版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年哈爾濱傳媒職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買(mǎi)!第1卷一.綜合題(共50題)1.正態(tài)曲線下、橫軸上,從均值到+∞的面積為_(kāi)_____答案:由正態(tài)曲線的對(duì)稱(chēng)性特點(diǎn)知,曲線與x軸之間的面積為1,所以從均數(shù)到的面積為整個(gè)面積的一半,即50%.填:0.5.2.給出下列四個(gè)命題,其中正確的一個(gè)是()
A.在線性回歸模型中,相關(guān)指數(shù)R2=0.80,說(shuō)明預(yù)報(bào)變量對(duì)解釋變量的貢獻(xiàn)率是80%
B.在獨(dú)立性檢驗(yàn)時(shí),兩個(gè)變量的2×2列聯(lián)表中對(duì)角線上數(shù)據(jù)的乘積相差越大,說(shuō)明這兩個(gè)變量沒(méi)有關(guān)系成立的可能性就越大
C.相關(guān)指數(shù)R2用來(lái)刻畫(huà)回歸效果,R2越小,則殘差平方和越大,模型的擬合效果越好
D.線性相關(guān)系數(shù)r的絕對(duì)值越接近于1,表明兩個(gè)隨機(jī)變量線性相關(guān)性越強(qiáng)答案:D3.直線3x+4y-7=0與直線6x+8y+3=0之間的距離是()
A.
B.2
C.
D.答案:C4.直線x=2-12ty=-1+12t(t為參數(shù))被圓x2+y2=4截得的弦長(zhǎng)為_(kāi)_____.答案:∵直線x=2-12ty=-1+12t(t為參數(shù))∴直線的普通方程為x+y-1=0圓心到直線的距離為d=12=22,l=24-(22)2=14,故為:14.5.在(1+x)3+(1+x)4…+(1+x)7的展開(kāi)式中,含x項(xiàng)的系數(shù)是______.(用數(shù)字作答)答案:(1+x)3+(1+x)4…+(1+x)7的展開(kāi)式中,含x項(xiàng)的系數(shù)是C31+C41+C51+…+C71=25故為:256.若兩圓x2+y2=m和x2+y2+6x-8y-11=0有公共點(diǎn),則實(shí)數(shù)m的取值范圍是(
)
A.(-∞,1)
B.(121,+∞)
C.[1,121]
D.(1,121)答案:C7.若A∩B=A∪B,則A______B.答案:設(shè)有集合W=A∪B=B∩C,根據(jù)并集的性質(zhì),W=A∪B?A?W,B?W,根據(jù)交集的性質(zhì),W=A∩B?W?A,W?B由集合子集的性質(zhì),A=B=W,故為:=.8.若A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},則A∩B=()
A.{2,1}
B.{(2,1)}
C.{1,2}
D.{(1,2)}答案:D9.“因?yàn)橹笖?shù)函數(shù)y=ax是增函數(shù)(大前提),而y=()x是指數(shù)函數(shù)(小前提),所以y=()x是增函數(shù)(結(jié)論)”,上面推理的錯(cuò)誤是()
A.大前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)
B.小前提錯(cuò)導(dǎo)致結(jié)論錯(cuò)
C.推理形式錯(cuò)導(dǎo)致結(jié)論錯(cuò)
D.大前提和小前提錯(cuò)都導(dǎo)致結(jié)論錯(cuò)答案:A10.已知|a|=8,e是單位向量,當(dāng)它們之間的夾角為π3時(shí),a在e方向上的投影為
______.答案:a在e方向上的投影為a?e=|a||e|cosπ3=4故為:411.點(diǎn)O是△ABC內(nèi)一點(diǎn),若+=-,則是S△AOB:S△AOC=()
A.1
B.
C.
D.答案:A12.設(shè)a=(x,y,3),b=(3,3,5),且a⊥b,則x+y=()A.1B.-1C.-5D.5答案:∵a=(x,y,3),b=(3,3,5),且a⊥b,∴a?b=3x+3y+15=0,∴x+y=-5,故選
C.13.若a為實(shí)數(shù),,則a等于()
A.
B.-
C.2
D.-2答案:B14.直三棱柱ABC-A1B1C1中,若CA=a
CB=b
CC1=c
則A1B=()A.a(chǎn)+b-cB.a(chǎn)-b+cC.-a+b+cD.-a+b-c答案:A1B=A1A+AB=-CC1+CB-CA=-a+b-c故選D.15.在直角坐標(biāo)系內(nèi),坐標(biāo)軸上的點(diǎn)構(gòu)成的集合可表示為()A.{(x,y)|x=0,y≠0或x≠0,y=0}B.{(x,y)|x=0且y=0}C.{(x,y)|xy=0}D.{(x,y)|x,y不同時(shí)為零}答案:在x軸上的點(diǎn)(x,y),必有y=0;在y軸上的點(diǎn)(x,y),必有x=0,∴xy=0.∴直角坐標(biāo)系中,x軸上的點(diǎn)的集合{(x,y)|y=0},直角坐標(biāo)系中,y軸上的點(diǎn)的集合{(x,y)|x=0},∴坐標(biāo)軸上的點(diǎn)的集合可表示為{(x,y)|y=0}∪{(x,y)|x=0}={(x,y)|xy=0}.故選C.16.已知參數(shù)方程x=1+cosθy=sinθ,(參數(shù)θ∈[0,2π]),則該曲線上的點(diǎn)與定點(diǎn)A(-1,-1)的距離的最小值是
______.答案:∵參數(shù)方程x=1+cosθy=sinθ∴圓的方程為(x-1)2+y2=1∴定點(diǎn)A(-1,-1)到圓心的距離為5∴與定點(diǎn)A(-1,-1)的距離的最小值是d-r=5-1故為5-117.在等腰直角三角形ABC中,若M是斜邊AB上的點(diǎn),則AM小于AC的概率為()A.14B.12C.22D.32答案:記“AM小于AC”為事件E.在線段AB上截取,則當(dāng)點(diǎn)M位于線段AC內(nèi)時(shí),AM小于AC,將線段AB看做區(qū)域D,線段AC看做區(qū)域d,于是AM小于AC的概率為:ACAB=22.故選C.18.已知向量a=(2,4),b=(1,1),若向量b⊥(a+λb),則實(shí)數(shù)λ的值是
______.答案:a+λb=(2,4)+λ(1,1)=(2+λ,4+λ).∵b⊥(a+λb),∴b?(a+λb)=0,即(1,1)?(2+λ,4+λ)=2+λ+4+λ=6+2λ=0,∴λ=-3.故:-319.如圖,O為直線A0A2013外一點(diǎn),若A0,A1,A2,A3,A4,A5,…,A2013中任意相鄰兩點(diǎn)的距離相等,設(shè)OA0=a,OA2013=b,用a,b表示OA0+OA1+OA2+…+OA2013,其結(jié)果為_(kāi)_____.答案:設(shè)A0A2013的中點(diǎn)為A,則A也是A1A2012,…A1006A1007的中點(diǎn),由向量的中點(diǎn)公式可得OA0+OA2013=2OA=a+b,同理可得OA1+OA2012=OA2+OA2011=…=OA1006+OA1007,故OA0+OA1+OA2+…+OA2013=1007×2OA=1007(a+b)故為:1007(a+b)20.已知函數(shù)f(x)=2x,數(shù)列{an}滿足a1=f(0),且f(an+1)=(n∈N*),
(1)證明數(shù)列{an}是等差數(shù)列,并求a2010的值;
(2)分別求出滿足下列三個(gè)不等式:,
的k的取值范圍,并求出同時(shí)滿足三個(gè)不等式的k的最大值;
