版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年商洛職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.在同一坐標(biāo)系下,函數(shù)y=ax,y=bx,y=cx,y=dx的圖象如圖,則a、b、c、d、1之間從小到大的順序是______.答案:作直線x=1與各圖象相交,交點(diǎn)的縱坐標(biāo)即為底數(shù),故從下到上依次增大.所以b<a<1<d<c故為:b,a,1,d,c2.知x、y、z均為實(shí)數(shù),
(1)若x+y+z=1,求證:++≤3;
(2)若x+2y+3z=6,求x2+y2+z2的最小值.答案:(1)證明略(2)x2+y2+z2的最小值為解析:(1)證明
因?yàn)椋?+)2≤(12+12+12)(3x+1+3y+2+3z+3)=27.所以++≤3.
7分(2)解
因?yàn)?12+22+32)(x2+y2+z2)≥(x+2y+3z)2=36,即14(x2+y2+z2)≥36,所以x2+y2+z2的最小值為.
14分3.用反證法證明:若整系數(shù)一元二次方程ax2+bx+c=0(a≠0)有有理數(shù)根,那么b、c中至少有一個(gè)偶數(shù)時(shí),下列假設(shè)正確的是()
A.假設(shè)a、b、c都是偶數(shù)
B.假設(shè)a、b、c都不是偶數(shù)
C.假設(shè)a、b、c至多有一個(gè)偶數(shù)
D.假設(shè)a、b、c至多有兩個(gè)偶數(shù)答案:B4.方程組的解集是(
)答案:{(5,-4)}5.已知正方形ABCD的邊長(zhǎng)為a,則|AC+AD|等于______.答案:∵正方形ABCD的邊長(zhǎng)為a,∴AC=2a,AC與AD的夾角為45°|AC+AD|2=|AC
|2+2AC?AD+|AD|2=2a2+2×2a×a×22+a2=5a2∴|AC+AD|=5a故為:5a6.已知拋物線x2=4y的焦點(diǎn)為F,A、B是拋物線上的兩動(dòng)點(diǎn),且AF=λFB(λ>0).過A、B兩點(diǎn)分別作拋物線的切線,設(shè)其交點(diǎn)為M.
(I)證明FM.AB為定值;
(II)設(shè)△ABM的面積為S,寫出S=f(λ)的表達(dá)式,并求S的最小值.答案:(1)設(shè)A(x1,y1),B(x2,y2),M(xo,yo),焦點(diǎn)F(0,1),準(zhǔn)線方程為y=-1,顯然AB斜率存在且過F(0,1)設(shè)其直線方程為y=kx+1,聯(lián)立4y=x2消去y得:x2-4kx-4=0,判別式△=16(k2+1)>0.x1+x2=4k,x1x2=-4于是曲線4y=x2上任意一點(diǎn)斜率為y'=x2,則易得切線AM,BM方程分別為y=(12)x1(x-x1)+y1,y=(12)x2(x-x2)+y2,其中4y1=x12,4y2=x22,聯(lián)立方程易解得交點(diǎn)M坐標(biāo),xo=x1+x22=2k,yo=x1x24=-1,即M(x1+x22,-1)從而,F(xiàn)M=(x1+x22,-2),AB(x2-x1,y2-y1)FM?AB=12(x1+x2)(x2-x1)-2(y2-y1)=12(x22-x12)-2[14(x22-x12)]=0,(定值)命題得證.這就說明AB⊥FM.(Ⅱ)由(Ⅰ)知在△ABM中,F(xiàn)M⊥AB,因而S=12|AB||FM|.|FM|=(x1+x22)2+(-2)2=14x12+14x22+12x1x2+4=λ+1λ+2=λ+1λ.因?yàn)閨AF|、|BF|分別等于A、B到拋物線準(zhǔn)線y=-1的距離,所以|AB|=|AF|+|BF|=y1+y2+2=λ+1λ+2=(λ+1λ)2.于是S=12|AB||FM|=12(λ+1λ)3,由λ+1λ≥2知S≥4,且當(dāng)λ=1時(shí),S取得最小值4.7.已知當(dāng)拋物線型拱橋的頂點(diǎn)距水面2米時(shí),量得水面寬8米.當(dāng)水面升高1米后,水面寬度是______米.答案:由題意,建立如圖所示的坐標(biāo)系,拋物線的開口向下,設(shè)拋物線的標(biāo)準(zhǔn)方程為x2=-2py(p>0)∵頂點(diǎn)距水面2米時(shí),量得水面寬8米∴點(diǎn)(4,-2)在拋物線上,代入方程得,p=4∴x2=-8y當(dāng)水面升高1米后,y=-1代入方程得:x=±22∴水面寬度是42米故為:428.某校為了研究學(xué)生的性別和對(duì)待某一活動(dòng)的態(tài)度(支持和不支持兩種態(tài)度)的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計(jì)算K2=7.069,則所得到的統(tǒng)計(jì)學(xué)結(jié)論是:有()的把握認(rèn)為“學(xué)生性別與支持該活動(dòng)有關(guān)系”.
P(k2≥k0)
0.100
0.050
0.025
0.010
0.001
k0
2.706
3.841
5.024
6.635
10.828
A.0.1%
B.1%
C.99%
D.99.9%答案:C9.某公司一年購(gòu)買某種貨物400噸,每次都購(gòu)買x噸,運(yùn)費(fèi)為4萬元/次,一年的總存儲(chǔ)費(fèi)用為4x萬元,要使一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和最小,則x=______噸.答案:某公司一年購(gòu)買某種貨物400噸,每次都購(gòu)買x噸,則需要購(gòu)買400x次,運(yùn)費(fèi)為4萬元/次,一年的總存儲(chǔ)費(fèi)用為4x萬元,一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和為400x?4+4x萬元,400x?4+4x≥2(400x×4)×4x=160,當(dāng)且僅當(dāng)1600x=4x即x=20噸時(shí),等號(hào)成立即每次購(gòu)買20噸時(shí),一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和最?。蕿椋?0.10.已知三點(diǎn)A(1,2),B(2,-1),C(2,2),E,F(xiàn)為線段BC的三等分點(diǎn),則AE?AF=______.答案:∵A(1,2),B(2,-1),C(2,2),∴AB=(1,-3),BC=(0,3),AE=AB+13BC=(1,-2),AF=AB+23BC=(1,-1),∴AE?AF=1×1+(-2)×(-1)=3.故為:311.某學(xué)校為了了解學(xué)生的日平均睡眠時(shí)間(單位:h),隨機(jī)選擇了n名同學(xué)進(jìn)行調(diào)查,下表是這n名同學(xué)的日平均睡眠時(shí)間的頻率分布表:
序號(hào)(i)分組(睡眠時(shí)間)頻數(shù)(人數(shù))頻率1[4,5)40.082[5,6)x0.203[6,7)ay4[7,8)bz5[8,9]m0.O8(1)求n的值;若a=20,試確定x、y、z、m的值;
(2)統(tǒng)計(jì)方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值(例如[4,5)的中點(diǎn)值4.5)作為代表.若據(jù)此計(jì)算的這n名學(xué)生的日平均睡眠時(shí)間的平均值為6.68.求a、b的值.答案:(1)樣本容量n=40.08=50,∴x=0.20×50=10,y=0.4,z=0.24,m=4(5分)(2)n=50,P(i=3)=a50,P(i=4)=b50平均時(shí)間為:4.5×0.08+5.5×0.2+6.5×a50+7.5×b50+8.5×0.08=6.68,即13a+15b=454
①(9分)又4+10+a+b+4=50,即a+b=32
②由①,②解得:a=13,b=1.(12分)12.設(shè)O為坐標(biāo)原點(diǎn),F(xiàn)為拋物線的焦點(diǎn),A是拋物線上一點(diǎn),若·=,則點(diǎn)A的坐標(biāo)是
(
)A.B.C.D.答案:B解析:略13.與向量a=(12,5)平行的單位向量為()A.(1213,-513)B.(-1213,-513)C.(1213,513)或(-1213,-513)D.(-1213,513)或(1213,-513)答案:設(shè)與向量a=(12,5)平行的單位向量b=(x,y),|a|=13所以a=±13bb=(1213,513),或b=(-1213,-513)故選C.14.如果關(guān)于x的不等式|x-4|-|x+5|≥b的解集為空集,則實(shí)數(shù)b的取值范圍為______.答案:|x-4|-|x+5|的幾何意義就是數(shù)軸上的點(diǎn)到4的距離與到-5的距離的差,差的最大值為9,如果關(guān)于x的不等式|x-4|-|x+5|≥b的解集為空集,則實(shí)數(shù)b的取值范圍為b>9;故為:b>9.15.類比“等差數(shù)列的定義”給出一個(gè)新數(shù)列“等和數(shù)列的定義”是()A.連續(xù)兩項(xiàng)的和相等的數(shù)列叫等和數(shù)列B.從第一項(xiàng)起,以后每一項(xiàng)與前一項(xiàng)的和都相等的數(shù)列叫等和數(shù)列C.從第二項(xiàng)起,以后每一項(xiàng)與前一項(xiàng)的差都不相等的數(shù)列叫等和數(shù)列D.從第二項(xiàng)起,以后每一項(xiàng)與前一項(xiàng)的和都相等的數(shù)列叫等和數(shù)列答案:由等差數(shù)列的定義:從第二項(xiàng)起,以后每一項(xiàng)與前一項(xiàng)的差都相等的數(shù)列叫等差數(shù)列類比可得:從第二項(xiàng)起,以后每一項(xiàng)與前一項(xiàng)的和都相等的數(shù)列叫等和數(shù)列故選D16.為了調(diào)查甲、乙兩個(gè)網(wǎng)站受歡迎的程度,隨機(jī)選取了14天,統(tǒng)計(jì)上午8:00-10:00間各自的點(diǎn)擊量,得如下所示的統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖:
(1)甲、乙兩個(gè)網(wǎng)站點(diǎn)擊量的極差,中位數(shù)分別是多少?
