版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年湖南體育職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.若一個(gè)橢圓長軸的長度、短軸的長度和焦距成等差數(shù)列,則該橢圓的離心率是(
)
A.
B.
C.
D.答案:B2.甲、乙、丙、丁四位同學(xué)各自對(duì)A、B兩個(gè)變量的線性相關(guān)性作試驗(yàn),并用回歸分析方法分別求得相關(guān)系數(shù)r與殘差平方和m如表:
則哪位同學(xué)的實(shí)驗(yàn)結(jié)果體現(xiàn)A、B兩個(gè)變量更強(qiáng)的線性相關(guān)性()
A.丙
B.乙
C.甲
D.丁答案:C3.函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上的最大值比最小值大a2,則a的值為()A.32B.2C.12或32D.12答案:當(dāng)a>1時(shí),函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上是增函數(shù),由題意可得a2-a=a2,∴a=32.當(dāng)1>a>0時(shí),函數(shù)f(x)=ax(a>0且a≠1)在區(qū)間[1,2]上是減函數(shù),由題意可得a-a2=a2,解得
a=12.綜上,a的值為12或32故選C.4.已知向量,滿足:||=3,||=5,且=λ,則實(shí)數(shù)λ=()
A.
B.
C.±
D.±答案:C5.已知圖所示的矩形,其長為12,寬為5.在矩形內(nèi)隨同地措施1000顆黃豆,數(shù)得落在陰影部分的黃豆數(shù)為550顆.則可以估計(jì)出陰影部分的面積約為______.答案:∵矩形的長為12,寬為5,則S矩形=60∴S陰S矩=S陰60=5501000,∴S陰=33,故:33.6.曲線C:x=t-2y=1t+1(t為參數(shù))的對(duì)稱中心坐標(biāo)是______.答案:曲線C:x=t-2y=1t+1(t為參數(shù))即y-1=1x+2,其對(duì)稱中心為(-2,1).故為:(-2,1).7.斜二測(cè)畫法的規(guī)則是:
(1)在已知圖形中建立直角坐標(biāo)系xoy,畫直觀圖
時(shí),它們分別對(duì)應(yīng)x′和y′軸,兩軸交于點(diǎn)o′,使∠x′o′y′=______,它們確定的平面表示水平平面;
(2)
已知圖形中平行于x軸或y軸的線段,在直觀圖中分別畫成
______;
(3)已知圖形中平行于x軸的線段的長度,在直觀圖中
______;平行于y軸的線段,在直觀圖中
______.答案:按照斜二測(cè)畫法的規(guī)則填空故為:(1)45°或135°;(2)平行于x′軸和y′軸;(3)長度不變;長度減半8.過拋物線y=ax2(a>0)的焦點(diǎn)F作一直線交拋物線交于P、Q兩點(diǎn),若線段PF、FQ的長分別為p、q,則1p+1q=______.答案:設(shè)PQ的斜率k=0,因拋物線焦點(diǎn)坐標(biāo)為(0,14a),把直線方程y=14a
代入拋物線方程得x=±12a,∴PF=FQ=12a,從而
1p+1q=2a+2a=4a,故為:4a.9.有3名同學(xué)要爭奪2個(gè)比賽項(xiàng)目的冠軍,冠軍獲得者共有______種可能.答案:第一個(gè)項(xiàng)目的冠軍有3種情況,第二個(gè)項(xiàng)目的冠軍也有3種情況,根據(jù)分步計(jì)數(shù)原理,冠軍獲得者共有3×3=9種可能,故為9.10.在某次數(shù)學(xué)考試中,考生的成績X~N(90,100),則考試成績X位于區(qū)間(80,90)上的概率為______.答案:∵考生的成績X~N(90,100),∴正弦曲線關(guān)于x=90對(duì)稱,根據(jù)3?原則知P(80<x<100)=0.6829,∴考試成績X位于區(qū)間(80,90)上的概率為0.3413,故為:0.341311.下列各圖形不是函數(shù)的圖象的是()A.
B.
C.
D.