(3)若不等式對(duì)一切n∈N*都成立,猜想k的最大值,并予以證明。答案:解:(1)由,得,即,∴是等差數(shù)列,∴,∴。(2)由,得;,得;,得,,∴當(dāng)k同時(shí)滿足三個(gè)不等式時(shí),。(3)由,得恒成立,令,則,,∴,∵F(n)是關(guān)于n的單調(diào)增函數(shù),∴,∴。21.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系(ρ,θ)(ρ>0,0≤θ<π2)中,曲線ρ=2sinθ與ρ=2cosθ的交點(diǎn)的極坐標(biāo)為_(kāi)_____.答案:兩式ρ=2sinθ與ρ=2cosθ相除得tanθ=1,∵0≤θ<π2,∴θ=π4,∴ρ=2sinπ4=2,故交點(diǎn)的極坐標(biāo)為(2,π4).故為:(2,π4).22.我市某機(jī)構(gòu)為調(diào)查2009年下半年落實(shí)中學(xué)生“陽(yáng)光體育”活動(dòng)的情況,設(shè)平均每人每天參加體育鍛煉時(shí)間為X(單位:分鐘),按鍛煉時(shí)間分下列四種情況統(tǒng)計(jì):①0~10分鐘;②11~20分鐘;③21~30分鐘;④30分鐘以上,有10000名中學(xué)生參加了此項(xiàng)活動(dòng),右圖是此次調(diào)查中某一項(xiàng)的流程圖,其輸出的結(jié)果是6200,則平均每天參加體育鍛煉時(shí)間在0~20分鐘內(nèi)的學(xué)生的頻率是()A.0.62B.0.38C.6200D.3800答案:由圖知輸出的S的值是運(yùn)動(dòng)時(shí)間超過(guò)20分鐘的學(xué)生人數(shù),由于統(tǒng)計(jì)總?cè)藬?shù)是10000,又輸出的S=6200,故運(yùn)動(dòng)時(shí)間不超過(guò)20分鐘的學(xué)生人數(shù)是3800事件“平均每天參加體育鍛煉時(shí)間在0~20分鐘內(nèi)的學(xué)生的”頻率是380010000=0.38故選B23.關(guān)于x的方程(m+3)x2-4mx+2m-1=0的兩根異號(hào),且負(fù)數(shù)根的絕對(duì)值比正數(shù)根大,那么實(shí)數(shù)m的取值范圍是()
A.-3<m<0
B.0<m<3
C.m<-3或m>0
D.m<0或m>3答案:A24.已知、分別是的外接圓和內(nèi)切圓;證明:過(guò)上的任意一點(diǎn),都可作一個(gè)三角形,使得、分別是的外接圓和內(nèi)切圓.答案:略解析:證:如圖,設(shè),分別是的外接圓和內(nèi)切圓半徑,延長(zhǎng)交于,則,,延長(zhǎng)交于;則,即;過(guò)分別作的切線,在上,連,則平分,只要證,也與相切;設(shè),則是的中點(diǎn),連,則,,,所以,由于在角的平分線上,因此點(diǎn)是的內(nèi)心,(這是由于,,而,所以,點(diǎn)是的內(nèi)心).即弦與相切.25.若曲線的極坐標(biāo)方程為ρ=2sinθ+4cosθ,以極點(diǎn)為原點(diǎn),極軸為x軸正半軸建立直角坐標(biāo)系,則該曲線的直角坐標(biāo)方程為_(kāi)_____.答案:曲線的極坐標(biāo)方程為ρ=2sinθ+4cosθ,即ρ2=2ρsinθ+4ρcosθ,即x2+y2=2y+4x,化簡(jiǎn)為(x-2)2+(y-1)2=5,故為(x-2)2+(y-1)2=5.26.函數(shù)y=x2x4+9(x≠0)的最大值為_(kāi)_____,此時(shí)x的值為_(kāi)_____.答案:y=x2x4+9=1x2+9x2≤129=16,當(dāng)且僅當(dāng)x2=9x2,即x=±3時(shí)取等號(hào).故為:16,
±327.設(shè)、、為實(shí)數(shù),,則下列四個(gè)結(jié)論中正確的是(
)A.B.C.且D.且答案:D解析:若,則,則.若,則對(duì)于二次函數(shù),由可得結(jié)論.28.已知空間四點(diǎn)A(4,1,3),B(2,3,1),C(3,7,-5),D(x,-1,3)共面,則x的值為[
]A
.4
B.1
C.10
D.11答案:D29.平面內(nèi)有兩個(gè)定點(diǎn)F1(-5,0)和F2(5,0),動(dòng)點(diǎn)P滿足條件|PF1|-|PF2|=6,則動(dòng)點(diǎn)P的軌跡方程是()A.x216-y29=1(x≤-4)B.x29-y216=1(x≤-3)C.x216-y29=1(x>≥4)D.x29-y216=1(x≥3)答案:由|PF1|-|PF2|=6<|F1F2|知,點(diǎn)P的軌跡是以F1、F2為焦點(diǎn)的雙曲線右支,得c=5,2a=6,∴a=3,∴b2=16,故動(dòng)點(diǎn)P的軌跡方程是x29-y216=1(x≥3).故選D.30.已知a>b>0,則3a,3b,4a由小到大的順序是______.答案:由于指數(shù)函數(shù)y=3x在R上是增函數(shù),且a>b>0,可得3a>3b.由于冪函數(shù)y=xa在(0,+∞)上是增函數(shù),故有3a<4a,故3a,3b,4a由小到大的順序是3b<3a<4a.,故為3b<3a<4a.31.在平面直角坐標(biāo)系xOy中,雙曲線x24-y212=1上一點(diǎn)M,點(diǎn)M的橫坐標(biāo)是3,則M到雙曲線右焦點(diǎn)的距離是______答案:MFd=e=2,d為點(diǎn)M到右準(zhǔn)線x=1的距離,則d=2,∴MF=4.故為432.若a2+b2=4,則兩圓(x-a)2+y2=1和x2+(y-b)2=1的位置關(guān)系是______.答案:若a2+b2=4,由于兩圓(x-a)2+y2=1和x2+(y-b)2=1的圓心距為(a-0)2+(0-b)2=a2+b2=2,正好等于兩圓的半徑之和,故兩圓相外切,故為相外切.33.否定結(jié)論“至少有一個(gè)解”的說(shuō)法中,正確的是()
A.至多有一個(gè)解
B.至少有兩個(gè)解
C.恰有一個(gè)解
D.沒(méi)有解答案:D34.已知定點(diǎn)A(2,0),圓O的方程為x2+y2=8,動(dòng)點(diǎn)M在圓O上,那么∠OMA的最大值是()
A.
B.
C.a(chǎn)rccos
D.a(chǎn)rccos答案:B35.若三角形的內(nèi)切圓半徑為r,三邊的長(zhǎng)分別為a,b,c,則三角形的面積S=12r(a+b+c),根據(jù)類(lèi)比思想,若四面體的內(nèi)切球半徑為R,四個(gè)面的面積分別為S1、S2、S3、S4,則此四面體的體積V=______.答案:設(shè)四面體的內(nèi)切球的球心為O,則球心O到四個(gè)面的距離都是R,所以四面體的體積等于以O(shè)為頂點(diǎn),分別以四個(gè)面為底面的4個(gè)三棱錐體積的和.故為:13R(S1+S2+S3+S4).36.如圖為一個(gè)求50個(gè)數(shù)的平均數(shù)的程序,在橫線上應(yīng)填充的語(yǔ)句為()
A.i>50
B.i<50
C.i>=50
D.i<=50
答案:A37.(本小題滿分10分)選修4-1:幾何證明選講
如圖,的角平分線的延長(zhǎng)線交它的外接圓于點(diǎn).
(Ⅰ)證明:;
(Ⅱ)若的面積,求的大小.答案:(Ⅰ)證明見(jiàn)解析(Ⅱ)90°解析:本題主要考查平面幾何中與圓有關(guān)的定理及性質(zhì)的應(yīng)用、三角形相似及性質(zhì)的應(yīng)用.證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.因?yàn)椤螦EB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.故△ABE∽△ADC.(Ⅱ)因?yàn)椤鰽BE∽△ADC,所以,即AB·AC=AD·AE.又S=AB·ACsin∠BAC,且S=AD·AE,故AB·ACsin∠BAC=AD·AE.則sin∠BAC=1,又∠BAC為三角形內(nèi)角,所以∠BAC=90°.【點(diǎn)評(píng)】在圓的有關(guān)問(wèn)題中經(jīng)常要用到弦切角定理、圓周角定理、相交弦定理等結(jié)論,解題時(shí)要注意根據(jù)已知條件進(jìn)行靈活的選擇,同時(shí)三角形相似是證明一些與比例有關(guān)問(wèn)題的的最好的方法.38.如圖表示空間直角坐標(biāo)系的直觀圖中,正確的個(gè)數(shù)為()
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)答案:C39.設(shè)a,b,c是正實(shí)數(shù),求證:aabbcc≥(abc)a+b+c3.答案:證明:不妨設(shè)a≥b≥c>0,則lga≥lgb≥lgc.據(jù)排序不等式有:alga+blgb+clgc≥blga+clgb+algcalga+blgb+clgc≥clga+algb+blgcalga+blgb+clgc=alga+blgb+clgc上述三式相加得:3(alga+blgb+clgc)≥(a+b+c)(lga+lgb+lgc)即lg(aabbcc)≥a+b+c3lg(abc)故aabbcc≥(abc)a+b+c3.40.已知某離散型隨機(jī)變量ξ的數(shù)學(xué)期望Eξ=76,ξ的分布列如下,則a=______.