(2)甲網(wǎng)站點(diǎn)擊量在[10,40]間的頻率是多少?(結(jié)果用分?jǐn)?shù)表示)
(3)甲、乙兩個(gè)網(wǎng)站哪個(gè)更受歡迎?并說明理由。答案:解:(1)甲網(wǎng)站的極差為73-8=65,乙網(wǎng)站的極差為71-5=66;甲網(wǎng)站的中位數(shù)是56.5,乙網(wǎng)站的中位數(shù)是36.5。(2)甲網(wǎng)站點(diǎn)擊量在[10,40]間的頻率是;(3)甲網(wǎng)站的點(diǎn)擊量集中在莖葉圖的下方,而乙網(wǎng)站的點(diǎn)擊量集中在莖葉圖的上方,從數(shù)據(jù)的分布情況來看,甲網(wǎng)站更受歡迎。17.根據(jù)下面的要求,求滿足1+2+3+…+n>500的最小的自然數(shù)n.
(1)畫出執(zhí)行該問題的程序框圖;
(2)以下是解決該問題的一個(gè)程序,但有2處錯(cuò)誤,請(qǐng)找出錯(cuò)誤并予以更正.答案:(12分)(1)程序框圖如圖:(兩者選其一即可,不唯一)(2)①直到型循環(huán)結(jié)構(gòu)是直到滿足條件退出循環(huán),While錯(cuò)誤,應(yīng)改成LOOP
UNTIL;②根據(jù)循環(huán)次數(shù)可知輸出n+1
應(yīng)改為輸出n;18.若函數(shù)f(x)=x+1的值域?yàn)椋?,3],則函數(shù)f(x)的定義域?yàn)開_____.答案:∵f(x)=x+1的值域?yàn)椋?,3],∴2<x+1≤3∴1<x≤2故為:(1,2]19.已知點(diǎn)P是以F1、F2為左、右焦點(diǎn)的雙曲線(a>0,b>0)左支上一點(diǎn),且滿足PF1⊥PF2,且|PF1|:|PF2|=2:3,則此雙曲線的離心率為()
A.
B.
C.
D.答案:D20.設(shè)a=20.3,b=0.32,c=log20.3,則用“>”表示a,b,c的大小關(guān)系式是______.答案:∵0<0.32<1,log20.3<0,20.3>1∴0.32<20.3<log20.3故為:a>b>c21.已知直線l的參數(shù)方程為x=-4+4ty=-1-2t(t為參數(shù)),圓C的極坐標(biāo)方程為ρ=22cos(θ+π4),則圓心C到直線l的距離是______.答案:直線l的普通方程為x+2y+6=0,圓C的直角坐標(biāo)方程為x2+y2-2x+2y=0.所以圓心C(1,-1)到直線l的距離d=|1-2+6|5=5.故為5.22.不等式0.52x>0.5x-1的解集為______.答案:由于函數(shù)y=0.5x
是R上的減函數(shù),故由0.52x>0.5x-1可得2x<x-1,解得x<-1.故不等式0.52x>0.5x-1的解集為(-∞,-1),故為(-∞,-1).23.棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,BC1?B1D1=()A.22B.4C.-22D.-4答案:棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,BC1與
B1D1的夾角等于BC1與BD的夾角,等于60°.∴BC1?B1D1=22×22cos60°=4,故選B.24.已知向量,,則“,λ∈R”成立的必要不充分條件是()
A.
B與方向相同
C.
