(guò)點(diǎn)(0,1),且這兩個(gè)圖象只有一個(gè)公共點(diǎn),∴當(dāng)x=0時(shí),f(x)=g(x)=1.(2)由圖可知,當(dāng)x>0時(shí),f(x)>1;當(dāng)x=0時(shí),f(x)=1;當(dāng)x<0時(shí),f(x)<1.(3)由圖可知:當(dāng)x>1時(shí),g(x)>3;當(dāng)x=1時(shí),g(x)=3;當(dāng)x<1時(shí),g(x)<3.第3卷一.綜合題(共50題)1.已知當(dāng)m∈R時(shí),函數(shù)f(x)=m(x2-1)+x-a的圖象和x軸恒有公共點(diǎn),求實(shí)數(shù)a的取值范圍.答案:(1)m=0時(shí),f(x)=x-a是一次函數(shù),它的圖象恒與x軸相交,此時(shí)a∈R.(2)m≠0時(shí),由題意知,方程mx2+x-(m+a)=0恒有實(shí)數(shù)解,其充要條件是△=1+4m(m+a)=4m2+4am+1≥0.又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1].∴m=0時(shí),a∈R;m≠0時(shí),a∈[-1,1].2.設(shè)向量a=(32,sinθ),b=(cosθ,13),其中θ∈(0,π2),若a∥b,則θ=______.答案:若a∥b,則sinθcosθ=12,即2sinθcosθ=1,∴sin2θ=1,又θ∈(0,π2),∴θ=π4.故為:π4.3.擬定從甲地到乙地通話m分鐘的電話費(fèi)由f(m)=1.06(0.50×[m]+1)給出,其中m>0,[m]是大于或等于m的最小整數(shù)(例如[3]=3,[3.7]=4,[3.1]=4),則從甲地到乙地通話時(shí)間為5.5分鐘的話費(fèi)為()A.3.71B.3.97C.4.24D.4.77C答案:由[m]是大于或等于m的最小整數(shù)可得[5.5]=6.所以f(5.5)=1.06×(0.50×[5.5]+1)=1.06×4=4.24.故選:C.4.若點(diǎn)(a,9)在函數(shù)y=3x的圖象上,則tanaπ6=______.答案:將(a,9)代入到y(tǒng)=3x中,得3a=9,解得a=2.∴tanaπ6=tanπ3=3故為:35.已知P為拋物線y2=4x上一點(diǎn),設(shè)P到準(zhǔn)線的距離為d1,P到點(diǎn)A(1,4)的距離為d2,則d1+d2的最小值為_(kāi)_____.答案:∵y2=4x,焦點(diǎn)坐標(biāo)為F(1,0)根據(jù)拋物線定義可知P到準(zhǔn)線的距離為d1=|PF|d1+d2=|PF|+|PA|進(jìn)而可知當(dāng)A,P,F(xiàn)三點(diǎn)共線時(shí),d1+d2的最小值=|AF|=4故為46.(本小題滿分10分)數(shù)學(xué)的美是令人驚異的!如三位數(shù)153,它滿足153=13+53+33,即這個(gè)整數(shù)等于它各位上的數(shù)字的立方的和,我們稱這樣的數(shù)為“水仙花數(shù)”.請(qǐng)您設(shè)計(jì)一個(gè)算法,找出大于100,小于1000的所有“水仙花數(shù)”.