答案:∵Eξ=76=0×a+1×13+2×16+3b∴b=16,∵P(ξ=0)+P(ξ=1)+P(ξ=2)+P(ξ=3)=1∴a+13+16+16=1∴a=13.故為:1341.集合A={3,2a},B={a,b},若A∩B={2},則A∪B=______.答案:根據(jù)題意,若A∩B={2},則2∈A,2∈B,而已知A={3,2a},則必有2a=2,故a=1,又由2∈B,且a=1則b=2,故A∪B={1,2,3},故為{1,2,3}.42.在某項(xiàng)測(cè)量中,測(cè)量結(jié)果ξ服從正態(tài)分布N(1,σ2)(σ>0),若ξ在(0,2)內(nèi)取值的概率為0.6,則ξ在(0,1)內(nèi)取值的概率為()
A.0.1
B.0.2
C.0.3
D.0.4答案:C43.已知集合A={1,3,5,7,9},B={0,3,6,9,12},則A∩B=()A.{3,5}B.{3,6}C.{3,7}D.{3,9}答案:因?yàn)锳∩B={1,3,5,7,9}∩{0,3,6,9,12}={3,9}故選D44.解不等式|2x-1|<|x|+1.答案:根據(jù)題意,對(duì)x分3種情況討論:①當(dāng)x<0時(shí),原不等式可化為-2x+1<-x+1,解得x>0,又x<0,則x不存在,此時(shí),不等式的解集為?.②當(dāng)0≤x<12時(shí),原不等式可化為-2x+1<x+1,解得x>0,又0≤x<12,此時(shí)其解集為{x|0<x<12}.③當(dāng)x≥12
時(shí),原不等式可化為2x-1<x+1,解得12≤x<2,又由x≥12,此時(shí)其解集為{x|12≤x<2},?∪{x|0<x<12
}∪{x|12≤x<2
}={x|0<x<2};綜上,原不等式的解集為{x|0<x<2}.45.附加題(必做題)
如圖,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4.
(1)設(shè)AD=λAB,異面直線AC1與CD所成角的余弦值為925,求λ的值;
(2)若點(diǎn)D是AB的中點(diǎn),求二面角D-CB1-B的余弦值.答案:(1)以CA,CB,CC1分別為x,y,z軸建立如圖所示空間直角坐標(biāo),因?yàn)锳C=3,BC=4,AA1=4,所以A(3,0,0),B(0,4,0),C(0,0,0),C1=(0,0,4),所以AC1=(-3,0,4),因?yàn)锳D=λAB,所以點(diǎn)D(-3λ+3,4λ,0),所以CD=(-3λ+3,4λ,0),因?yàn)楫惷嬷本€AC1與CD所成角的余弦值為925,所以|cos<AC1,CD>|=|9λ-9|5(3-3λ)2+16λ2=925,解得λ=12.…(4分)(2)由(1)得B1(0,4,4),因?yàn)?/p>
D是AB的中點(diǎn),所以D(32,2,0),所以CD=(32,2,0),CB1=(0,4,4),平面CBB1C1的法向量
n1=(1,0,0),設(shè)平面DB1C的一個(gè)法向量n2=(x0,y0,z0),則n1,n2的夾角(或其補(bǔ)角)的大小就是二面角D-CB1-B的大小,由n2?CD=0n2?CB
1=0得32x0+2y0=04y0+4z0=0令x0=4,則y0=-3,z0=3,所以n2=(4,-3,3),∴cos<n1,n2>=n1?n2|n1|?|n2|=434=23417.所以二面角D-B1C-B的余弦值為23417.
…(10分)46.在空間直角坐標(biāo)系中,已知點(diǎn)A(1,0,2),B(1,-3,1),點(diǎn)M在y軸上,且M到A與到B的距離相等,則M的坐標(biāo)是______.答案:設(shè)M(0,y,0)由12+y2+4=1+(y+3)2+1可得y=-1故M(0,-1,0)故為:(0,-1,0).47.下列關(guān)于算法的說(shuō)法中正確的個(gè)數(shù)是()
①求解某一類(lèi)問(wèn)題的算法是唯一的;
②算法必須在有限步操作之后停止;
③算法的每一步操作必須是明確的,不能有歧義或模糊;
④算法執(zhí)行后一定產(chǎn)生確定的結(jié)果.A.1B.2C.3D.4答案:由算法的概念可知:求解某一類(lèi)問(wèn)題的算法不是唯一的,故①不正確;算法是有限步,結(jié)果明確性,②④是正確的.對(duì)于③,算法的每一步操作必須是明確的,不能有歧義或模糊是正確的;故③正確.∴關(guān)于算法的說(shuō)法中正確的個(gè)數(shù)是3.故選C.48.直線被圓x2+y2=9截得的弦長(zhǎng)為(
)
A.
B.
C.
D.答案:B49.已知點(diǎn)P是拋物線y2=2x上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影是M,點(diǎn)A(72,4),則|PA|+|PM|的最小值是()A.5B.92C.4D.AD答案:依題意可知焦點(diǎn)F(12,0),準(zhǔn)線x=-12,延長(zhǎng)PM交準(zhǔn)線于H點(diǎn).則|PF|=|PH||PM|=|PH|-12=|PA|-12|PM|+|PA|=|PF|+|PA|-12,我們只有求出|PF|+|PA|最小值即可.由三角形兩邊長(zhǎng)大于第三邊可知,|PF|+|PA|≥|FA|,①設(shè)直線FA與拋物線交于P0點(diǎn),可計(jì)算得P0(3,94),另一交點(diǎn)(-13,118)舍去.當(dāng)P重合于P0時(shí),|PF|+|PA|可取得最小值,可得|FA|=194.則所求為|PM|+|PA|=194-14=92.故選B.50.已知直線經(jīng)過(guò)點(diǎn)A(0,4)和點(diǎn)B(1,2),則直線AB的斜率為()
A.3
B.-2
C.2
D.不存在答案:B第2卷一.綜合題(共50題)1.為如圖所示的四塊區(qū)域涂色,要求相鄰區(qū)域不能同色,現(xiàn)有3種不同顏色可供選擇,則共有______種不同涂色方案(要求用具體數(shù)字作答).答案:由題意,首先給左上方一個(gè)涂色,有三種結(jié)果,再給最左下邊的上面的涂色,有兩種結(jié)果,右上方,如果與左下邊的同色,則右方的涂色,有兩種結(jié)果,右上方,如果與左下邊的不同色,則右方的涂色,有1種結(jié)果,∴根據(jù)分步計(jì)數(shù)原理得到共有3×2×(2+1)=18種結(jié)果,故為18.2.刻畫(huà)數(shù)據(jù)的離散程度的度量,下列說(shuō)法正確的是(
)
(1)應(yīng)充分利用所得的數(shù)據(jù),以便提供更確切的信息;
(2)可以用多個(gè)數(shù)值來(lái)刻畫(huà)數(shù)據(jù)的離散程度;
(3)對(duì)于不同的數(shù)據(jù)集,其離散程度大時(shí),該數(shù)值應(yīng)越?。?/p>
A.(1)和(3)
B.(2)和(3)
C.(1)和(2)
D.都正確答案:C3.如圖所示,有兩個(gè)獨(dú)立的轉(zhuǎn)盤(pán)(A)、(B),其中三個(gè)扇形區(qū)域的圓心角分別為60°、120°、180°.用這兩個(gè)轉(zhuǎn)盤(pán)玩游戲,規(guī)則是:依次隨機(jī)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán)再隨機(jī)停下(指針固定不動(dòng),當(dāng)指針恰好落在分界線時(shí),則這次轉(zhuǎn)動(dòng)無(wú)效,重新開(kāi)始)為一次游戲,記轉(zhuǎn)盤(pán)(A)指針?biāo)鶎?duì)的數(shù)為X轉(zhuǎn)盤(pán)(B)指針對(duì)的數(shù)為Y設(shè)X+Yξ,每次游戲得到的獎(jiǎng)勵(lì)分為ξ分.