D.答案:D25.如圖把橢圓x225+y216=1的長(zhǎng)軸AB分成8分,過每個(gè)分點(diǎn)作x軸的垂線交橢圓的上半部分于P1,P2,…P7七個(gè)點(diǎn),F(xiàn)是橢圓的一個(gè)焦點(diǎn),則|P1F|+|P2F|+…+|P7F|=______.答案:如圖,把橢圓x225+y216=1的長(zhǎng)軸AB分成8等份,過每個(gè)分點(diǎn)作x軸的垂線交橢圓的上半部分于P1,P2,P3,P4,P5,P6,P7七個(gè)點(diǎn),F(xiàn)是橢圓的一個(gè)焦點(diǎn),則根據(jù)橢圓的對(duì)稱性知,|P1F1|+|P7F1|=|P1F1|+|P1F2|=2a,同理其余兩對(duì)的和也是2a,又|P4F1|=a,∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=7a=35,故為35.26.某校有學(xué)生1
200人,為了調(diào)查某種情況打算抽取一個(gè)樣本容量為50的樣本,問此樣本若采用簡(jiǎn)單隨便機(jī)抽樣將如何獲得?答案:本題可以采用抽簽法來抽取樣本,首先把該校學(xué)生都編上號(hào)0001,0002,0003…用抽簽法做1200個(gè)形狀、大小相同的號(hào)簽,然后將這些號(hào)簽放到同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí),每次從中抽一個(gè)號(hào)簽,連續(xù)抽取50次,就得到一個(gè)容量為50的樣本.27.若橢圓x225+y216=1上一點(diǎn)P到焦點(diǎn)F1的距離為6,則點(diǎn)P到另一個(gè)焦點(diǎn)F2的距離是______.答案:由橢圓的定義知|PF1|+|PF2|=2a=10,|PF1|=6,故|PF2|=4.故為428.若直線l經(jīng)過點(diǎn)A(-1,1),且一個(gè)法向量為n=(3,3),則直線方程是______.答案:設(shè)直線的方向向量m=(1,k)∵直線l一個(gè)法向量為n=(3,3)∴m?n=0∴k=-1∵直線l經(jīng)過點(diǎn)A(-1,1)∴直線l的方程為y-1=(-1)×(x+1)即x+y=0故為x+y=029.設(shè)計(jì)一個(gè)計(jì)算1×3×5×7×9×11×13的算法.圖中給出了程序的一部分,則在橫線①上不能填入的數(shù)是()
A.13
B.13.5
C.14
D.14.5答案:A30.下面的結(jié)構(gòu)圖,總經(jīng)理的直接下屬是()
A.總工程師和專家辦公室
B.開發(fā)部
C.總工程師、專家辦公室和開發(fā)部
D.總工程師、專家辦公室和所有七個(gè)部答案:C31.下列四個(gè)函數(shù)中,與y=x表示同一函數(shù)的是()A.y=(x)2B.y=3x3C.y=x2D.y=x2x答案:選項(xiàng)A中的函數(shù)的定義域與已知函數(shù)不同,故排除選項(xiàng)A.選項(xiàng)B中的函數(shù)與已知函數(shù)具有相同的定義域、值域和對(duì)應(yīng)關(guān)系,故是同一個(gè)函數(shù),故選項(xiàng)B滿足條件.選項(xiàng)C中的函數(shù)與已知函數(shù)的值域不同,故不是同一個(gè)函數(shù),故排除選項(xiàng)C.選項(xiàng)D中的函數(shù)與與已知函數(shù)的定義域不同,故不是同一個(gè)函數(shù),故排除選項(xiàng)D,故選B.32.(不等式選講選做題)
已知實(shí)數(shù)a、b、x、y滿足a2+b2=1,x2+y2=3,則ax+by的最大值為______.答案:因?yàn)閍2+b2=1,x2+y2=3,由柯西不等式(a2+b2)(x2+y2)≥(ax+by)2,得3≥(ax+by)2,不且僅當(dāng)ay=bx時(shí)取等號(hào),所以ax+by的最大值為3.故為:3.33.對(duì)于實(shí)數(shù)x、y,若|x-1|≤1,|y-2|≤1,則|x-2y+1|的最大值為______.答案:∵|x-2y+1|=|(x-1)-2(y-1)|≤|x-1|+2|(y-2)+1|≤|x-1|+2|y-2|+2,再由|x-1|≤1,|y-2|≤1可得|x-1|+2|y-2|+2≤1+2+2=5,故|x-2y+1|的最大值為5,故為5.34.已知點(diǎn)P為△ABC所在平面上的一點(diǎn),且,其中t為實(shí)數(shù),若點(diǎn)P落在△ABC的內(nèi)部,則t的取值范圍是()
A.
B.
C.
D.答案:D35.已知回歸直線的斜率的估計(jì)值是1.23,樣本中心點(diǎn)為(4,5),若解釋變量的值為10,則預(yù)報(bào)變量的值約為()A.16.3B.17.3C.12.38D.2.03答案:設(shè)回歸方程為y=1.23x+b,∵樣本中心點(diǎn)為(4,5),∴5=4.92+b∴b=0.08∴y=1.23x+0.08x=10時(shí),y=12.38故選C.36.已知a,b,c是三條直線,且a∥b,a與c的夾角為θ,那么b與c夾角是______.答案:∵a∥b,∴b與c夾角等于a與c的夾角又∵a與c的夾角為θ∴b與c夾角也為θ故為:θ37.(幾何證明選講選做題)如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長(zhǎng)線上一點(diǎn),連接BC與圓0交于F,若∠CFE=α(α∈(0,π2)),則∠DEB______.答案:∵直徑AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四點(diǎn)共圓∴∠EFC=∠D=α∴∠DEB=α故為:α38.以下坐標(biāo)給出的點(diǎn)中,在曲線x=sin2θy=sinθ+cosθ上的點(diǎn)是()A.(12,-2)B.(2,3)C.(-34,12)D.(1,3)答案:把曲線x=sin2θy=sinθ+cosθ消去參數(shù)θ,化為普通方程為y2=1+x(-1≤x≤1),結(jié)合所給的選項(xiàng),只有C中的點(diǎn)在曲線上,故選C.39.如圖所示,圓的內(nèi)接△ABC的∠C的平分線CD延長(zhǎng)后交圓于點(diǎn)E,連接BE,已知BD=3,CE=7,BC=5,則線段BE=()
A.
B.
C.
D.4
答案:B40.已知向量,,若與共線,則的值為
A
B
C
D
答案:D解析:,,由,得41.如圖,在四邊形ABCD中,++=4,==0,+=4,則(+)的值為()
A.2
B.
C.4
D.
答案:C42.以雙曲線x24-y216=1的右焦點(diǎn)為圓心,且被其漸近線截得的弦長(zhǎng)為6的圓的方程為______.答案:雙曲線x24-y216=1的右焦點(diǎn)為F(25,0),一條漸近線為2x+y=0.∴所求圓的圓心為(25,0).∵所求圓被漸近線2x+y=0截得的弦長(zhǎng)為6,∴圓心為(25,0)到漸近線2x+y=0的距離d=455=4,圓半徑r=9+16=5,∴所求圓的方程是(x-25)2+y2=25.故為(x-25)2+y2=25.43.已知兩直線a1x+b1y+1=0和a2x+b2y+1=0的交點(diǎn)為P(2,3),求過兩點(diǎn)Q1(a1,b1)、Q2(a2,b2)(a1≠a2)的直線方程.答案:∵P(2,3)在已知直線上,2a1+3b1+1=0,2a2+3b2+1=0.∴2(a1-a2)+3(b1-b2)=0,即b1-b2a1-a2=-23.∴所求直線方程為y-b1=-23(x-a1).∴2x+3y-(2a1+3b1)=0,即2x+3y+1=0.44.在(x+2y)n的展開式中第六項(xiàng)與第七項(xiàng)的系數(shù)相等,求展開式中二項(xiàng)式系數(shù)最大的項(xiàng).答案:∵在(x+2y)n的展開式中第六項(xiàng)與第七項(xiàng)的系數(shù)相等,∴Cn525=Cn626,∴n=8,∴二項(xiàng)式共有9項(xiàng),最中間一項(xiàng)的系數(shù)最大即展開式中二項(xiàng)式系數(shù)最大的項(xiàng)是第5項(xiàng).45.已知點(diǎn)A(1,0,-3)和向量AB=(-1,-2,0),則點(diǎn)B的坐標(biāo)為______.答案:設(shè)B(x,y,z),根據(jù)向量的坐標(biāo)運(yùn)算,AB=(x,y,z)
-
(1,0,-3)=(x-1,y,z+3)=(-1,-2,0)∴x=0,y=-2,z=-3.故為:(0,-2,-3).46.棱長(zhǎng)為1的正方體ABCD-A1B1C1D1的8個(gè)頂點(diǎn)都在球O的表面上,E,F(xiàn)分別是棱AA1,DD1的中點(diǎn),則直線EF被球O截得的線段長(zhǎng)為()
A.
B.1
C.1+
D.答案:D47.直線x+ky=0,2x+3y+8=0和x-y-1=0交于一點(diǎn),則k的值是()
A.