答案:由函數(shù)的概念,B中有的x,存在兩個(gè)y與x對(duì)應(yīng),不符合函數(shù)的定義,而ACD均符合.故選B12.在區(qū)間[0,1]產(chǎn)生的隨機(jī)數(shù)x1,轉(zhuǎn)化為[-1,3]上的均勻隨機(jī)數(shù)x,實(shí)施的變換為()
A.x=3x1-1
B.x=3x1+1
C.x=4x1-1
D.x=4x1+1答案:C13.若0<x<1,則2x,(12)x,(0.2)x之間的大小關(guān)系為()A.2x<(0.2)x<(12)xB.2x<(12)x<(0.2)xC.(12)x<(0.2)x<2xD.(0.2)x<(12)x<2x答案:由題意考察冪函數(shù)y=xn(0<n<1),利用冪函數(shù)的性質(zhì),∵0<n<1,∴冪函數(shù)y=xn在第一象限是增函數(shù),又2>12>0.2∴2x>(12)x>(0.2)x故選D14.求證:若圓內(nèi)接五邊形的每個(gè)角都相等,則它為正五邊形.答案:證明:設(shè)圓內(nèi)接五邊形為ABCDE,圓心是O.連接OA,OB,OCOD,OE,可得五個(gè)三角形∵OA=OB=OC=OD=OE=半徑,∴有五個(gè)等腰三角形在△OAB、△OBC、△OCD、△ODE、△OEA中則∠OAB=∠OBA,∠OBC=∠OCB,∠OCD=∠ODC,∠ODE=∠OED,∠OEA=∠OAE因?yàn)樗袃?nèi)角相等,所以∠OAE+∠OAB=∠OBA+∠OBC,所以∠OAE=∠OBC同理證明∠OBA=∠OCD,∠OCB=∠OED,∠ODC=∠OEA,∠OED=∠OAB則△OAB、△OBC、△OCD、△ODE、△OEA中,∠AOB=∠BOC=∠COD=∠DOE=∠EOA∴△OAB≌△OBC≌△OCD≌△ODE≌△OEA
(SAS邊角邊定律)∴AB=BC=CD=DE=EA∴五邊形ABCDE為正五邊形15.P是以F1,F(xiàn)2為焦點(diǎn)的橢圓上一點(diǎn),過焦點(diǎn)F2作∠F1PF2外角平分線的垂線,垂足為M,則點(diǎn)M的軌跡是()
A.橢圓
B.圓
C.雙曲線
D.雙曲線的一支答案:B16.已知正方體ABCD-A1B1C1D1,點(diǎn)E,F(xiàn)分別是上底面A1C1和側(cè)面CD1的中心,求下列各式中的x,y的值:
(1)AC1=x(AB+BC+CC1),則x=______;
(2)AE=AA1+xAB+yAD,則x=______,y=______;
(3)AF=AD+xAB+yAA1,則x=______,y=______.答案:(1)根據(jù)向量加法的首尾相連法則,x=1;(2)由向量加法的三角形法則得,AE=AA1+A1E,由四邊形法則和向量相等得,A1E=12(A1B1+A1D1)=12(AB+AD);∴AE=AA1+12AB+12AD,∴x=y=12;(3)由向量加法的三角形法則得,AF=AD+DF,由四邊形法則和向量相等得,DF=12(DC+DD1)=12(AB+AA1);∴AF=AD+12AB+12AA1,∴x=y=12.17.已知直線l的斜率為k=-1,經(jīng)過點(diǎn)M0(2,-1),點(diǎn)M在直線上,以M0M的數(shù)量t為參數(shù),則直線l的參數(shù)方程為______.答案:∵直線l經(jīng)過點(diǎn)M0(2,-1),斜率為k=-1,傾斜角為3π4,∴直線l的參數(shù)方程為x=2+tcos3π4y=-1+tsin3π4
(t為參數(shù));即為x=2-22ty=-1+22t(t為參數(shù)).故為:x=2-22ty=-1+22t(t為參數(shù)).18.已知△ABC的頂點(diǎn)坐標(biāo)為A(3,4),B(-2,-1),C(4,5),D在BC上,且S△ABC=3S△ABD,則AD的長為______.答案:D在BC上,且S△ABC=3S△ABD,∴D點(diǎn)為BC邊上的三等分點(diǎn)則D點(diǎn)分線段BC所成的比為12則易求出D點(diǎn)坐標(biāo)為:x=-2+12×41+12y=-1+12×51+12∴x=0y=1故AD=32故為:3219.鐵路托運(yùn)行李,從甲地到乙地,按規(guī)定每張客票托運(yùn)行李不超過50kg時(shí),每千克0.2元,超過50kg時(shí),超過部分按每千克0.25元計(jì)算,畫出計(jì)算行李價(jià)格的算法框圖.答案:程序框圖:20.已知橢圓C:x2a2+y2b2=1(a>b>0)的離心率為32,過右焦點(diǎn)F且斜率為k(k>0)的直線與C相交于A、B兩點(diǎn),若AF=3FB,則k=______.答案:設(shè)l為橢圓的右準(zhǔn)線,過A、B作AA1,BB1垂直于l,A1,B1為垂足,過B作BE⊥AA1于E,則|AA1|=|AF|e,|BB1|=|BF|e,由AF=3FB知,|AA1|=3|BF|e,∴cos<BAE=|AE||AB|=2|BF|e4|BF|=12e=33,∴sin∠BAE=63,∴tan∠BAE=2.∴k=2.故:2.21.某校為了研究學(xué)生的性別和對(duì)待某一活動(dòng)的態(tài)度(支持和不支持兩種態(tài)度)的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計(jì)算K2=7.069,則所得到的統(tǒng)計(jì)學(xué)結(jié)論是:有()的把握認(rèn)為“學(xué)生性別與支持該活動(dòng)有關(guān)系”.