(1)求X<2且Y>1時(shí)的概率
(2)某人玩12次游戲,求他平均可以得到多少獎(jiǎng)勵(lì)分?答案:(1)由幾何概型知P(x=1)=16,P(x=2)=13,P(x=3)=12;
P(y=1)=13,P(y=2)=12,P(y=3)=16.則P(x<2)=P(x=1)=16,P(y>1)=p(y=2)+P(y=3)=23,P(x<2且y>1)=P(x<2)?P(y>1)=19.(2)ξ的取值范圍為2,3,4,6.P(ξ=2)=P(x=1)?P(y=1)=16×13=118;P(ξ=3)=P(x=1)?P(y=2)+P(x=2)?P(y=1)=16×12+13×13=736;P(ξ=4)=P(x=1)?P(y=3)+P(x=2)?P(y=2)+P(x=3)?P(y=1)=16×16+13×12+12×13=1336;P(ξ=5)=P(x=2)P(y=3)+P(x=3)P(y=2)=13×16+12×12=1136;P(ξ=6)=P(x=3)?P(y=3)=12×16=112.其分布為:ξ23456P11873613361136112他平均每次可得到的獎(jiǎng)勵(lì)分為Eξ=2×118+3×736+4×1336+5×1136+6×112=256,所以,他玩12次平均可以得到的獎(jiǎng)勵(lì)分為12×Eξ=50.4.向量化簡(jiǎn)后等于()
A.
B.
C.
D.答案:C5.下列各圖中,可表示函數(shù)y=f(x)的圖象的只可能是()A.
B.
C.
D.
答案:根據(jù)函數(shù)的定義知:自變量取唯一值時(shí),因變量(函數(shù))有且只有唯一值與其相對(duì)應(yīng).∴從圖象上看,任意一條與x軸垂直的直線與函數(shù)圖象的交點(diǎn)最多只能有一個(gè)交點(diǎn).從而排除A,B,C,故選D.6.已知a、b是不共線的向量,AB=λa+b,AC=a+μb(λ,μ∈R),則A、B、C三點(diǎn)共線的充要條件是______.答案:由于AB,AC有公共點(diǎn)A,∴若A、B、C三點(diǎn)共線則AB與AC共線即存在一個(gè)實(shí)數(shù)t,使AB=tAC即λ=at1=μt消去參數(shù)t得:λμ=1反之,當(dāng)λμ=1時(shí)AB=1μa+b此時(shí)存在實(shí)數(shù)1μ使AB=1μAC故AB與AC共線又由AB,AC有公共點(diǎn)A,∴A、B、C三點(diǎn)共線故A、B、C三點(diǎn)共線的充要條件是λμ=17.下列說(shuō)法中正確的是()
A.以直角三角形的一邊為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓錐
B.以直角梯形的一腰為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓臺(tái)
C.圓柱、圓錐、圓臺(tái)的底面都是圓
D.圓錐側(cè)面展開(kāi)圖為扇形,這個(gè)扇形所在圓的半徑等于圓錐的底面圓的半徑答案:C8.(坐標(biāo)系與參數(shù)方程選做題)在平面直角坐標(biāo)系xOy中,曲線C1與C2的參數(shù)方程分別為x=ty=t(t為參數(shù))和x=2cosθy=2sinθ(θ為參數(shù)),則曲線C1與C2的交點(diǎn)坐標(biāo)為_(kāi)_____.答案:在平面直角坐標(biāo)系xOy中,曲線C1與C2的普通方程分別為y2=x,x2+y2=2.解方程組y2=xx2
+y2=2
可得x=1y=1,故曲線C1與C2的交點(diǎn)坐標(biāo)為(1,1),故為(1,1).9.滿足條件|2z+1|=|z+i|的復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)點(diǎn)的軌跡是______.答案:設(shè)復(fù)數(shù)z在復(fù)平面上對(duì)應(yīng)點(diǎn)的坐標(biāo)為(x,y),由|2z+1|=|z+i|可得(2x+1)2+(2y)2=(x)2+(y+1)2,化簡(jiǎn)可得x2+
y2+43x
=
0,表示一個(gè)圓,故為圓.10.與向量a=(12,5)平行的單位向量為()A.(1213,-513)B.(-1213,-513)C.(1213,513)或(-1213,-513)D.(-1213,513)或(1213,-513)答案:設(shè)與向量a=(12,5)平行的單位向量b=(x,y),|a|=13所以a=±13bb=(1213,513),或b=(-1213,-513)故選C.11.如果輸入2,那么執(zhí)行圖中算法的結(jié)果是()A.輸出2B.輸出3C.輸出4D.程序出錯(cuò),輸不出任何結(jié)果答案:第一步:輸入n=2第二步:n=2+1=3第三步:n=3+1=4第四步:輸出4故為C.12.若a2+b2=4,則兩圓(x-a)2+y2=1和x2+(y-b)2=1的位置關(guān)系是______.答案:若a2+b2=4,由于兩圓(x-a)2+y2=1和x2+(y-b)2=1的圓心距為(a-0)2+(0-b)2=a2+b2=2,正好等于兩圓的半徑之和,故兩圓相外切,故為相外切.13.在下列四個(gè)命題中,正確的共有()
①坐標(biāo)平面內(nèi)的任何一條直線均有傾斜角和斜率;
②直線的傾斜角的取值范圍是[0,π];
③若一條直線的斜率為tanα,則此直線的傾斜角為α;
④若一條直線的傾斜角為α,則此直線的斜率為tanα.
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)答案:A14.下列各圖形不是函數(shù)的圖象的是()A.
B.
C.
D.
答案:由函數(shù)的概念,B中有的x,存在兩個(gè)y與x對(duì)應(yīng),不符合函數(shù)的定義,而ACD均符合.故選B15.栽培甲、乙兩種果樹(shù),先要培育成苗,然后再進(jìn)行移栽.已知甲、乙兩種果樹(shù)成苗的概率分別為,,移栽后成活的概率分別為,.
(1)求甲、乙兩種果樹(shù)至少有一種果樹(shù)成苗的概率;
(2)求恰好有一種果樹(shù)能培育成苗且移栽成活的概率.答案:(1)甲、乙兩種果樹(shù)至少有一種成苗的概率為;(2).恰好有一種果樹(shù)培育成苗且移栽成活的概率為.解析:分別記甲、乙兩種果樹(shù)成苗為事件,;分別記甲、乙兩種果樹(shù)苗移栽成活為事件,,,,,.(1)甲、乙兩種果樹(shù)至少有一種成苗的概率為;(2)解法一:分別記兩種果樹(shù)培育成苗且移栽成活為事件,則,.恰好有一種果樹(shù)培育成苗且移栽成活的概率為.解法二:恰好有一種果樹(shù)栽培成活的概率為.16.若A(-1,0,1),B(1,4,7)在直線l上,則直線l的一個(gè)方向向量為()
A.(1,2,3)
B.(1,3,2)
C.(2,1,3)
D.(3,2,1)答案:A17.如圖,在四棱柱的上底面ABCD中,AB=DC,則下列向量相等的是()
A.AD與CB
B.OA與OC
C.AC與DB
D.DO與OB
答案:D18.已知sint+cost=1,設(shè)s=cost+isint,求f(s)=1+s+s2+…sn.答案:sint+cost=1∴(sint+cost)2=1+2sint?cost=1∴2sint?cost=sin2t=0則cost=0,sint=1或cost=1,sint=0,當(dāng)cost=0,sint=1時(shí),s=cost+isint=i則f(s)=1+s+s2+…sn=1+i,n=4k+1i,n=4k+20,n=4k+31,n=4(k+1)(k∈N+)當(dāng)cost=1,sint=0時(shí),s=cost+isint=1則f(s)=1+s+s2+…sn=n+119.用反證法證明“a+b=1”時(shí)的反設(shè)為()
A.a(chǎn)+b>1且a+b<1
B.a(chǎn)+b>1
C.a(chǎn)+b>1或a+b<1
D.a(chǎn)+b<1答案:C20.已知=(2,-1,3),=(-1,4,-2),=(7,5,λ),若、、三向量共面,則實(shí)數(shù)λ等于()
A.
B.
C.