(1)用自然語(yǔ)言寫出算法;

(2)畫出流程圖.答案:(1)算法如下:第一步,i=101.第二步,如果i不大于999,則執(zhí)行第三步,否則算法結(jié)束.第三步,若這個(gè)數(shù)i等于它各位上的數(shù)字的立方的和,則輸出這個(gè)數(shù).第四步,i=i+1,返回第二步.(2)程序框圖,如右圖所示.7.若a,b∈R,求證:≤+.答案:證明略解析:證明

當(dāng)|a+b|=0時(shí),不等式顯然成立.當(dāng)|a+b|≠0時(shí),由0<|a+b|≤|a|+|b|≥,所以=≤=≤+.8.直線y=k(x-2)+3必過(guò)定點(diǎn),該定點(diǎn)的坐標(biāo)為()

A.(3,2)

B.(2,3)

C.(2,-3)

D.(-2,3)答案:B9.如圖,空間四邊形ABCD中,M、G分別是BC、CD的中點(diǎn),則AB+12BC+12BD等()A.ADB.GAC.AGD.MG答案:∵M(jìn)、G分別是BC、CD的中點(diǎn),∴12BC=BM,12BD=MC∴AB+12BC+12BD=AB+BM+MC=AM+MC=AC故選C10.(1)若三條直線2x+3y+8=0,x-y-1=0和x+ky=0相交于一點(diǎn),則k的值為?

(2)若α∈N,又三點(diǎn)A(α,0),B(0,α+4),C(1,3)共線,求α的值.答案:(1)由2x+3y+8=0x-y-1=0解得x=-1,y=-2,∴直線2x+3y+8=0和x-y-1=0的交點(diǎn)為(-1,-2).∵三條直線2x+3y+8=0,x-y-1=0和x+ky=0相交于一點(diǎn),∴(-1,-2)在直線x+ky=0上,∴-1-2k=0,解得k=-12.(2)A、B、C三點(diǎn)共線,說(shuō)明直線AB與直線AC的斜率相等∴a+4-00-a=3-01-a,解得:a=211.給定兩個(gè)長(zhǎng)度為1且互相垂直的平面向量OA和OB,點(diǎn)C在以O(shè)為圓心的圓弧AB上變動(dòng).若OC=2xOA+yOB,其中x,y∈R,則x+y的最大值是______.答案:由題意|OC|=1,即4x2+y2=1,令x=12cosθ,y=sinθ則x+y=12cosθ+sinθ=(12)2+1sin(θ+φ)≤52故x+y的最大值是52故為:5212.a=0是復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分又不必要條件答案:當(dāng)a=0時(shí),復(fù)數(shù)a+bi=bi,當(dāng)b=0是不是純虛數(shù)即“a=0”成立推不出“復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)”反之,當(dāng)復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù),則有a=0且b≠0即“復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)”成立能推出“a=0“成立故a=0是復(fù)數(shù)a+bi(a,b∈R)為純虛數(shù)的必要不充分條件故選B13.要從10名女生與5名男生中選出6名學(xué)生組成課外活動(dòng)小組,則符合按性別比例分層抽樣的概率為()

A.

B.

C.

D.

答案:C14.已知點(diǎn)A(1,0,0),B(0,2,0),C(0,0,3)則平面ABC與平面xOy所成銳二面角的余弦值為_(kāi)_____.答案:AB=(-1,2,0),AC=(-1,0,3).設(shè)平面ABC的法向量為n=(x,y,z),則n?AB=-x+2y=0n?AC=-x+3z=0,令x=2,則y=1,z=23.∴n=(2,1,23).取平面xoy的法向量m=(0,0,1).則cos<m,n>=m?n|m|

|n|=231×22+1+(23)2=27.故為27.15.已知A,B,C三點(diǎn)不共線,O為平面ABC外一點(diǎn),若由向量OP=15OA+23OB+λOC確定的點(diǎn)P與A,B,C共面,那么λ=______.答案:由題意A,B,C三點(diǎn)不共線,點(diǎn)O是平面ABC外一點(diǎn),若由向量OP=15OA+23OB+λOC確定的點(diǎn)P與A,B,C共面,∴15+23+λ=1解得λ=215故為:21516.由1、2、3可以組成______個(gè)沒(méi)有重復(fù)數(shù)字的兩位數(shù).答案:沒(méi)有重復(fù)數(shù)字的兩位數(shù)共有3×2=6個(gè)故為:617.已知函數(shù)f(x)=2x+a的圖象不過(guò)第三象限,則常數(shù)a的取值范圍是