B.-
C.2
D.-2答案:B48.已知直線l過點(diǎn)P(1,0,-1),平行于向量=(2,1,1),平面α過直線l與點(diǎn)M(1,2,3),則平面α的法向量不可能是()
A.(1,-4,2)
B.(,-1,)
C.(-,-1,-)
D.(0,-1,1)答案:D49.設(shè)函數(shù)f(x)=ax(a>0,a≠1),如果f(x1+x2+…+x2009)=8,那么f(2x1)×f(2x2)×…×f(2x2009)的值等于()A.32B.64C.16D.8答案:f(x1+x2+…+x2009)=8可得ax1+x2+…+x2009=8f(2x1)×f(2x2)×…×f(2x2009)=a2(x1+x2+…+x2009)=82=64故選B.50.已知二次函數(shù)f(x)=x2+bx+c,f(0)<0,則該函數(shù)零點(diǎn)的個(gè)數(shù)為()
A.1
B.2
C.3
D.0答案:B第2卷一.綜合題(共50題)1.由圓C:x=2+cosθy=3+sinθ(θ為參數(shù))求圓的標(biāo)準(zhǔn)方程.答案:圓的參數(shù)方程x=2+cosθy=3+sinθ變形為:cosθ=2-xsinθ=3-y,根據(jù)同角的三角函數(shù)關(guān)系式cos2θ+sin2θ=1,可得到標(biāo)準(zhǔn)方程:(x-2)2+(y-3)2=1.所以為(x-2)2+(y-3)2=1.2.點(diǎn)P(1,2,2)到原點(diǎn)的距離是()
A.9
B.3
C.1
D.5答案:B3.若曲線x24+k+y21-k=1表示雙曲線,則k的取值范圍是
______.答案:要使方程為雙曲線方程需(4+k)(1-k)<0,即(k-1)(k+4)>0,解得k>1或k<-4故為(-∞,-4)∪(1,+∞)4.△ABC是邊長(zhǎng)為1的正三角形,那么△ABC的斜二測(cè)平面直觀圖△A′B′C′的面積為(
)
A.
B.
C.
D.答案:D5.求證:定義在實(shí)數(shù)集上的單調(diào)減函數(shù)y=f(x)的圖象與x軸至多只有一個(gè)公共點(diǎn).答案:證明:假設(shè)函數(shù)y=f(x)的圖象與x軸有兩個(gè)交點(diǎn)…(2分)設(shè)交點(diǎn)的橫坐標(biāo)分別為x1,x2,且x1<x2.因?yàn)楹瘮?shù)y=f(x)在實(shí)數(shù)集上單調(diào)遞減所以f(x1)>f(x2),…(6分)這與f(x1)=f(x2)=0矛盾.所以假設(shè)不成立.
…(12分)故原命題成立.…(14分)6.已知橢圓C:x2a2+y2b2=1(a>b>0)的離心率為32,過右焦點(diǎn)F且斜率為k(k>0)的直線與C相交于A、B兩點(diǎn),若AF=3FB,則k=______.答案:設(shè)l為橢圓的右準(zhǔn)線,過A、B作AA1,BB1垂直于l,A1,B1為垂足,過B作BE⊥AA1于E,則|AA1|=|AF|e,|BB1|=|BF|e,由AF=3FB知,|AA1|=3|BF|e,∴cos<BAE=|AE||AB|=2|BF|e4|BF|=12e=33,∴sin∠BAE=63,∴tan∠BAE=2.∴k=2.故:2.7.在邊長(zhǎng)為1的正方形ABCD中,若AB=a,BC=b,AC=c.則|a+b+2c|的值是______.答案:由題意可得|a|=|b|=1,|c|=2,a+
b=c,∴|a+b+2c|=|3c|=32,故為32.8.若指數(shù)函數(shù)f(x)與冪函數(shù)g(x)的圖象相交于一點(diǎn)(2,4),則f(x)=______,g(x)=______.答案:設(shè)f(x)=ax(a>0且a≠1),g(x)=xα將(2,4)代入兩個(gè)解析式得4=a2,4=2α解得a=2,α=2故為:f(x)=2x,g(x)=x29.a、b、c∈R,則下列命題為真命題的是______.
①若a>b,則ac2>bc2
②若ac2>bc2,則a>b
③若a<b<0,則a2>ab>b2
④若a<b<0,則1a<1b.答案:當(dāng)c=0時(shí),ac2=bc2,故①不成立;若ac2>bc2,則c2≠0,即c2>0,則a>b,故②成立;若a<b<0,則a2>ab且ab>b2,故a2>ab>b2,故③成立;若a<b<0,則ab>0,故aab<bab,即1a>1b,故④不成立故②③為真命題故為:②③10.當(dāng)x∈N+時(shí),用“>”“<”或“=”填空:
(12)x______1,2x______1,(12)x______2x,(12)x______(13)x,2x______3x.答案:根據(jù)指數(shù)函數(shù)的性質(zhì)得,當(dāng)x∈N+時(shí),(12)x<1,2x>1,則2x>(12)x,且2x<3x,則(12)x>(13)x,故為:<、>、<、>、<.11.管理人員從一池塘中撈出30條魚做上標(biāo)記,然后放回池塘,將帶標(biāo)記的魚完全混合于魚群中.10天后,再捕上50條,發(fā)現(xiàn)其中帶標(biāo)記的魚有2條.根據(jù)以上收據(jù)可以估計(jì)該池塘有______條魚.答案:設(shè)該池塘中有x條魚,由題設(shè)條件建立方程:30x=250,解得x=750.故為:750.12.如圖,點(diǎn)O是正六邊形ABCDEF的中心,則以圖中點(diǎn)A、B、C、D、E、F、O中的任意一點(diǎn)為始點(diǎn),與始點(diǎn)不同的另一點(diǎn)為終點(diǎn)的所有向量中,除向量外,與向量共線的向量共有()
A.2個(gè)
B.3個(gè)
C.6個(gè)
D.9個(gè)
答案:D13.在500個(gè)人身上試驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把一年中的記錄與另外500個(gè)未用血清的人作比較,結(jié)果如下:
未感冒
感冒
合計(jì)
試驗(yàn)過
252
248
500
未用過
224
276
500
合計(jì)
476
524
1000
根據(jù)上表數(shù)據(jù),算得Χ2=3.14.以下推斷正確的是()
A.血清試驗(yàn)與否和預(yù)防感冒有關(guān)
B.血清試驗(yàn)與否和預(yù)防感冒無關(guān)
C.通過是否進(jìn)行血清試驗(yàn)可以預(yù)測(cè)是否得感冒
D.通過是否得感冒可以推斷是否進(jìn)行了血清試驗(yàn)答案:A14.直線y=3x的傾斜角為______.答案:∵直線y=3x的斜率是3,∴直線的傾斜角的正切值是3,∵α∈[0°,180°],∴α=60°,故為:60°15.函數(shù)f(x)=ex(e為自然對(duì)數(shù)的底數(shù))對(duì)任意實(shí)數(shù)x、y,都有()
A.f(x+y)=f(x)f(y)
B.f(x+y)=f(x)+f(y)
C.f(xy)=f(x)f(y)
D.f(xy)=f(x)+f(y)答案:A16.若E,F(xiàn),G,H分別為空間四邊形ABCD四邊AB,BC,CD,DA的中點(diǎn),證明:四邊形EFGH是平行四邊形.答案:證明:∵E,F(xiàn),G,H分別為空間四邊形ABCD四邊AB,BC,CD,DA的中點(diǎn),∴EF是△ABC的中位線,∴EF∥AC,且EF=12AC.同理可證,GH∥AC,且GH=12AC,故有
EF∥GH,且EF=GH,∴四邊形EFGH是平行四邊形.17.設(shè)A、B為兩個(gè)事件,若事件A和B同時(shí)發(fā)生的概率為310,在事件A發(fā)生的條件下,事件B發(fā)生的概率為12,則事件A發(fā)生的概率為______.答案:根據(jù)題意,得∵P(A|B)=P(AB)P(B),P(AB)=310,P(A|B)=12∴12=310P(B),解得P(B)=31012=35故為:3518.用反證法證明“a>b”時(shí),反設(shè)正確的是()
A.a(chǎn)>b
B.a(chǎn)<b
C.a(chǎn)=b
D.以上都不對(duì)答案:D19.若定義運(yùn)算a⊕b=b,a<ba,a≥b則函數(shù)f(x)=2x⊕(12)x的值域?yàn)開_____(用區(qū)間表示).答案:由題意畫出f(x)=2x?(12)x的圖象(實(shí)線部分),由圖可知f(x)的值域?yàn)閇1,+∞).故為:[1,+∞).20.某射手射擊所得環(huán)數(shù)X的分布列為:
ξ
4
5
6
7
8
9
10
P
0.02
0.04
0.06
0.09
0.28
0.29
0.22
則此射手“射擊一次命中環(huán)數(shù)大于7”的概率為()
A.0.28
B.0.88
C.0.79
D.0.51答案:C21.已知在一個(gè)二階矩陣M對(duì)應(yīng)變換的作用下,點(diǎn)A(1,2)變成了點(diǎn)A′(7,10),點(diǎn)B(2,0)變成了點(diǎn)B′(2,4),求矩陣M.答案:設(shè)M=abcd,則abcd12=710,abcd20=24,(4分)即a+2b=7c+2d=102a=22c=4,解得a=1b=3c=2d=4(8分)所以M=1234.(10分)22.直線y=x-1的傾斜角是()
A.30°
B.120°
C.60°
D.150°答案:A23.已知隨機(jī)變量x服從二項(xiàng)分布x~B(6,),則P(x=2)=()
A.