D.答案:D21.如圖,圓O上一點(diǎn)C在直徑AB上的射影為D.AD=2,AC=25,則AB=______.答案:∵AB是直徑,∴△ABC是直角三角形,∵C在直徑AB上的射影為D,∴CD⊥AB,∴AC2=AD?AB,∴AB=AC2AD=202=10,故為:1022.如圖所示,設(shè)P為△ABC所在平面內(nèi)的一點(diǎn),并且AP=15AB+25AC,則△ABP與△ABC的面積之比等于()A.15B.12C.25D.23答案:連接CP并延長(zhǎng)交AB于D,∵P、C、D三點(diǎn)共線,∴AP=λAD+μAC且λ+μ=1設(shè)AB=kAD,結(jié)合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C23.在△ABC中,已知A(2,3),B(8,-4),點(diǎn)G(2,-1)在中線AD上,且|AG|=2|GD|,則C的坐標(biāo)為_(kāi)_____.答案:設(shè)C(x,y),則D(8+x2,-4+y2),再由AG=2GD,得(0,-4)=2(4+x2,-2+y2),∴4+x=0,-2+y=-4,即C(-4,-2)故為:(-4,-2).24.已知m,n為正整數(shù).
(Ⅰ)用數(shù)學(xué)歸納法證明:當(dāng)x>-1時(shí),(1+x)m≥1+mx;
(Ⅱ)對(duì)于n≥6,已知(1-1n+3)n<12,求證(1-mn+3)n<(12)m,m=1,2…,n;
(Ⅲ)求出滿足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整數(shù)n.答案:解法1:(Ⅰ)證:用數(shù)學(xué)歸納法證明:當(dāng)x=0時(shí),(1+x)m≥1+mx;即1≥1成立,x≠0時(shí),證:用數(shù)學(xué)歸納法證明:(?。┊?dāng)m=1時(shí),原不等式成立;當(dāng)m=2時(shí),左邊=1+2x+x2,右邊=1+2x,因?yàn)閤2≥0,所以左邊≥右邊,原不等式成立;(ⅱ)假設(shè)當(dāng)m=k時(shí),不等式成立,即(1+x)k≥1+kx,則當(dāng)m=k+1時(shí),∵x>-1,∴1+x>0,于是在不等式(1+x)k≥1+kx兩邊同乘以1+x得(1+x)k?(1+x)≥(1+kx)(1+x)=1+(k+1)x+kx2≥1+(k+1)x,所以(1+x)k+1≥1+(k+1)x.即當(dāng)m=k+1時(shí),不等式也成立.綜合(?。áⅲ┲?,對(duì)一切正整數(shù)m,不等式都成立.(Ⅱ)證:當(dāng)n≥6,m≤n時(shí),由(Ⅰ)得(1-1n+3)m≥1-mn+3>0,于是(1-mn+3)n≤(1-1n+3)nm=[(1-1n+3)n]m<(12)m,m=1,2,n.(Ⅲ)由(Ⅱ)知,當(dāng)n≥6時(shí),(1-1n+3)n+(1-2n+3)n++(1-nn+3)n<12+(12)^++(12)n=1-12n<1,∴(n+2n+3)n+(n+1n+3)n++(3n+3)n<1.即3n+4n+…+(n+2)n<(n+3)n.即當(dāng)n≥6時(shí),不存在滿足該等式的正整數(shù)n.故只需要討論n=1,2,3,4,5的情形:當(dāng)n=1時(shí),3≠4,等式不成立;當(dāng)n=2時(shí),32+42=52,等式成立;當(dāng)n=3時(shí),33+43+53=63,等式成立;當(dāng)n=4時(shí),34+44+54+64為偶數(shù),而74為奇數(shù),故34+44+54+64≠74,等式不成立;當(dāng)n=5時(shí),同n=4的情形可分析出,等式不成立.綜上,所求的n只有n=2,3.解法2:(Ⅰ)證:當(dāng)x=0或m=1時(shí),原不等式中等號(hào)顯然成立,下用數(shù)學(xué)歸納法證明:當(dāng)x>-1,且x≠0時(shí),m≥2,(1+x)m>1+mx.①(?。┊?dāng)m=2時(shí),左邊=1+2x+x2,右邊=1+2x,因?yàn)閤≠0,所以x2>0,即左邊>右邊,不等式①成立;(ⅱ)假設(shè)當(dāng)m=k(k≥2)時(shí),不等式①成立,即(1+x)k>1+kx,則當(dāng)m=k+1時(shí),因?yàn)閤>-1,所以1+x>0.又因?yàn)閤≠0,k≥2,所以kx2>0.于是在不等式(1+x)k>1+kx兩邊同乘以1+x得(1+x)k?(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,所以(1+x)k+1>1+(k+1)x.即當(dāng)m=k+1時(shí),不等式①也成立.綜上所述,所證不等式成立.(Ⅱ)證:當(dāng)n≥6,m≤n時(shí),∵(1-1n+3)n<12,∴[(1-1n+3)m]n<(12)m,而由(Ⅰ),(1-1n+3)m≥1-mn+3>0,∴(1-mn+3)n≤[(1-1n+3)m]n<(12)m.(Ⅲ)假設(shè)存在正整數(shù)n0≥6使等式3n0+4n0++(n0+2)n0=(n0+3)n0成立,即有(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=1.②又由(Ⅱ)可得(3n0+3)n0+(4n0+3)n0++(n0+2n0+3)n0=(1-n0n0+3)n0+(1-n0-1n0+3)n0++(1-1n0+3)n0<(12)n0+(12)n0-1++12=1-12n0<1,與②式矛盾.故當(dāng)n≥6時(shí),不存在滿足該等式的正整數(shù)n.下同解法1.25.已知A、B、M三點(diǎn)不共線,對(duì)于平面ABM外的任意一點(diǎn)O,確定在下列條件下,點(diǎn)P是否與A、B、M一定共面,答案:解:為共面向量,∴P與A、B、M共面,,根據(jù)空間向量共面的推論,P位于平面ABM內(nèi)的充要條件是,∴P與A、B、M不共面.26.(不等式選講選做題)已知x+2y+3z=1,求x2+y2+z2的最小值______.答案:解法一:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+33),∴x2+y2+z2≥114,當(dāng)且僅當(dāng)x1=y2=z3,x+2y+3z=1,即x=114,y=17,z=314時(shí)取等號(hào).即x2+y2+z2的最小值為114.解法二:設(shè)向量a=(1,2,3),b=(x,y,z),∵|a?b|≤|a|
|b|,∴1=x+2y+3z≤12+22+32x2+y2+z2,∴x2+y2+z2≥114,當(dāng)且僅當(dāng)a與b共線時(shí)取等號(hào),即x1=y2=z3,x+2y+3z=1,解得x=114,y=17,z=314時(shí)取等號(hào).故為114.27.根據(jù)《中華人民共和國(guó)道路交通安全法》規(guī)定:車(chē)輛駕駛員血液酒精濃度在20~80mg/100mL(不含80)之間,屬于酒后駕車(chē);血液酒精濃度在80mg/100mL(含80)以上時(shí),屬醉酒駕車(chē).據(jù)有關(guān)報(bào)道,2009年8月15日至8
月28日,某地區(qū)查處酒后駕車(chē)和醉酒駕車(chē)共500人,如圖是對(duì)這500人血液中酒精含量進(jìn)行檢測(cè)所得結(jié)果的頻率分布直方圖,則屬于醉酒駕車(chē)的人數(shù)約為()A.25B.50C.75D.100答案:∵血液酒精濃度在80mg/100ml(含80)以上時(shí),屬醉酒駕車(chē),通過(guò)頻率分步直方圖知道屬于醉駕的頻率是(0.005+0.01)×10=0.15,∵樣本容量是500,∴醉駕的人數(shù)有500×0.15=75故選C.28.(1+2x)7的展開(kāi)式中第4項(xiàng)的系數(shù)是______
(用數(shù)字作答)答案:(1+2x)7的展開(kāi)式的通項(xiàng)為T(mén)r+1=Cr7?(2x)r∴(1+2x)7的展開(kāi)式中第4項(xiàng)的系數(shù)是C37?23=280,故為:280.29.設(shè)函數(shù)f(x)定義如下表,數(shù)列{xn}滿足x0=5,且對(duì)任意自然數(shù)均有xn+1=f(xn),則x2004的值為()
A.1B.2C.4D.5答案:由于函數(shù)f(x)定義如下表:故數(shù)列{xn}滿足:5,2,1,4,5,2,1,…是一個(gè)周期性變化的數(shù)列,周期為:4.∴x2004=x0=5.故選D.30.若一點(diǎn)P的極坐標(biāo)是(r,θ),則它的直角坐標(biāo)如何?答案:由題意可知x=rcosθ,y=rsinθ.所以點(diǎn)P的極坐標(biāo)是(r,θ)的直角坐標(biāo)為:(rcosθ,rsinθ).31.已知?jiǎng)狱c(diǎn)P(x,y)滿足(x+2)2+y2-(x-2)2+y2=2,則動(dòng)點(diǎn)P的軌跡是______.答案:∵(x+2)2+y2-(x-2)2+y2=2,即動(dòng)點(diǎn)P(x,y)到兩定點(diǎn)(-2,0),(2,0)的距離之差等于2,由雙曲線定義知?jiǎng)狱c(diǎn)P的軌跡是雙曲線的一支(右支).:雙曲線的一支(右支).32.如圖,四邊形OABC是邊長(zhǎng)為1的正方形,OD=3,點(diǎn)P為△BCD內(nèi)(含邊界)的動(dòng)點(diǎn),設(shè)(α,β∈R),則α+β的最大值等于
()
A.