______.答案:函數(shù)f(x)=2x+a的圖象可根據(jù)指數(shù)函數(shù)f(x)=2x的圖象向上(a>0)或者向下(a<0)平移|a|個(gè)單位得到,若函數(shù)f(x)=2x+a的圖象不過(guò)第三象限,則只能向上平移或者不平移,因此,a的取值范圍是a≥0.故為:a≥0.18.若x、y∈R+且x+2y≤ax+y恒成立,則a的最小值是()A.1B.2C.3D.1+22答案:由題意,根據(jù)柯西不等式得x+2y≤(1+2)(x+y)∴x+2y≤3(x+y)要使x+2y≤ax+y恒成立,∴a≥3∴a的最小值是3故選C.19.如果直線l1,l2的斜率分別為二次方程x2-4x+1=0的兩個(gè)根,那么l1與l2的夾角為()

A.

B.

C.

D.答案:A20.點(diǎn)P(1,2,2)到原點(diǎn)的距離是()

A.9

B.3

C.1

D.5答案:B21.已知函數(shù)f(x)=2-x,x≤112+log2x,x>1,則滿足f(x)≥1的x的取值范圍為_(kāi)_____.答案:當(dāng)x≤1時(shí),2-x≥1,解得-x≥0,即x≤0,所以x≤0;當(dāng)x>1時(shí),12+log2x≥1,解得x≥2,所以x≥2.所以滿足f(x)≥1的x的取值范圍為(-∞,0]∪[2,+∞).故為:(-∞,0]∪[2,+∞).22.已知點(diǎn)M(a,b)在直線3x+4y=15上,則a2+b2的最小值為_(kāi)_____.答案:a2+b2的幾何意義是到原點(diǎn)的距離,它的最小值轉(zhuǎn)化為原點(diǎn)到直線3x+4y=15的距離:d=155=3.故為3.23.b=ac(a,b,c∈R)是a、b、c成等比數(shù)列的()A.必要非充分條件B.充分非必要條件C.充要條件D.既非充分又非必要條件答案:當(dāng)b=a=0時(shí),b=ac推不出a,x,b成等比數(shù)列成立,故不充分;當(dāng)a,b,c成等比數(shù)列且a<0,b<0,c<0時(shí),得不到b=ac故不必要.故選:D24.在圖中,M、N是圓柱體的同一條母線上且位于上、下底面上的兩點(diǎn),若從M點(diǎn)繞圓柱體的側(cè)面到達(dá)N,沿怎么樣的路線路程最短?答案:沿圓柱體的母線MN將圓柱的側(cè)面剪開(kāi)輔平,得出圓柱的側(cè)面展開(kāi)圖,從M點(diǎn)繞圓柱體的側(cè)面到達(dá)N點(diǎn),實(shí)際上是從側(cè)面展開(kāi)圖的長(zhǎng)方形的一個(gè)頂點(diǎn)M到達(dá)不相鄰的另一個(gè)頂點(diǎn)N.而兩點(diǎn)間以線段的長(zhǎng)度最短.所以最短路線就是側(cè)面展開(kāi)圖中長(zhǎng)方形的一條對(duì)角線.如圖所示.25.點(diǎn)O是△ABC內(nèi)一點(diǎn),若+=-,則是S△AOB:S△AOC=()

A.1

B.

C.