B.
C.
D.答案:D24.平面向量的夾角為,則等于(
)
A.
B.3
C.7
D.79答案:A25.將一個(gè)等腰梯形繞著它的較長(zhǎng)的底邊所在的直線旋轉(zhuǎn)一周,所得的幾何體是(
)答案:B26.選修4-1:幾何證明選講
如圖,D,E分別為△ABC的邊AB,AC上的點(diǎn),且不與△ABC的頂點(diǎn)重合.已知AE的長(zhǎng)為m,AC的長(zhǎng)為n,AD,AB的長(zhǎng)是關(guān)于x的方程x2-14x+mn=0的兩個(gè)根.
(Ⅰ)證明:C,B,D,E四點(diǎn)共圓;
(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圓的半徑.
答案:(I)連接DE,根據(jù)題意在△ADE和△ACB中,AD×AB=mn=AE×AC,即ADAC=AEAB又∠DAE=∠CAB,從而△ADE∽△ACB因此∠ADE=∠ACB∴C,B,D,E四點(diǎn)共圓.(Ⅱ)m=4,n=6時(shí),方程x2-14x+mn=0的兩根為x1=2,x2=12.故AD=2,AB=12.取CE的中點(diǎn)G,DB的中點(diǎn)F,分別過G,F(xiàn)作AC,AB的垂線,兩垂線相交于H點(diǎn),連接DH.∵C,B,D,E四點(diǎn)共圓,∴C,B,D,E四點(diǎn)所在圓的圓心為H,半徑為DH.由于∠A=90°,故GH∥AB,HF∥AC.HF=AG=5,DF=12(12-2)=5.故C,B,D,E四點(diǎn)所在圓的半徑為5227.不等式|x-2|+|x+1|<5的解集為()
A.(-∞,-2)∪(3,+∞)
B.(-∞,-1)∪(2,+∞)
C.(-2,3)
D.(-∞,+∞)答案:C28.編程序,求和s=1!+2!+3!+…+20!答案:s=0n=1t=1WHILE
n<=20s=s+tn=n+1t=t*nWENDPRINT
sEND29.設(shè)直線l與平面α相交,且l的方向向量為a,α的法向量為n,若<a,n>=,則l與α所成的角為()
A.
B.
C.
D.答案:C30.如圖,在等腰△ABC中,AC=AB,以AB為直徑的⊙O交BC于點(diǎn)E,過點(diǎn)E作⊙O的切線交AC于點(diǎn)D,交AB的延長(zhǎng)線于點(diǎn)P.問:PD與AC是否互相垂直?請(qǐng)說明理由.答案:PD與AC互相垂直.理由如下:連接OE,則OE⊥PD;∵AC=AB,OE=OB,∴∠OEB=∠B=∠C,∴OE∥AC,∴PD與AC互相垂直.31.設(shè)O是坐標(biāo)原點(diǎn),F(xiàn)是拋物線y2=2px(p>0)的焦點(diǎn),A是拋物線上的一點(diǎn),F(xiàn)A與x軸正向的夾角為60°,則|OA|為______.答案:過A作AD⊥x軸于D,令FD=m,則FA=2m,p+m=2m,m=p.∴OA=(p2+p)2+(3p)2=212p.故為:212p32.若拋物線y2=2px(p>0)的焦點(diǎn)與雙曲線的右焦點(diǎn)重合,則p的值為()
A.2
B.4
C.8
D.4答案:C33.若過點(diǎn)A(4,0)的直線l與曲線(x-2)2+y2=1有公共點(diǎn),則直線l的斜率的取值范圍為______.答案:設(shè)直線l的方程為y=k(x-4),即kx-y-4k=0∵直線l與曲線(x-2)2+y2=1有公共點(diǎn),∴圓心到直線l的距離小于等于半徑即|2k-4k|k2+1≤1,解得-33≤
k≤33∴直線l的斜率的取值范圍為[-33,33]故為[-33,33]34.從一批羽毛球產(chǎn)品中任取一個(gè),質(zhì)量小于4.8
g的概率是0.3,質(zhì)量不小于4.85
g的概率是0.32,那么質(zhì)量在[4.8,4.85)g范圍內(nèi)的概率是()
A.0.62
B.0.38
C.0.7
D.0.68答案:B35.下列4個(gè)命題
㏒1/2x>㏒1/3x
其中的真命題是()
、A.(B.C.D.答案:D解析:取x=,則=1,=<1,p2正確當(dāng)x∈(0,)時(shí),()x<1,而>1.p4正確36.有一批機(jī)器,編號(hào)為1,2,3,…,112,為調(diào)查機(jī)器的質(zhì)量問題,打算抽取10臺(tái),問此樣本若采用簡(jiǎn)單的隨機(jī)抽樣方法將如何獲得?答案:本題可以采用抽簽法來抽取樣本,首先把該校學(xué)生都編上號(hào)001,002,112…用抽簽法做112個(gè)形狀、大小相同的號(hào)簽,然后將這些號(hào)簽放到同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí),每次從中抽一個(gè)號(hào)簽,連續(xù)抽取10次,就得到一個(gè)容量為10的樣本.37.畫出《數(shù)學(xué)3》第一章“算法初步”的知識(shí)結(jié)構(gòu)圖.答案:《數(shù)學(xué)3》第一章“算法初步”的知識(shí)包括:算法、程序框圖、算法的三種基本邏輯結(jié)構(gòu)和框圖表示、基本算法語(yǔ)句.算法的三種基本邏輯結(jié)構(gòu)和框圖表示就是順序結(jié)構(gòu)、條件結(jié)構(gòu)、循環(huán)結(jié)構(gòu),基本算法語(yǔ)句是指輸入語(yǔ)句、輸出語(yǔ)句、賦值語(yǔ)句、條件語(yǔ)句和循環(huán)語(yǔ)句.故《數(shù)學(xué)3》第一章“算法初步”的知識(shí)結(jié)構(gòu)圖示意圖如下:38.P為橢圓x225+y216=1上一點(diǎn),F(xiàn)1,F(xiàn)2分別為其左,右焦點(diǎn),則△PF1F2周長(zhǎng)為______.答案:由題意知△PF1F2周長(zhǎng)=2a+2c=10+6=16.39.已知原點(diǎn)O(0,0),則點(diǎn)O到直線4x+3y+5=0的距離等于
______.答案:利用點(diǎn)到直線的距離公式得到d=|5|42+32=1,故為1.40.若橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點(diǎn),則實(shí)數(shù)a的取值范圍是______.答案:橢圓x2+4(y-a)2=4與拋物線x2=2y聯(lián)立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點(diǎn),∴方程2y2-(4a-1)y+2a2-2=0至少有一個(gè)非負(fù)根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵兩根皆負(fù)時(shí),由韋達(dá)定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一個(gè)非負(fù)根時(shí),-1≤a≤178故為:-1≤a≤17841.用反證法證明命題“如果a>b,那么a3>b3“時(shí),下列假設(shè)正確的是()
A.a(chǎn)3<b3