B.
C.
D.1
答案:B33.A、B為球面上相異兩點(diǎn),則通過(guò)A、B兩點(diǎn)可作球的大圓有()A.一個(gè)B.無(wú)窮多個(gè)C.零個(gè)D.一個(gè)或無(wú)窮多個(gè)答案:如果A,B兩點(diǎn)為球面上的兩極點(diǎn)(即球直徑的兩端點(diǎn))則通過(guò)A、B兩點(diǎn)可作球的無(wú)數(shù)個(gè)大圓如果A,B兩點(diǎn)不是球面上的兩極點(diǎn)(即球直徑的兩端點(diǎn))則通過(guò)A、B兩點(diǎn)可作球的一個(gè)大圓故選:D34.已知200輛汽車(chē)通過(guò)某一段公路時(shí)的時(shí)速的頻率分布直方圖如圖所示,則時(shí)速在[60,70]的汽車(chē)大約有()輛.A.90B.80C.70D.60答案:由已知可得樣本容量為200,又∵數(shù)據(jù)落在區(qū)間[60,70]的頻率為0.04×10=0.4∴時(shí)速在[60,70]的汽車(chē)大約有200×0.4=80故選B.35.橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,兩頂點(diǎn)分別是(3,0),(0,2),則此橢圓的方程是______.答案:依題意,此橢圓方程為標(biāo)準(zhǔn)方程,且焦點(diǎn)在x軸上,設(shè)為x2a2+y2b2=1∵橢圓的兩頂點(diǎn)分別是(3,0),(0,2),∴a=3,b=2∵∴此橢圓的標(biāo)準(zhǔn)方程為:x29+y22=1.故為:x29+y22=1.36.在平行四邊形ABCD中,E和F分別是邊CD和BC的中點(diǎn),若AC=λAE+μAF,其中λ、μ∈R,則λ+μ=______.答案:解析:設(shè)AB=a,AD=b,那么AE=12a+b,AF=a+12b,又∵AC=a+b,∴AC=23(AE+AF),即λ=μ=23,∴λ+μ=43.故為:43.37.如圖,彎曲的河流是近似的拋物線C,公路l恰好是C的準(zhǔn)線,C上的點(diǎn)O到l的距離最近,且為0.4千米,城鎮(zhèn)P位于點(diǎn)O的北偏東30°處,|OP|=10千米,現(xiàn)要在河岸邊的某處修建一座碼頭,并修建兩條公路,一條連接城鎮(zhèn),一條垂直連接公路l,以便建立水陸交通網(wǎng).
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求拋物線C的方程;
(2)為了降低修路成本,必須使修建的兩條公路總長(zhǎng)最小,請(qǐng)給出修建方案(作出圖形,在圖中標(biāo)出此時(shí)碼頭Q的位置),并求公路總長(zhǎng)的最小值(精確到0.001千米)答案:(1)過(guò)點(diǎn)O作準(zhǔn)線的垂線,垂足為A,以O(shè)A所在直線為x軸,OA的垂直平分線為y軸,建立平面直角坐標(biāo)系…(2分)由題意得,p2=0.4…(4分)所以,拋物線C:y2=1.6x…(6分)(2)設(shè)拋物線C的焦點(diǎn)為F由題意得,P(5,53)…(8分)根據(jù)拋物線的定義知,公路總長(zhǎng)=|QF|+|QP|≥|PF|≈9.806…(12分)當(dāng)Q為線段PF與拋物線C的交點(diǎn)時(shí),公路總長(zhǎng)最小,最小值為9.806千米…(16分)38.在吸煙與患肺病這兩個(gè)分類(lèi)變量的計(jì)算中,下列說(shuō)法正確的是()
A.若k2的觀測(cè)值為k=6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系,那么在100個(gè)吸煙的人中必有99人患有肺病
B.從獨(dú)立性檢驗(yàn)可知,有99%的把握認(rèn)為吸煙與患肺病有關(guān)時(shí),我們說(shuō)某人吸煙,那么他有99%的可能患有肺病
C.若從統(tǒng)計(jì)量中求出有95%的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有5%的可能性使得推斷出現(xiàn)錯(cuò)誤
D.以上三種說(shuō)法都不正確答案:D39.設(shè)點(diǎn)P(+,1)(t>0),則||(O為坐標(biāo)原點(diǎn))的最小值是()
A.
B.
C.5
D.3答案:A40.若90°<θ<180°,曲線x2+y2sinθ=1表示()
A.焦點(diǎn)在x軸上的雙曲線
B.焦點(diǎn)在y軸上的雙曲線
C.焦點(diǎn)在x軸上的橢圓
D.焦點(diǎn)在y軸上的橢圓答案:D41.已知點(diǎn)A分BC所成的比為-13,則點(diǎn)B分AC所成的比為_(kāi)_____.答案:由已知得B是AC的內(nèi)分點(diǎn),且2|AB|=|BC|,故B分AC
的比為ABBC=|AB||BC|=12,故為12.42.如圖,海中有一小島,周?chē)?.8海里內(nèi)有暗礁.一軍艦從A地出發(fā)由西向東航行,望見(jiàn)小島B在北偏東75°,航行8海里到達(dá)C處,望見(jiàn)小島B在北偏東60°.若此艦不改變艦行的方向繼續(xù)前進(jìn),問(wèn)此艦有沒(méi)有觸礁的危險(xiǎn)?答案:在△ABC中,∵∠BAC=15°,∠ACB=150°,AC=8,可得:∠ABC=15°.∴BC=8,過(guò)B作AC的垂線垂足為D,在△BCD中,可得BD=BC?sin30°=4.∵4>3.8,∴沒(méi)有危險(xiǎn).43.選做題:如圖,點(diǎn)A、B、C是圓O上的點(diǎn),且AB=4,∠ACB=30°,則圓O的面積等于______.答案:連接OA,OB,∵∠ACB=30°,∴∠AoB=60°,∴△AOB是一個(gè)等邊三角形,∴OA=AB=4,∴⊙O的面積是16π故為16π44.以A(1,5)、B(5,1)、C(-9,-9)為頂點(diǎn)的三角形是()
A.等邊三角形
B.等腰三角形
C.不等邊三角形
D.直角三角形答案:B45.(文)將圖所示的一個(gè)直角三角形ABC(∠C=90°)繞斜邊AB旋轉(zhuǎn)一周,所得到的幾何體的正視圖是下面四個(gè)圖形中的(
)
A.
B.
C.
D.