P(k2≥k0)
0.100
0.050
0.025
0.010
0.001
k0
2.706
3.841
5.024
6.635
10.828
A.0.1%
B.1%
C.99%
D.99.9%答案:C22.若a2+b2+c2=1,則a+2b+3c的最大值為______.答案:因?yàn)橐阎猘、b、c是實(shí)數(shù),且a2+b2+c2=1根據(jù)柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(12+22+32)≥(a+2b+3c)2故(a+2b+3c)2≤14,即2a+b+2c≤14.即a+2b+3c的最大值為14.故為:14.23.方程組的解集是(
)
A.{(-3,0)}
B.{-3,0}
C.(-3,0)
D.{(0,-3)}
答案:A24.設(shè)U={x|x<7,x∈N+}A={1,2,5},B={2,3,4,5},求A∩B,CUA,A∪(CUB).答案:∵U={1,2,3,4,5,6}A∩B={2,5}CUA={3,4,6}A∪CUB={1}25.如圖,在△ABC中,,,則實(shí)數(shù)λ的值為()
A.
B.
C.
D.
答案:D26.當(dāng)a>0時(shí),設(shè)命題P:函數(shù)f(x)=x+ax在區(qū)間(1,2)上單調(diào)遞增;命題Q:不等式x2+ax+1>0對(duì)任意x∈R都成立.若“P且Q”是真命題,則實(shí)數(shù)a的取值范圍是()A.0<a≤1B.1≤a<2C.0≤a≤2D.0<a<1或a≥2答案:∵函數(shù)f(x)=x+ax在區(qū)間(1,2)上單調(diào)遞增;∴f′(x)≥0在區(qū)間(1,2)上恒成立,∴1-ax2≥0在區(qū)間(1,2)上恒成立,即a≤x2在區(qū)間(1,2)上恒成立,∴a≤1.且a>0…①又不等式x2+ax+1>0對(duì)任意x∈R都成立,∴△=a2-4<0,∴-2<a<2…②若“P且Q”是真命題,則P且Q都是真命題,故由①②的交集得:0<a≤1,則實(shí)數(shù)a的取值范圍是0<a≤1.故選A.27.已知函數(shù)f(x)=ax,(a>0,a≠1)的圖象經(jīng)過點(diǎn)P(12,12),則常數(shù)a的值為()A.2B.4C.12D.14答案:∵函數(shù)f(x)=ax,(a>0,a≠1)的圖象經(jīng)過點(diǎn)P(12,12),∴a12=12,?a=14.故選D.28.已知M(x0,y0)是圓x2+y2=r2(r>0)內(nèi)異于圓心的一點(diǎn),則直線x0x+y0y=r2與此圓有何種位置關(guān)系?答案:圓心O(0,0)到直線x0x+y0y=r2的距離為d=r2x20+y20.∵P(x0,y0)在圓內(nèi),∴x20+y20<r.則有d>r,故直線和圓相離.29.設(shè)隨機(jī)變量X的分布列為P(X=k)=,k=1,2,3,4,5,則P()等于()
A.
B.
C.
D.答案:C30.橢圓=1的焦點(diǎn)為F1,點(diǎn)P在橢圓上,如果線段PF1的中點(diǎn)M在y軸上,那么點(diǎn)M的縱坐標(biāo)是()
A.±
B.±
C.±
D.±答案:A31.直線l1:x+ay=2a+2與直線l2:ax+y=a+1平行,則a=______.答案:直線l1:x+ay=2a+2即x+ay-2a-2=0;直線l2:ax+y=a+1即ax+y-a-1=0,∵直線l1與直線l2互相平行∴當(dāng)a≠0且a≠-1時(shí),1a=a1≠-2a-2-a-1,解之得a=1當(dāng)a=0時(shí),兩條直線垂直;當(dāng)a=-1時(shí),兩條直線重合故為:132.雙曲線的實(shí)軸長和焦距分別為()
A.
B.
C.