B.a(chǎn)3<b3或a3=b3
C.a(chǎn)3<b3且a3=b3
D.a(chǎn)3>b3答案:B42.若直線按向量平移得到直線,那么(
)A.只能是(-3,0)B.只能是(0,6)C.只能是(-3,0)或(0,6)D.有無數(shù)個(gè)答案:D解析:設(shè)平移向量,直線平移之后的解析式為,即,所以,滿足的有無數(shù)多個(gè).43.經(jīng)過點(diǎn)M(1,1)且在兩軸上截距相等的直線是______.答案:①當(dāng)所求的直線與兩坐標(biāo)軸的截距不為0時(shí),設(shè)該直線的方程為x+y=a,把(1,1)代入所設(shè)的方程得:a=2,則所求直線的方程為x+y=2;②當(dāng)所求的直線與兩坐標(biāo)軸的截距為0時(shí),設(shè)該直線的方程為y=kx,把(1,1)代入所求的方程得:k=1,則所求直線的方程為y=x.綜上,所求直線的方程為:x+y=2或y=x.故為:x+y=2或y=x44.如圖:一個(gè)力F作用于小車G,使小車G發(fā)生了40米的位移,F(xiàn)的大小為50牛,且與小車的位移方向的夾角為60°,則F在小車位移方向上的正射影的數(shù)量為______,力F做的功為______牛米.答案:如圖,∵|F|=50,且F與小車的位移方向的夾角為60°,∴F在小車位移方向上的正射影的數(shù)量為:|F|cos60°=50×12=25(牛).∵力F作用于小車G,使小車G發(fā)生了40米的位移,∴力F做的功w=25×40=1000(牛米).故為:25牛,1000.45.設(shè)b是a的相反向量,則下列說法錯(cuò)誤的是()
A.a(chǎn)與b的長(zhǎng)度必相等
B.a(chǎn)與b的模一定相等
C.a(chǎn)與b一定不相等
D.a(chǎn)是b的相反向量答案:C46.下列函數(shù)中,定義域?yàn)椋?,+∞)的是()A.y=1xB.y=xC.y=1x2D.y=12x答案:由于函數(shù)y=1x的定義域?yàn)椋?,+∞),函數(shù)y=x的定義域?yàn)閇0,+∞),函數(shù)y=1x2的定義域?yàn)閧x|x≠0},函數(shù)y=12x的定義域?yàn)镽,故只有A中的函數(shù)滿足定義域?yàn)椋?,+∞),故選A.47.如圖,AB,CD是半徑為a的圓O的兩條弦,他們相交于AB的中點(diǎn)P,PD=2a3,∠OAP=30°,則CP=______.答案:因?yàn)辄c(diǎn)P是AB的中點(diǎn),由垂徑定理知,OP⊥AB.在Rt△OPA中,BP=AP=acos30°=32a.由相交弦定理知,BP?AP=CP?DP,即32a?32a=CP?23a,所以CP=98a.故填:98a.48.將一枚均勻硬幣
隨機(jī)擲20次,則恰好出現(xiàn)10次正面向上的概率為()
A.
B.
C.
D.答案:D49.賦值語(yǔ)句M=M+3表示的意義()
A.將M的值賦給M+3
B.將M的值加3后再賦給M
C.M和M+3的值相等
D.以上說法都不對(duì)答案:B50.一動(dòng)圓與兩圓x2+y2=1和x2+y2-8x+12=0都外切,則動(dòng)圓圓心軌跡為()A.圓B.橢圓C.雙曲線的一支D.拋物線答案:設(shè)動(dòng)圓的圓心為P,半徑為r,而圓x2+y2=1的圓心為O(0,0),半徑為1;圓x2+y2-8x+12=0的圓心為F(4,0),半徑為2.依題意得|PF|=2+r|,|PO|=1+r,則|PF|-|PO|=(2+r)-(1+r)=1<|FO|,所以點(diǎn)P的軌跡是雙曲線的一支.故選C.第3卷一.綜合題(共50題)1.已知e1,e2是夾角為60°的單位向量,且a=2e1+e2,b=-3e1+2e2
(1)求a?b;
(2)求a與b的夾角<a,b>.答案:(1)求a?b=(2e1+e2)?
(-3e1+2e2)=
-6e12+e1
?e2+2e22=-6+1×1×cos60°+2=-72.(2)|a|=|2e1+e2|=(2e1+e2)2=4e12+2e1?e2+e22=7同樣地求得|b|=7.所以cos<a,b>=a?b|a||b|=-727
×7=-12,又0<<a,b><π,所以<a,b>=2π3.2.若隨機(jī)變量X的概率分布如下表,則表中a的值為()
X
1
2
3
4
P
0.2
0.3
0.3
a
A.1
B.0.8
C.0.3
D.0.2答案:D3.兩名女生,4名男生排成一排,則兩名女生不相鄰的排法共有______
種(以數(shù)字作答)答案:由題意,先排男生,再插入女生,可得兩名女生不相鄰的排法共有A44?A25=480種故為:4804.已知點(diǎn)P是拋物線y2=2x上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和的最小值為______.答案:依題設(shè)P在拋物線準(zhǔn)線的投影為P',拋物線的焦點(diǎn)為F,則F(12,0),依拋物線的定義知P到該拋物線準(zhǔn)線的距離為|PP'|=|PF|,則點(diǎn)P到點(diǎn)A(0,2)的距離與P到該拋物線準(zhǔn)線的距離之和d=|PF|+|PA|≥|AF|=(12)2+22=172.故為:172.5.已知點(diǎn)A(-3,8),B(2,4),若y軸上的點(diǎn)P滿足PA的斜率是PB斜率的2倍,則P點(diǎn)的坐標(biāo)為______.答案:設(shè)P(0,y),則∵點(diǎn)P滿足PA的斜率是PB斜率的2倍,∴y-80+3=2?y-40-2∴y=5∴P(0,5)故為:(0,5)6.直線l只經(jīng)過第一、三、四象限,則直線l的斜率k()
A.大于零
B.小于零
C.大于零或小于零
D.以上結(jié)論都有可能答案:A7.已知下列命題(其中a,b為直線,α為平面):
①若一條直線垂直于一個(gè)平面內(nèi)無數(shù)條直線,則這條直線與這個(gè)平面垂直;
②若一條直線平行于一個(gè)平面,則垂直于這條直線的直線必垂直于這個(gè)平面;
③若a∥α,b⊥α,則a⊥b;
④若a⊥b,則過b有且只有一個(gè)平面與a垂直.
上述四個(gè)命題中,真命題是()A.①,②B.②,③C.②,④D.③,④答案:①平面內(nèi)無數(shù)條直線均為平行線時(shí),不能得出直線與這個(gè)平面垂直,將“無數(shù)條”改為“所有”才正確;故①錯(cuò)誤;②垂直于這條直線的直線與這個(gè)平面可以是任何的位置關(guān)系,有可能是平行、相交、線在面內(nèi),故②錯(cuò)誤.③若a∥α,b⊥α,則必有a⊥b,正確;④若a⊥b,則過b有且只有一個(gè)平面與a垂直,顯然正確.故選D.8.方程組的解集是(
)
A.{(-3,0)}
B.{-3,0}
C.(-3,0)
D.{(0,-3)}
答案:A9.設(shè)=(3,4),=(sinα,cosα),且⊥,則tanα的值為()
A.
B.-
C.