答案:B46.某處有供水龍頭5個(gè),調(diào)查表明每個(gè)水龍頭被打開(kāi)的可能性為,隨機(jī)變量ξ表示同時(shí)被打開(kāi)的水龍頭的個(gè)數(shù),則P(ξ=3)為A.0.0081B.0.0729C.0.0525D.0.0092答案:A解析:本題考查n次獨(dú)立重復(fù)試驗(yàn)中,恰好發(fā)生k次的概率.對(duì)5個(gè)水龍頭的處理可視為做5次試驗(yàn),每次試驗(yàn)有2種可能結(jié)果:打開(kāi)或未打開(kāi),相應(yīng)的概率為0.1或1-0.1="0.9."根據(jù)題意ξ~B(5,0.1),從而P(ξ=3)=(0.1)3(0.9)2=0.0081.47.不等式≥0的解集為[-2,3∪[7,+∞,則a-b+c的值是(
)A.2B.-2C.8D.6答案:B解析:∵-a、b的值為-2,7中的一個(gè),x≠c
c=3∴a-b=-(b-a)=-(-2+7)=-5a-b+c=-5+3=-2
選B評(píng)析:考察考生對(duì)不等式解集的結(jié)構(gòu)特征的理解,關(guān)注不等式中等號(hào)與不等號(hào)的關(guān)系。48.與原數(shù)據(jù)單位不一樣的是()
A.眾數(shù)
B.平均數(shù)
C.標(biāo)準(zhǔn)差
D.方差答案:D49.以知F是雙曲線x24-y212=1的左焦點(diǎn),A(1,4),P是雙曲線右支上的動(dòng)點(diǎn),則|PF|+|PA|的最小值為_(kāi)_____.答案:∵A點(diǎn)在雙曲線的兩只之間,且雙曲線右焦點(diǎn)為F′(4,0),∴由雙曲線性質(zhì)|PF|-|PF′|=2a=4而|PA|+|PF′|≥|AF′|=5兩式相加得|PF|+|PA|≥9,當(dāng)且僅當(dāng)A、P、F’三點(diǎn)共線時(shí)等號(hào)成立.故為950.圓(x+2)2+y2=4與圓(x-2)2+(y-1)2=9的位置關(guān)系為()
A.內(nèi)切
B.相交
C.外切
D.相離答案:B第3卷一.綜合題(共50題)1.已知圓的極坐標(biāo)方程是ρ=2cosθ,那么該圓的直角坐標(biāo)方程是()
A.(x-1)2+y2=1
B.x2+(y-1)2=1
C.(x+1)2+y2=1
D.x2+y2=2答案:A2.設(shè)O是坐標(biāo)原點(diǎn),F(xiàn)是拋物線y2=2px(p>0)的焦點(diǎn),A是拋物線上的一個(gè)動(dòng)點(diǎn),F(xiàn)A與x軸正方向的夾角為60°,求|OA|的值.答案:由題意設(shè)A(x+P2,3x),代入y2=2px得(3x)2=2p(x+p2)解得x=p(負(fù)值舍去).∴A(32p,3p)∴|OA|=(32p)2+3p2=212p3.在直徑為4的圓內(nèi)接矩形中,最大的面積是()
A.4
B.2
C.6
D.8答案:D4.如圖,在Rt△ABC中,已知∠ABC=90°,BC=6,以AB為直徑作⊙O,連接OC,過(guò)點(diǎn)C作⊙O的切線CD,D為切點(diǎn),若sin∠OCD=45,則直徑AB=______.答案:連接OD,則OD⊥CD.∵∠ABC=90°,∴CD、CB為⊙O的兩條切線.∴根據(jù)切線長(zhǎng)定理得:CD=BC=6.在Rt△OCD中,sin∠OCD=45,∴tan∠OCD=43,OD=tan∠OCD×CD=8.∴AB=2OD=16.故為16.5.下列說(shuō)法正確的是()
A.互斥事件一定是對(duì)立事件,對(duì)立事件不一定是互斥事件
B.互斥事件不一定是對(duì)立事件,對(duì)立事件一定是互斥事件
C.事件A,B中至少有一個(gè)發(fā)生的概率一定比A,B中恰有一個(gè)發(fā)生的概率大
D.事件A,B同時(shí)發(fā)生的概率一定比A,B中恰有一個(gè)發(fā)生的概率小答案:B6.如圖所示,已知P是平行四邊形ABCD所在平面外一點(diǎn),連結(jié)PA、PB、PC、PD,點(diǎn)E、F、G、H分別為△PAB、△PBC、△PCD、△PDA的重心,求證:E、F、G、H四點(diǎn)共面答案:證明:分別延長(zhǎng)P、PF、PG、PH交對(duì)邊于M、N、Q、R.∵E、F、G、H分別是所在三角形的重心,∴M、N、Q、R為所在邊的中點(diǎn),順次連結(jié)MNQR所得四邊形為平行四邊形,且有∵M(jìn)NQR為平行四邊形,∴由共面向量定理得E、F、G、H四點(diǎn)共面.7.(幾何證明選講選做題)如圖4,A,B是圓O上的兩點(diǎn),且OA⊥OB,OA=2,C為OA的中點(diǎn),連接BC并延長(zhǎng)交圓O于點(diǎn)D,則CD=______.答案:如圖所示:作出直徑AE,∵OA=2,C為OA的中點(diǎn),∴OC=CA=1,CE=3.∵OB⊥OA,∴BC=22+12=5.由相交弦定理得BC?CD=EC?CA,∴CD=EC?CABC=3×15=355.故為355.8.已知x+2y+3z=1,則x2+y2+z2取最小值時(shí),x+y+z的值為_(kāi)_____.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2)(12+22+32)故x2+y2+z2≥114,當(dāng)且僅當(dāng)x1=y2=z3取等號(hào),此時(shí)y=2x,z=3x,x+2y+3z=14x=1,∴x=114,y=214,x=314,x+y+z=614=37.故為:37.9.設(shè)函數(shù)f(x)是定義在[a,b]上的奇函數(shù),則f(a+b)=______.答案:因?yàn)楹瘮?shù)f(x)是定義在[a,b]上的奇函數(shù),所以定義域關(guān)于原點(diǎn)對(duì)稱(chēng),所以a+b=0,且f(0)=0.所以f(a+b)=f(0)=0.故為:0.10.在極坐標(biāo)系中,點(diǎn)(2,)到圓ρ=2cosθ的圓心的距離為()
A.2
B.
C.
D.答案:D11.(本題滿分12分)
已知:
求證:答案:.證明:…………2分由于=………………5分…………①………………6分由于………②……………8分同理:…………③……………10分①+②+③得:即原不等式成立………………12分解析:同答案12.已知圓臺(tái)的上下底面半徑分別是2cm、5cm,高為3cm,求圓臺(tái)的體積.答案:∵圓臺(tái)的上下底面半徑分別是2cm、5cm,高為3cm,∴圓臺(tái)的體積V=13×3×(4π+4π?25π+25π)=39πcm3.13.下列給變量賦值的語(yǔ)句正確的是()
A.5=a
B.a(chǎn)+2=a
C.a(chǎn)=b=4
D.a(chǎn)=2*a答案:D14.圓錐的側(cè)面展開(kāi)圖是一個(gè)半徑長(zhǎng)為4的半圓,則此圓錐的底面半徑為
______.答案:設(shè)圓錐的底面半徑為R,則由題意得,2πR=π×4,即R=2,故為:2.15.若A是圓x2+y2=16上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)A向y軸作垂線,垂足為B,則線段AB中點(diǎn)C的軌跡方程為()
A.x2+2y2=16
B.x2+4y2=16
C.2x2+y2=16
D.4x2+y2=16答案:D16.已知直線l:(t為參數(shù))的傾斜角是()
A.
B.
C.