D.答案:C33.函數(shù)f(x)=2x2+1,&x∈[0,2],則函數(shù)f(x)的值域?yàn)椋ǎ〢.[1,32]B.[4,32]C.[2,32]D.[2,4]答案:∵f(x)=2x2+1,x∈[0,2],∴設(shè)y=2t,t=x2+1∈[1,5],∵y=2t是增函數(shù),∴t=1時(shí),ymin=2;t=5時(shí),ymax=25=32.∴函數(shù)f(x)的值域?yàn)閇2,32].故為:C.34.袋中裝著標(biāo)有數(shù)字1,2,3,4的小球各3個(gè),從袋中任取3個(gè)小球,每個(gè)小球被取出的可能性都相等.
(Ⅰ)求取出的3個(gè)小球上的數(shù)字互不相同的概率;
(Ⅱ)用X表示取出的3個(gè)小球上所標(biāo)的最大數(shù)字,求隨機(jī)變量X的分布列和均值.答案:(I)由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件數(shù)C123,滿足條件的事件是取出的3個(gè)小球上的數(shù)字互不相同,共有C43C31C31C31記“一次取出的3個(gè)小球上的數(shù)字互不相同”的事件記為A,∴P(A)=C34?C13?C13?C13C312=2755.(II)由題意X所有可能的取值為:1,2,3,4.P(X=1)=1C312=1220;P(X=2)=C23?C13+C23?C13+C33C312=19220;P(X=3)=C26?C13+C16?C23+C33C312=64220=1655;P(X=4)=C29?C13+C19?C23+C33C312=136220=3455.∴隨機(jī)變量X的分布列為∴隨機(jī)變量X的期望為EX=1×1220+2×19220+3×1655+4×3455=15544.35.如圖1,一個(gè)“半圓錐”的主視圖是邊長為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,這個(gè)幾何體的體積為()A.33πB.36πC.23πD.3π答案:由已知中“半圓錐”的主視圖是邊長為2的正三角形,左視圖是直角三角形,俯視圖是半圓及其圓心,我們可以判斷出底面的半徑為1,母線長為2,則半圓錐的高為3故V=13×12×π×3=36π故選B36.運(yùn)用三段論推理:
復(fù)數(shù)不可以比較大小,(大前提)
2010和2011都是復(fù)數(shù),(小前提)
2010和2011不可以比較大?。ńY(jié)
論)
該推理是錯(cuò)誤的,產(chǎn)生錯(cuò)誤的原因是______錯(cuò)誤.(填“大前提”或“小前提”)答案:根據(jù)三段論推理,是由兩個(gè)前提和一個(gè)結(jié)論組成,大前提:復(fù)數(shù)不可以比較大小,是錯(cuò)誤的,該推理是錯(cuò)誤的,產(chǎn)生錯(cuò)誤的原因是大前提錯(cuò)誤.故為:大前提37.下列函數(shù)中,與函數(shù)y=1x有相同定義域的是()A.f(x)=lnxB.f(x)=1xC.f(x)=x3D.f(x)=ex答案:∵函數(shù)y=1x,∴x>0,A、∵f(x)=lnx,∴x>0,故A正確;B、∵f(x)=1x,∴x≠0,故B錯(cuò)誤;C、f(x)=x3,其定義域?yàn)镽,故C錯(cuò)誤;D、f(x)=ex,其定義域?yàn)镽,故D錯(cuò)誤;故選A.38.已知a=(1,2),則|a|=______.答案:∵a=(1,2),∴|a|=12+22=5.故為5.39.對(duì)于一組數(shù)據(jù)的兩個(gè)函數(shù)模型,其殘差平方和分別為153.4
和200,若從中選取一個(gè)擬合程度較好的函數(shù)模型,應(yīng)選殘差平方和為______的那個(gè).答案:殘差的平方和是用來描述n個(gè)點(diǎn)與相應(yīng)回歸直線在整體上的接近程度殘差的平方和越小,擬合效果越好,由于153.4<200,故擬合效果較好的是殘差平方和是153.4的那個(gè)模型.故為:153.4.40.已知a為常數(shù),a>0且a≠1,指數(shù)函數(shù)f(x)=ax和對(duì)數(shù)函數(shù)g(x)=logax的圖象分別為C1與C2,點(diǎn)M在曲線C1上,線段OM(O為坐標(biāo)原點(diǎn))與曲線C1的另一個(gè)交點(diǎn)為N,若曲線C2上存在一點(diǎn)P,且點(diǎn)P的橫坐標(biāo)與點(diǎn)M的縱坐標(biāo)相等,點(diǎn)P的縱坐標(biāo)是點(diǎn)N的橫坐標(biāo)2倍,則點(diǎn)P的坐標(biāo)為______.答案:設(shè)點(diǎn)M的坐標(biāo)為(m,am),點(diǎn)N的坐標(biāo)為(n,an)∵點(diǎn)P的橫坐標(biāo)與點(diǎn)M的縱坐標(biāo)相等∴點(diǎn)P的坐標(biāo)為(am,m)∵點(diǎn)P的縱坐標(biāo)是點(diǎn)N的橫坐標(biāo)2倍,∴m=2n而O、M、N三點(diǎn)共線則amm=ann=
am2m2解得:am=4即m=loga4∴點(diǎn)P的坐標(biāo)為(4,loga4)故為:(4,loga4)41.已知|x|<ch,|y|>c>0.求證:|xy|<h.答案:證明:∵|y|>c>0∴0<|1y|<1c∵0<|x|<ch,∴|xy|<ch×1c=h.42.對(duì)于函數(shù)y=f(x),在給定區(qū)間上有兩個(gè)數(shù)x1,x2,且x1<x2,使f(x1)<f(x2)成立,則y=f(x)()A.一定是增函數(shù)B.一定是減函數(shù)C.可能是常數(shù)函數(shù)D.單調(diào)性不能確定答案:解析:由單調(diào)性定義可知,不能用特殊值代替一般值.故選D.43.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i為虛數(shù)單位),求復(fù)數(shù)z2+i的虛部.