D.-答案:D10.下列關(guān)于算法的說法不正確的是()A.算法必須在有限步操作之后停止.B.求解某一類問題的算法是唯一的.C.算法的每一步必須是明確的.D.算法執(zhí)行后一定產(chǎn)生確定的結(jié)果.答案:因?yàn)樗惴ň哂杏懈F性、確定性和可輸出性.由算法的特性可知,A是指的有窮性;C是確定性;D是可輸出性.而解決某一類問題的算法不一定唯一,例如求排序問題算法就不唯一,所以,給出的說法不正確的是B.故選B.11.4個(gè)人各寫一張賀年卡,集中后每人取一張別人的賀年卡,共有______種取法.答案:根據(jù)分類計(jì)數(shù)問題,可以列舉出所有的結(jié)果,1甲乙互換,丙丁互換2甲丙互換,乙丁互換3甲丁互換,乙丙互換4甲要乙的乙要丙的丙要丁的丁要甲的5甲要乙的乙要丁的丙要甲的丁要丙的6甲要丙的丙要乙的乙要丁的丁要甲的7甲要丙的丙要丁的乙要丁的丁要甲的8甲要丁的丁要乙的乙要丙的丙要甲的9甲要丁的丁要丙的乙要甲的丙要乙的通過列舉可以得到共有9種結(jié)果,故為:912.用數(shù)學(xué)歸納法證明“<n+1
(n∈N*)”.第二步證n=k+1時(shí)(n=1已驗(yàn)證,n=k已假設(shè)成立),這樣證明:=<=(k+1)+1,所以當(dāng)n=k+1時(shí),命題正確.此種證法()
A.是正確的
B.歸納假設(shè)寫法不正確
C.從k到k+1推理不嚴(yán)密
D.從k到k+1推理過程未使用歸納假設(shè)答案:D13.執(zhí)行程序框圖,如果輸入的n是5,則輸出的p是()
A.1
B.2
C.3
D.5
答案:D14.兩條直線x-y+6=0與x+y+6=0的夾角為()
A.
B.
C.0
D.答案:D15.從裝有兩個(gè)白球和兩個(gè)黃球的口袋中任取2個(gè)球,以下給出了三組事件:
①至少有1個(gè)白球與至少有1個(gè)黃球;
②至少有1個(gè)黃球與都是黃球;
③恰有1個(gè)白球與恰有1個(gè)黃球.
其中互斥而不對(duì)立的事件共有()組.
A.0
B.1
C.2
D.3答案:A16.一個(gè)試驗(yàn)要求的溫度在69℃~90℃之間,用分?jǐn)?shù)法安排試驗(yàn)進(jìn)行優(yōu)選,則第一個(gè)試點(diǎn)安排在(
)。(取整數(shù)值)答案:82°17.從甲、乙、丙、丁四人中任選兩名代表,甲被選中的概率為
______.答案:由題意:甲、乙、丙、丁四人中任選兩名代表,共有六種情況:甲和乙、甲和丙、甲和丁、乙和丙、乙和丁、丙和丁,因每種情況出現(xiàn)的可能性相等,所以甲被選中的概率為12.故為:12.18.已知雙曲線的頂點(diǎn)到漸近線的距離為2,焦點(diǎn)到漸近線的距離為6,則該雙曲線的離心率為
______.答案:如圖,過雙曲線的頂點(diǎn)A、焦點(diǎn)F分別向其漸近線作垂線,垂足分別為B、C,則:|OF||OA|=|FC||AB|?ca=62=3.故為319.已知矩陣A將點(diǎn)(1,0)變換為(2,3),且屬于特征值3的一個(gè)特征向量是11,(1)求矩陣A.(2)β=40,求A5β.答案:(1)設(shè)A=abcd,由abcd10=23得,a=2c=3,由abcd11=311=33得,a+b=3c+d=3,所以b=1d=0所以A=2130.
7分(2)A=2130的特征多項(xiàng)式為f(λ)=.λ-2-1-3λ.=
(λ
-3)(λ+1)令f(λ)=0,可得λ1=3,λ2=-1,λ1=3時(shí),α1=11,λ2=-1時(shí),α2=1-3令β=mα1+α2,則β=40=3α1+α2,A5β=3×35α1-α2=36-136+3…14分.20.一個(gè)底面是正三角形的三棱柱的側(cè)視圖如圖所示,則該幾何體的側(cè)面積等于()A.3B.6C.23D.2答案:由正視圖知:三棱柱是以底面邊長(zhǎng)為2,高為1的正三棱柱,側(cè)面積為3×2×1=6,故為:B.21.(《幾何證明選講》選做題)如圖,在Rt△ABC中,∠C=90°,⊙O分別切AC、BC于M、N,圓心O在AB上,⊙O的半徑為4,OA=5,則OB的長(zhǎng)為______.答案:連接OM,ON,則∵⊙O分別切AC、BC于M、N∴OM⊥AC,ON⊥BC∵∠C=90°,∴OMCN為正方形∵⊙O的半徑為4,OA=5∴AM=3∴CA=7∵ON∥AC∴ONAC=OBBA∴47=OBOB+5∴OB=203故為:20322.一個(gè)路口的紅綠燈,紅燈的時(shí)間為30秒,黃燈的時(shí)間為5秒,綠燈的時(shí)間為40秒,一學(xué)生到達(dá)該路口時(shí),見到紅燈的概率是()A.25B.58C.115D.35答案:由題意知本題是一個(gè)那可能事件的概率,試驗(yàn)發(fā)生包含的事件是總的時(shí)間長(zhǎng)度為30+5+40=75秒,設(shè)紅燈為事件A,滿足條件的事件是紅燈的時(shí)間為30秒,根據(jù)等可能事件的概率得到出現(xiàn)紅燈的概率P(A)=構(gòu)成事件A的時(shí)間長(zhǎng)度總的時(shí)間長(zhǎng)度=3075=25.故選A.23.以橢圓的焦點(diǎn)為頂點(diǎn)、頂點(diǎn)為焦點(diǎn)的雙曲線方程是()
A.
B.
C.
D.答案:C24.已知兩圓x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0.
(1)m取何值時(shí)兩圓外切?
(2)m取何值時(shí)兩圓內(nèi)切?