D.答案:D17.已知f(x)=,a≠b,
求證:|f(a)-f(b)|<|a-b|.答案:證明略解析:方法一
∵f(a)=,f(b)=,∴原不等式化為|-|<|a-b|.∵|-|≥0,|a-b|≥0,∴要證|-|<|a-b|成立,只需證(-)2<(a-b)2.即證1+a2+1+b2-2<a2-2ab+b2,即證2+a2+b2-2<a2-2ab+b2.只需證2+2ab<2,即證1+ab<.當(dāng)1+ab<0時(shí),∵>0,∴不等式1+ab<成立.從而原不等式成立.當(dāng)1+ab≥0時(shí),要證1+ab<,只需證(1+ab)2<()2,即證1+2ab+a2b2<1+a2+b2+a2b2,即證2ab<a2+b2.∵a≠b,∴不等式2ab<a2+b2成立.∴原不等式成立.方法二
∵|f(a)-f(b)|=|-|==,又∵|a+b|≤|a|+|b|=+<+,∴<1.∵a≠b,∴|a-b|>0.∴|f(a)-f(b)|<|a-b|.18.一個(gè)凸多面體的各個(gè)面都是四邊形,它的頂點(diǎn)數(shù)是16,則它的面數(shù)為()
A.14
B.7
C.15
D.不能確定答案:A19.(1+x)6的各二項(xiàng)式系數(shù)的最大值是______.答案:根據(jù)二項(xiàng)展開(kāi)式的性質(zhì)可得,(1+x)6的各二項(xiàng)式系數(shù)的最大值C36=20故為:2020.下列函數(shù)f(x)與g(x)表示同一函數(shù)的是
()A.f(x)=x0與g(x)=1B.f(x)=2lgx與g(x)=lgx2C.f(x)=|x|與g(x)=(x)2D.f(x)=x與g(x)=3x3答案:A、∵f(x)=x0,其定義域?yàn)閧x|x≠0},而g(x)的定義域?yàn)镽,故A錯(cuò)誤;B、∵f(x)=2lgx,的定義域?yàn)閧x|x>0},而g(x)=lgx2的定義域?yàn)镽,故B錯(cuò)誤;C、∵f(x)=|x|與g(x)=(x)2=x,其中f(x)的定義域?yàn)镽,g(x)的定義域?yàn)閧x|x≥0},故C錯(cuò)誤;D、∵f(x)=x與g(x)=3x3=x,其中f(x)與g(x)的定義域?yàn)镽,故D正確.故選D.21.為了評(píng)價(jià)某個(gè)電視欄目的改革效果,在改革前后分別從居民點(diǎn)抽取了100位居民進(jìn)行調(diào)查,經(jīng)過(guò)計(jì)算K2≈0.99,根據(jù)這一數(shù)據(jù)分析,下列說(shuō)法正確的是()
A.有99%的人認(rèn)為該欄目?jī)?yōu)秀
B.有99%的人認(rèn)為該欄目是否優(yōu)秀與改革有關(guān)系
C.有99%的把握認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系
D.沒(méi)有理由認(rèn)為電視欄目是否優(yōu)秀與改革有關(guān)系答案:D22.若指數(shù)函數(shù)f(x)與冪函數(shù)g(x)的圖象相交于一點(diǎn)(2,4),則f(x)=______,g(x)=______.答案:設(shè)f(x)=ax(a>0且a≠1),g(x)=xα將(2,4)代入兩個(gè)解析式得4=a2,4=2α解得a=2,α=2故為:f(x)=2x,g(x)=x223.已知圓C的極坐標(biāo)方程是ρ=2sinθ,那么該圓的直角坐標(biāo)方程為
______,半徑長(zhǎng)是
______.答案:把極坐標(biāo)方程是ρ=2sinθ的兩邊同時(shí)乘以ρ得:ρ2=2ρsinθ,∴x2+y2=2y,即x2+(y-1)2=1,表示以(0,1)為圓心,半徑等于1的圓,故為:x2+(y-1)2=1;1.24.設(shè)a1,a2,…,a2n+1均為整數(shù),性質(zhì)P為:對(duì)a1,a2,…,a2n+1中任意2n個(gè)數(shù),存在一種分法可將其分為兩組,每組n個(gè)數(shù),使得兩組所有元素的和相等求證:a1,a2,…,a2n+1全部相等當(dāng)且僅當(dāng)a1,a2,…,a2n+1具有性質(zhì)P.答案:證明:①當(dāng)a1,a2,…,a2n+1全部相等時(shí),從中任意2n個(gè)數(shù),將其分為兩組,每組n個(gè)數(shù),兩組所有元素的和相等,故性質(zhì)P成立.②下面證明:當(dāng)a1,a2,…,a2n+1具有性質(zhì)P時(shí),a1,a2,…,a2n+1全部相等.反證法:假設(shè)a1,a2,…,a2n+1不全部相等,則其中至少有一個(gè)整數(shù)和其它的整數(shù)不同,不妨設(shè)此數(shù)為a1,若a1在取出的2n個(gè)數(shù)中,將其分為兩組,每組n個(gè)數(shù),則a1在的那個(gè)組所有元素的和與另一個(gè)組所有元素的和不相等,這與性質(zhì)P矛盾,故假設(shè)不成立,所以,當(dāng)a1,a2,…,a2n+1具有性質(zhì)P時(shí),a1,a2,…,a2n+1全部相等.綜上,a1,a2,…,a2n+1全部相等當(dāng)且僅當(dāng)a1,a2,…,a2n+1具有性質(zhì)P.25.拋擲3顆質(zhì)地均勻的骰子,求點(diǎn)數(shù)和為8的概率______.答案:由題意總的基本事件數(shù)為6×6×6=216種點(diǎn)數(shù)和為8的事件包含了向上的點(diǎn)的情況有(1,1,6),(1,2,5),(2,2,4),(2,3,3)有四種情況向上點(diǎn)數(shù)分別為(1,1,6)的事件包含的基本事件數(shù)有3向上點(diǎn)數(shù)分別為(1,2,5)的事件包含的基本事件數(shù)有6向上點(diǎn)數(shù)分別為(2,2,4)的事件包含的基本事件數(shù)有3向上點(diǎn)數(shù)分別為(2,3,3)的事件包含的基本事件數(shù)有3所以點(diǎn)數(shù)和為8的事件包含基本事件數(shù)是3+6+3+3=15種點(diǎn)數(shù)和為8的事件的概率是15216=572故為:572.26.給出的下列幾個(gè)命題:
①向量共面,則它們所在的直線共面;
②零向量的方向是任意的;
③若則存在唯一的實(shí)數(shù)λ,使
其中真命題的個(gè)數(shù)為()
A.0
B.1
C.2
D.3答案:B27.如圖,在△OAB中,P為線段AB上的一點(diǎn),,且,則()
A.
B.
C.
D.
答案:A28.已知函數(shù)f(x)=ax,(a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)P(12,12),則常數(shù)a的值為()A.2B.4C.12D.14答案:∵函數(shù)f(x)=ax,(a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)P(12,12),∴a12=12,?a=14.故選D.29.若向量a⊥b,且向量a=(2,m),b=(3,1)則m=______.答案:因?yàn)橄蛄縜=(2,m),b=(3,1),又a⊥b,所以2×3+m=0,所以m=-6.故為-6.30.在復(fù)平面內(nèi),復(fù)數(shù)z=sin2+icos2對(duì)應(yīng)的點(diǎn)位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:∵sin2>0,cos2<0,∴z=sin2+icos2對(duì)應(yīng)的點(diǎn)在第四象限,故選D.31.把的圖象按向量平移得到的圖象,則可以是(
)A.B.C.D.答案:D解析:∵,∴要得到的圖象,需將的圖象向右平移個(gè)單位長(zhǎng)度,故選D。32.已知:如圖,四邊形ABCD內(nèi)接于⊙O,,過(guò)A點(diǎn)的切線交CB的延長(zhǎng)線于E點(diǎn),求證:AB2=BE·CD。
答案:證明:連結(jié)AC,因?yàn)镋A切⊙O于A,所以∠EAB=∠ACB,因?yàn)?,所以∠ACD=∠ACB,AB=AD,于是∠EAB=∠ACD,又四邊形ABCD內(nèi)接于⊙O,所以∠ABE=∠D,所以△ABE∽△CDA,于是,即AB·DA=BE·CD,所以。33.已知θ是三角形內(nèi)角且sinθ+cosθ=,則表示答案:C34.棱長(zhǎng)為2的正方體A
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年數(shù)字水位儀項(xiàng)目申請(qǐng)報(bào)告
- 2025年國(guó)土資源普查核儀器項(xiàng)目申請(qǐng)報(bào)告模范
- 2024-2025學(xué)年西藏那曲市巴青縣三上數(shù)學(xué)期末統(tǒng)考試題含解析
- 軍訓(xùn)心得體會(huì)匯編15篇
- 2025年水上加油船項(xiàng)目規(guī)劃申請(qǐng)報(bào)告模板
- 2025年放射性廢氣處置設(shè)備項(xiàng)目申請(qǐng)報(bào)告
- 2022裝修監(jiān)理年終工作總結(jié)
- 去超市實(shí)習(xí)報(bào)告范文8篇
- 住房申請(qǐng)書(shū)模板10篇
- 演講競(jìng)聘演講稿范文6篇
- 嵌入式系統(tǒng)智慧醫(yī)療應(yīng)用技術(shù)研究
- 2024年云南昆明尋甸城鄉(xiāng)投資開(kāi)發(fā)集團(tuán)有限公司招聘筆試參考題庫(kù)含答案解析
- MOOC 家具·設(shè)計(jì)·生活-北京林業(yè)大學(xué) 中國(guó)大學(xué)慕課答案
- 黑龍江省哈爾濱市香坊區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期期末語(yǔ)文試卷
- 教師職業(yè)道德與專(zhuān)業(yè)發(fā)展智慧樹(shù)知到期末考試答案2024年
- 農(nóng)村污水處理設(shè)施運(yùn)維方案特別維護(hù)應(yīng)急處理預(yù)案
- 幕墻工程專(zhuān)項(xiàng)施工方案審批流程
- 新視野英語(yǔ)教程(第四版)讀寫(xiě)教程1 期末測(cè)試卷 測(cè)試卷A
- 【施工組織方案】框架結(jié)構(gòu)施工組織設(shè)計(jì)
- 人工智能背景下高校智慧思政建設(shè)
- 高考物理復(fù)習(xí)講義第88講 電磁感應(yīng)中的雙桿模型(解析版)
評(píng)論
0/150
提交評(píng)論