(Ⅱ)已知z1=a+2i,z2=3-4i(i為虛數(shù)單位),且z1z2為純虛數(shù),求實(shí)數(shù)a的值.答案:(Ⅰ)設(shè)z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,復(fù)數(shù)z2+i=3+4i2+i=2+i,虛部為1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2為純虛數(shù)則3a-8=0,且4a+6≠0,解得a=8344.定義直線關(guān)于圓的圓心距單位λ為圓心到直線的距離與圓的半徑之比.若圓C滿足:①與x軸相切于點(diǎn)A(3,0);②直線y=x關(guān)于圓C的圓心距單位λ=2,試寫出一個(gè)滿足條件的圓C的方程______.答案:由題意可得圓心的橫坐標(biāo)為3,設(shè)圓心的縱坐標(biāo)為r,則半徑為|r|>0,則圓心的坐標(biāo)為(3,r).設(shè)圓心到直線y=x的距離為d,d=|3-r|2,則由題意可得λ=d|r|=2,求得r=1,或r=-3,故一個(gè)滿足條件的圓C的方程是(x-3)2+(y-1)2=1,故為(x-3)2+(y-1)2=145.“∵四邊形ABCD為矩形,∴四邊形ABCD的對(duì)角線相等”,補(bǔ)充以上推理的大前提為()
A.正方形都是對(duì)角線相等的四邊形
B.矩形都是對(duì)角線相等的四邊形
C.等腰梯形都是對(duì)角線相等的四邊形
D.矩形都是對(duì)邊平行且相等的四邊形答案:B46.現(xiàn)有以下兩項(xiàng)調(diào)查:①某校高二年級(jí)共有15個(gè)班,現(xiàn)從中選擇2個(gè)班,檢查其清潔衛(wèi)生狀況;②某市有大型、中型與小型的商店共1500家,三者數(shù)量之比為1:5:9.為了調(diào)查全市商店每日零售額情況,抽取其中15家進(jìn)行調(diào)查.完成①、②這兩項(xiàng)調(diào)查宜采用的抽樣方法依次是()A.簡單隨機(jī)抽樣法,分層抽樣法B.系統(tǒng)抽樣法,簡單隨機(jī)抽樣法C.分層抽樣法,系統(tǒng)抽樣法D.系統(tǒng)抽樣法,分層抽樣法答案:從15個(gè)班中選擇2個(gè)班,檢查其清潔衛(wèi)生狀況;總體個(gè)數(shù)不多,而且差異不大,故可采用簡單隨機(jī)抽樣的方法,1500家大型、中型與小型的商店的每日零售額存在較大差異,故可采用分層抽樣的方法故完成①、②這兩項(xiàng)調(diào)查宜采用的抽樣方法依次是簡單隨機(jī)抽樣法,分層抽樣法故選A47.下列圖形中不一定是平面圖形的是(
)
A.三角形
B.四邊相等的四邊形
C.梯形
D.平行四邊形答案:B48.已知平面向量=(1,-3),=(4,-2),λ+與垂直,則λ是()
A.1
B.2
C.-2
D.-1答案:D49.已知A(1,0,0)、B(0,1,0)、C(0,0,1)三點(diǎn),n=(1,1,1),則以n為方向向量的直線l與平面ABC的關(guān)系是()A.垂直B.不垂直C.平行D.以上都有可能答案:由題意,AB=(-1,1,0),BC=(0,-1,1)∵n?AB=0,n?BC=0∴以n為方向向量的直線l與平面ABC垂直故選A.50.圓臺(tái)的一個(gè)底面周長是另一個(gè)底面周長的3倍,母線長為3,圓臺(tái)的側(cè)面積為84π,則圓臺(tái)較小底面的半徑為()A.7B.6C.5D.3答案:設(shè)上底面半徑為r,因?yàn)閳A臺(tái)的一個(gè)底面周長是另一個(gè)底面周長的3倍,母線長為3,圓臺(tái)的側(cè)面積為84π,所以S側(cè)面積=π(r+3r)l=84π,r=7故選A第2卷一.綜合題(共50題)1.______稱為向量的長度(或稱為模),記作