D.答案:A26.由圓C:x=2+cosθy=3+sinθ(θ為參數(shù))求圓的標(biāo)準(zhǔn)方程.答案:圓的參數(shù)方程x=2+cosθy=3+sinθ變形為:cosθ=2-xsinθ=3-y,根據(jù)同角的三角函數(shù)關(guān)系式cos2θ+sin2θ=1,可得到標(biāo)準(zhǔn)方程:(x-2)2+(y-3)2=1.所以為(x-2)2+(y-3)2=1.27.將參數(shù)方程x=2sinθy=1+2cos2θ(θ為參數(shù),θ∈R)化為普通方程,所得方程是______.答案:由x=2sinθ

①y=1+2cos2θ

②,因?yàn)棣取蔙,所以-1≤sinθ≤1,則-2≤x≤2.由①兩邊平方得:x2=2sin2θ③由②得y-1=2cos2θ④③+④得:x2+y-1=2,即y=-x2+3(-2≤x≤2).故為y=-x2+3(-2≤x≤2).28.給定點(diǎn)A(x0,y0),圓C:x2+y2=r2及直線l:x0x+y0y=r2,給出以下三個(gè)命題:

①當(dāng)點(diǎn)A在圓C上時(shí),直線l與圓C相切;

②當(dāng)點(diǎn)A在圓C內(nèi)時(shí),直線l與圓C相離;

③當(dāng)點(diǎn)A在圓C外時(shí),直線l與圓C相交.

其中正確的命題個(gè)數(shù)是()

A.0

B.1

C.2

D.3答案:D29.某幾何體的三視圖如圖所示,則這個(gè)幾何體的體積是______.答案:由三視圖可知該幾何體為是一平放的直三棱柱,底面是邊長(zhǎng)為2的正三角形,棱柱的側(cè)棱為3,也為高.V=Sh=34×22

×3=33故為:33.30.下列命題:

①垂直于同一直線的兩直線平行;

②垂直于同一直線的兩平面平行;

③垂直于同一平面的兩直線平行;

④垂直于同一平面的兩平面平行;

其中正確的有()

A.③④

B.①②④

C.②③

D.②③④答案:C31.設(shè)O是正方形ABCD的中心,向量,,,是(

A.平行向量

B.有相同終點(diǎn)的向量

C.相等向量

D.模相等的向量答案:D32.|a|=4,|b|=5,|a+b|=8,則a與b的夾角為_(kāi)_____.答案:設(shè)a與b的夾角為θ因?yàn)閨a|=4,|b|=5,|a+b|=8,所以a2+2a?b+b2=64即16+2×4×5cosθ+25=64解得cosθ=2340所以θ=arccos2340故為arccos234033.已知點(diǎn)P1(3,-5),P2(-1,-2),在直線P1P2上有一點(diǎn)P,且|P1P|=15,則P點(diǎn)坐標(biāo)為()

A.(-9,-4)

B.(-14,15)

C.(-9,4)或(15,-14)

D.(-9,4)或(-14,15)答案:C34.圓x=1+cosθy=1+sinθ(θ為參數(shù))的標(biāo)準(zhǔn)方程是

______,過(guò)這個(gè)圓外一點(diǎn)P(2,3)的該圓的切線方程是

______;答案:∵圓x=1+cosθy=1+sinθ(θ為參數(shù))消去參數(shù)θ,得:(x-1)2+(y-1)2=1,即圓x=1+cosθy=1+sinθ(θ為參數(shù))的標(biāo)準(zhǔn)方程是(x-1)2+(y-1)2=1;∵這個(gè)圓外一點(diǎn)P(2,3)的該圓的切線,當(dāng)切線斜率不存在時(shí),顯然x=2符合題意;當(dāng)切線斜率存在時(shí),設(shè)切線方程為:y-3=k(x-2),由圓心到切線的距離等于半徑,得|k-1+3-2k|k2+1=

1,解得:k=34,故切線方程為:3x-4y+6=0.故為:(x-1)2+(y-1)2=1;x=2或3x-4y+6=0.35.用數(shù)學(xué)歸納法證明:

對(duì)于一切n∈N*,都有(12+1)+(22+2)+…+(n2+n)=n(n+1)(n+2)3.答案:證明:(1)當(dāng)n=1時(shí),左邊=12+1=2,右邊=1×2×33=2,所以當(dāng)n=1時(shí),命題成立;

…(2分)(2)設(shè)n=k時(shí),命題成立,即有(12+1)+(22+2)+…+(k2+

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論