(3)當(dāng)m=45時(shí),求兩圓的公共弦所在直線的方程和公共弦的長(zhǎng).答案:(1)由已知可得兩個(gè)圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=61-m,兩圓的圓心距d=(5-1)2+(6-3)2=5,兩圓的半徑之和為11+61-m,由兩圓的半徑之和為11+61-m=5,可得m=25+1011.(2)由兩圓的圓心距d=(5-1)2+(6-3)2=5等于兩圓的半徑之差為|11-61-m|,即|11-61-m|=5,可得
11-61-m=5(舍去),或
11-61-m=-5,解得m=25-1011.(3)當(dāng)m=45時(shí),兩圓的方程分別為(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=16,把兩個(gè)圓的方程相減,可得公共弦所在的直線方程為4x+3y-23=0.第一個(gè)圓的圓心(1,3)到公共弦所在的直線的距離為d=|4+9-23|5=2,可得弦長(zhǎng)為211-4=27.25.若數(shù)據(jù)x1,x2,…,xn的方差為3,數(shù)據(jù)ax1+b,ax2+b,…,axn+b的標(biāo)準(zhǔn)差為23,則實(shí)數(shù)a的值為______.答案:數(shù)據(jù)ax1+b,ax2+b,…,axn+b的方差是數(shù)據(jù)x1,x2,…,xn的方差的a2倍;則數(shù)據(jù)ax1+b,ax2+b,…,axn+b的方差為3a2,標(biāo)準(zhǔn)差為3a2=23解得a=±2故為:±226.已知平行四邊形的三個(gè)頂點(diǎn)A(-2,1),B(-1,3),C(3,4),求第四個(gè)頂點(diǎn)D的坐標(biāo).答案:若構(gòu)成的平行四邊形為ABCD1,即AC為一條對(duì)角線,設(shè)D1(x,y),則由AC中點(diǎn)也是BD1中點(diǎn),可得
-2+32=x-121+42=y+32,解得
x=2y=2,∴D1(2,2).同理可得,若構(gòu)成以AB為對(duì)角線的平行四邊形ACBD2,則D2(-6,0);以BC為對(duì)角線的平行四邊形ACD3B,則D3(4,6),∴第四個(gè)頂點(diǎn)D的坐標(biāo)為:(2,2),或(-6,0),或(4,6).27.袋中有4個(gè)形狀大小一樣的球,編號(hào)分別為1,2,3,4,從中任取2個(gè)球,則這2個(gè)球的編號(hào)之和為偶數(shù)的概率為()A.16B.23C.12D.13答案:根據(jù)題意,從4個(gè)球中取出2個(gè),其編號(hào)的情況有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6種;其中編號(hào)之和為偶數(shù)的有(1,3),(2,4),共2種;則2個(gè)球的編號(hào)之和為偶數(shù)的概率P=26=13;故選D.28.設(shè)函數(shù)f(x)的定義域?yàn)镈,如果對(duì)于任意的x1∈D,存在唯一的x2∈D,使得
f(x1)+f(x2)2=C成立(其中C為常數(shù)),則稱函數(shù)y=f(x)在D上的均值為C,現(xiàn)在給出下列4個(gè)函數(shù):①y=x3②y=4sinx③y=lgx④y=2x,則在其定義域上的均值為
2的所有函數(shù)是下面的()A.①②B.③④C.①③④D.①③答案:由題意可得,均值為2,則f(x1)+f(x2)2=2即f(x1)+f(x2)=4①:y=x3在定義域R上單調(diào)遞增,對(duì)應(yīng)任意的x1,則存在唯一x2滿足x13+x23=4①正確②:y=4sinx,滿足4sinx1+4sinx2=4,令x1=π2,則根據(jù)三角函數(shù)的周期性可得,滿足sinx2=0的x2無窮多個(gè),②錯(cuò)誤③y=lgx在(0,+∞)單調(diào)遞增,對(duì)應(yīng)任意的x1>0,則滿足lgx1+lgx2=4的x2唯一存在③正確④y=2x滿足2x1+2x2=4,令x1=3時(shí)x2不存在④錯(cuò)誤故選D.29.圓錐曲線x=4secθ+1y=3tanθ的焦點(diǎn)坐標(biāo)是______.答案:由x=4secθ+1y=3tanθ可得secθ=x-14tanθ=y3,由三角函數(shù)的運(yùn)算可得tan2θ+1=sec2θ,代入可得(x-14)2-(y3)2=1,即(x-1)216-y29=1,可看作雙曲線x216-y29=1向右平移1個(gè)單位得到,而雙曲線x216-y29=1的焦點(diǎn)為(-5,0),(5,0)故所求雙曲線的焦點(diǎn)為(-4,0),(6,0)故為:(-4,0),(6,0)30.對(duì)于直線l的傾斜角α與斜率k,下列說法錯(cuò)誤的是()
A.α的取值范圍是[0°,180°)
B.k的取值范圍是R
C.k=tanα
D.當(dāng)α∈(90°,180°)時(shí),α越大k越大答案:C31.用數(shù)學(xué)歸納法證明等式時(shí),第一步驗(yàn)證n=1時(shí),左邊應(yīng)取的項(xiàng)是()
A.1
B.1+2
C.1+2+3
D.1+2+3+4答案:D32.若已知A(1,1,1),B(-3,-3,-3),則線段AB的長(zhǎng)為()
A.4
B.2
C.4
D.3答案:A33.若向量a⊥b,且向量a=(2,m),b=(3,1)則m=______.答案:因?yàn)橄蛄縜=(2,m),b=(3,1),又a⊥b,所以2×3+m=0,所以m=-6.故為-6.34.已知橢圓C1:x2a2+y2b2=1(a>b>0)的離心率為33,直線l:y=x+2與以原點(diǎn)為圓心、橢圓C1的短半軸長(zhǎng)為半徑的圓相切.
(1)求橢圓C1的方程;
(2)設(shè)橢圓C1的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線l1過點(diǎn)F1且垂直于橢圓的長(zhǎng)軸,動(dòng)直線l2垂直于直線l1,垂足為點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;
(3)設(shè)C2與x軸交于點(diǎn)Q,不同的兩點(diǎn)R,S在C2上,且滿足QR?RS=0,求|QS|的取值范圍.答案:(1)由e=33得2a2=3b2,又由直線l:y=x+2與圓x2+y2=b2相切,得b=2,a=3,∴橢圓C1的方程為:x23+y22=1.(4分)(2)由MP=MF2得動(dòng)點(diǎn)M的軌跡是以l1:x=-1為準(zhǔn)線,F(xiàn)2為焦點(diǎn)的拋物線,∴點(diǎn)M的軌跡C2的方程為y2=4x.(8分)(3)Q(0,0),設(shè)R(y214,y1),S(y224,y2),∴QR=(y214,y1),RS=(y22-y214,y2-y1),由QR?RS=0,得y21(y22-y21)16+y1(y2-y1)=0,∵y1≠y2∴化簡(jiǎn)得y2=-y1-16y1,(10分)∴y22=y21+256y21+32≥2256+32=64(當(dāng)且僅當(dāng)y1=±4時(shí)等號(hào)成立),∵|QS|=(y224)2+y22=14(y22+8)2-64,又∵y22≥64,∴當(dāng)y22=64,即y2=±8時(shí)|QS|min=85,∴|QS|的取值范圍是[85,+∞).(13分)35.復(fù)數(shù)3+4i的模等于______.答案:|3+4i|=32+42=5,故為5.36.編號(hào)為A、B、C、D、E的五個(gè)小球放在如圖所示的五個(gè)盒子中,要求每個(gè)盒子只能放一個(gè)小球,且A不能放1,2號(hào),B必需放在與A相鄰的盒子中,則不同的放法有()種.A.42B.36C.30D.28答案:根據(jù)題意,A不能放1,2號(hào),則A可以放在3、4、5號(hào)盒子,分2種情況討論:①當(dāng)A在4、5號(hào)盒子時(shí),B有1種放法,剩下3個(gè)有A33=6種不同放法,此時(shí),共有2×1×6
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 教案用紙(正業(yè))
- 保護(hù)環(huán)境課件下載
- 玉溪師范學(xué)院《西方哲學(xué)史》2021-2022學(xué)年第一學(xué)期期末試卷
- 玉溪師范學(xué)院《試驗(yàn)設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 玉溪師范學(xué)院《民法學(xué)》2022-2023學(xué)年期末試卷
- 好樂迪超市作業(yè)流程教案
- 普通人18條忠告
- 2024年生化分析試劑項(xiàng)目成效分析報(bào)告
- 采購(gòu)合同 和付款合同
- 畢業(yè)攝影合同范本
- 第47屆世界技能大賽江蘇省選拔賽網(wǎng)絡(luò)系統(tǒng)管理項(xiàng)目技術(shù)文件V1.1
- GB/T 44351-2024退化林修復(fù)技術(shù)規(guī)程
- 第5單元 圓 單元測(cè)試(含答案)2024-2025學(xué)年六年級(jí)上冊(cè)數(shù)學(xué)人教版
- 2024版《供電營(yíng)業(yè)規(guī)則》學(xué)習(xí)考試題庫(kù)500題(含答案)
- 搶救記錄死亡記錄和死亡病例討論記錄課件
- 大學(xué)生朋輩心理輔導(dǎo)智慧樹知到答案章節(jié)測(cè)試2023年浙江大學(xué)
- 湘教版初中美術(shù)八年級(jí)上冊(cè) 第5課《靜物畫有聲》[31張PPT]
- 醫(yī)療集團(tuán)人事聘用和調(diào)配管理辦法
- 中石油項(xiàng)目建議書寫作模板
- 超市值班經(jīng)理制度
- 8個(gè)干細(xì)胞藥物
評(píng)論
0/150
提交評(píng)論