______,______稱為零向量,記作
______,______稱為單位向量.答案:向量AB所在線段AB的長度,即向量AB的大小,稱為向量AB的長度(或成為模),記作|AB|;長度為零的向量稱為零向量,記作0;長度等于1個(gè)單位的向量稱為單位向量.故為:向量AB所在線段AB的長度,即向量AB的大小,|AB|;長度為零的向量,0;長度等于1個(gè)單位的向量.2.已知二次函數(shù)f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個(gè)不同的交點(diǎn),若f(c)=0,且0<x<c時(shí),f(x)>0
(1)證明:1a是f(x)的一個(gè)根;(2)試比較1a與c的大?。鸢福鹤C明:(1)∵f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個(gè)不同的交點(diǎn),f(x)=0的兩個(gè)根x1,x2滿足x1x2=ca,又f(c)=0,不妨設(shè)x1=c∴x2=1a,即1a是f(x)=0的一個(gè)根.(2)假設(shè)1a<c,又1a>0由0<x<c時(shí),f(x)>0,得f(1a)>0,與f(1a)=0矛盾∴1a≥c又:f(x)=0的兩個(gè)根不相等∴1a≠c,只有1a>c3.已知α1,α2,…αn∈(0,π),n是大于1的正整數(shù),求證:|sin(α1+α2+…+αn)|<sinα1+sinα2+…+sinαn.答案:證明:下面用數(shù)學(xué)歸納法證明(1)n=2時(shí),|sin(α1+α2)|-|sinα1cosα2+cosα1sinα2|≤sinα1|cosα2|+|cosα1|?|sinα2|<sinα1+sinα2,所以n=2時(shí)成立.(2)假設(shè)n=k(k≥2)時(shí)成立,即|sin(α1+α2+Λ+αk)|<sinα1+sinα2+Λ+sinαk當(dāng)n=k+1時(shí),|sin(α1+α2+Λ+αk+1)|==|sinαk+1cos(α1+Λαk)+cosαk+1sin(α1+Λαk)|≤sinαk+1|cos(α1+Λ+αk)|+|cosαk+1|?|sin(α1+Λαk)|<sinαk+1+|sin(α1+Λαk)|<sinα1+sinα2+Λ+sinαk+1∴n=k+1時(shí)也成立.由(1)(2)得,原式成立.4.由棱長為a的正方體的每個(gè)面向外側(cè)作側(cè)棱為a的正四棱錐,以這些棱錐的頂點(diǎn)為頂點(diǎn)的凸多面體的全面積是______.答案:由棱長為a的正方體的每個(gè)面向外側(cè)作側(cè)棱為a的正四棱錐,共可作6個(gè),得到6個(gè)頂點(diǎn),圍成一個(gè)正八面體.所作的正四棱錐的高為h′=2a2,正八面體相對(duì)的兩頂點(diǎn)的距離應(yīng)為2h′+a=1+2a正八面體的棱長x滿足2x=(1+2)a,x=(1+22)a,每個(gè)側(cè)面的面積為34x2=34×(1+22)2a2=33+268a2,全面積是8×33+268=33+26故為:(33+26)a25.若兩條平行線L1:x-y+1=0,與L2:3x+ay-c=0
(c>0)之間的距離為,則等于()
A.-2
B.-6
C..2
D.0答案:A6.平行線3x-4y-8=0與6x-8y+3=0的距離為______.答案:6x-8y+3=0可化為3x-4y+32=0,故所求距離為|-8-32|32+(-4)2=1910,故為:19107.頻率分布直方圖的重心是()
A.眾數(shù)
B.中位數(shù)
C.標(biāo)準(zhǔn)差
D.平均數(shù)答案:D8.已知雙曲線的a=5,c=7,則該雙曲線的標(biāo)準(zhǔn)方程為()
A.-=1
B.-=1
C.-=1或-=1
D.-=0或-=0答案:C9.在Rt△ABC中,若∠C=90°,AC=b,BC=a,則△ABC外接圓半徑r=a2+b22.運(yùn)用類比方法,若三棱錐的三條側(cè)棱兩兩互相垂直且長度分別為a,b,c,則其外接球的半徑R=______.答案:直角三角形外接圓半徑為斜邊長的一半,由類比推理可知若三棱錐的三條側(cè)棱兩兩互相垂直且長度分別為a,b,c,將三棱錐補(bǔ)成一個(gè)長方體,其外接球的半徑R為長方體對(duì)角線長的一半.故為a2+b2+c22故為:a2+b2+c2210.解不等式logx(2x+1)>logx2.答案:當(dāng)0<x<1,logx(2x+1)>logx2?0<2x+1<20<x<1,解得0<x<12;當(dāng)x>1,logx(2x+1)>logx2?2x+1>2x>1,解得x>1.綜上所述,原不等式的解集為{x|0<x<12或x>1}.11.若直線l的方程為x=2,則該直線的傾斜角是()A.60°B.45°C.90°D.180°答案:∵直線l的方程為x=2∴直線l與x軸垂直∴直線l的傾斜角為90°故選C12.(理)已知函數(shù)f(x)=sinπxx∈[0,1]log2011xx∈(1,+∞)若滿足f(a)=f(b)=f(c),(a、b、c互不相等),則a+b+c的取值范圍是______.答案:作出函數(shù)的圖象如圖,直線y=y0交函數(shù)圖象于如圖,由正弦曲線的對(duì)稱性,可得A(a,y0)與B(b,y0)關(guān)于直線x=12對(duì)稱,因此a+b=1當(dāng)直線線y=y0向上平移時(shí),經(jīng)過點(diǎn)(2011,1)時(shí)圖象兩個(gè)圖象恰有兩個(gè)公共點(diǎn)(A、B重合)所以0<y0<1時(shí),兩個(gè)圖象有三個(gè)公共點(diǎn),此時(shí)滿足f(a)=f(b)=f(c),(a、b、c互不相等),說明1<c<2011,因此可得a+b+c∈(2,2012)故為(2,2012)13.已知2a=3b=6c則有()
A.∈(2,3)
B.∈(3,4)
C.∈(4,5)
D.∈(5,6)答案:C14.若{、、}為空間的一組基底,則下列各項(xiàng)中,能構(gòu)成基底的一組向量是[
]A.,+,﹣
B.,+,﹣
C.,+,﹣
D.+,﹣,+2答案:C15.求證:若圓內(nèi)接五邊形的每個(gè)角都相等,則它為正五邊形.答案:證明:設(shè)圓內(nèi)接五邊形為ABCDE,圓心是O.連接OA,OB,OCOD,OE,可得五個(gè)三角形∵OA=OB=OC=OD=OE=半徑,∴有五個(gè)等腰三角形在△OAB、△OBC、△OCD、△ODE、△OEA中則∠OAB=∠OBA,∠OBC=∠OCB,∠OCD=∠ODC,∠ODE=∠OED,∠OEA=∠OAE因?yàn)樗袃?nèi)角相等,所以∠OAE+∠OAB=∠OBA+∠OBC,所以∠OAE=∠OBC同理證明∠OBA=∠OCD,∠OCB=∠OED,∠ODC=∠OEA,∠OED=∠OAB則△OAB、△OBC、△OCD、△ODE、△OEA中,∠AOB=∠BOC=∠COD=∠DOE=∠EOA∴△OAB≌△OBC≌△OCD≌△ODE≌△OEA
(SAS邊角邊定律)∴AB=BC=CD=DE=EA∴五邊形ABCDE為正五邊形16.若把A、B、C、D、E、F、G七人排成一排,則A、B必須相鄰,且C、D不能相鄰的概率是______(結(jié)果用數(shù)值表示).答案:把AB看成一個(gè)整體,CD不能相鄰,就用插空法,則有A22A44A25種方法把A、B、C、D、E、F、G七人排成一排,隨便排的種數(shù)A77所以概率為A22A44A25A77=421故為:421.17.已知a=log132,b=(13)12,c=(23)12,則a,b,c大小關(guān)系為______.答案:∵a=log132<log131=0,又∵函數(shù)y=x12在(0,+∞)是增函數(shù),∴(23)12>(13)12>0.所以,c>b>a.故為c>b>a.18.與向量a=(12,5)平行的單位向量為()A.(1213,-513)B.(-1213,-513)C.(1213,513)或(-1213,-513)D.(-1213,513)或(1213,-513)答案:設(shè)與向量a=(12,5)平行的單位向量b=(x,y),|a|=13所以a=±13bb=(1213,513),或b=(-1213,-513)故選C.19.下列命題中正確的是()
A.若,則
B.若,則
.若,則
D.若,則答案:C20.如圖,在△ABC中,,,則實(shí)數(shù)λ的值為()
A.
B.
C.
D.
答案:D21.設(shè)a1,a2,…,an為正數(shù),證明a1+a2+…+ann≥n1a1+1a2+…+1an.答案:證明:∵a1,a2,…,an為正數(shù),∴要證明a1+a2+…+ann≥n1a1+1a2+…+1an,只要證明(a1+a2+…+an)(1a1+1a2+…1an)≥n2∵a1+a2+…+an≥nna1a2…an,1a1+1a2+…1an≥nn1a1a2…an∴兩式相乘,可得(a1+a2+…+an)(1a1+1a2+…1an)≥n2∴原不等式成立.22.選修4-2:矩陣與變換
已知矩陣M=0110,N=0-110.在平面直角坐標(biāo)系中,設(shè)直線2x-y+1=0在矩陣MN對(duì)應(yīng)的變換作用下得到曲線F,求曲線F的方程.答案:由題設(shè)得MN=01100-111=100-1.…(3分)設(shè)(x,y)是直線2x-y+1=0上任意一點(diǎn),點(diǎn)(x,y)在矩陣MN對(duì)應(yīng)的變換作用下變?yōu)椋▁′,y′),則有1001xy=x′y′,即x-y=x′y′,所以x=x′y=-y′…(7分)因?yàn)辄c(diǎn)(x,y)在直線2x-y+1=0上,從而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲線F的方程為2x+y+1=0.
…(10分)23.某學(xué)校準(zhǔn)備調(diào)查高三年級(jí)學(xué)生完成課后作業(yè)所需時(shí)間,采取了兩種抽樣調(diào)查的方式:第一種由學(xué)生會(huì)的同學(xué)隨機(jī)對(duì)24名同學(xué)進(jìn)行調(diào)查;第二種由教務(wù)處對(duì)年級(jí)的240名學(xué)生編號(hào),由001到240,請(qǐng)學(xué)號(hào)最后一位為3的同學(xué)參加調(diào)查,則這兩種抽樣方式依次為()A.分層抽樣,簡單隨機(jī)抽樣B.簡單隨機(jī)抽樣,分層抽樣C.分層抽樣,系統(tǒng)抽樣D.簡單隨機(jī)抽樣,系統(tǒng)抽樣答案:學(xué)生會(huì)的同學(xué)隨機(jī)對(duì)24名同學(xué)進(jìn)行調(diào)查,是簡單隨機(jī)抽樣,對(duì)年級(jí)的240名學(xué)生編號(hào),由001到240,請(qǐng)學(xué)號(hào)最后一位為3的同學(xué)參加調(diào)查,是系統(tǒng)抽樣,故選D24.已知△ABC的頂點(diǎn)坐標(biāo)分別為A(2,3),B(-1,0),C(2,0),則△ABC的周長是()
A.2
B.6+
C.3+2
D.6+3答案:D25.如圖所示,圓的內(nèi)接△ABC的∠C的平分線CD延長后交圓于點(diǎn)E,連接BE,已知BD=3,CE=7,BC=5,則線段BE=()
A.
B.
C.
D.4
答案:B26.直線l經(jīng)過點(diǎn)A(2,-1)和點(diǎn)B(-1,5),其斜率為()
A.-2
B.2
C.-3
D.3答案:A27.例3.設(shè)a>0,b>0,解關(guān)于x的不等式:|ax-2|≥bx.答案:原不等式|ax-2|≥bx可化為ax-2≥bx或ax-2≤-bx,(1)對(duì)于不等式ax-2≤-bx,即(a+b)x≤2
因?yàn)閍>0,b>0即:x≤2a+b.(2)對(duì)于不等式ax-2≥bx,即(a-b)x≥2①當(dāng)a>b>0時(shí),由①得x≥2a-b,∴此時(shí),原不等式解為:x≥2a-b或x≤2a+b;當(dāng)a=b>0時(shí),由①得x∈?,∴此時(shí),原不等式解為:x≤2a+b;當(dāng)0<a<b時(shí),由①得x≤2a-b,∴此時(shí),原不等式解為:x≤2a+b.綜上可得,當(dāng)a>b>0時(shí),原不等式解集為(-∞,2a+b]∪[2a-b,+∞),當(dāng)0<a≤b時(shí),原不等式解集為(-∞,2a+b].28.命題“所以奇數(shù)的立方是奇數(shù)”的否定是()
A.所有奇數(shù)的立方不是奇數(shù)
B.不存在一個(gè)奇數(shù),它的立方不是奇數(shù)
C.存在一個(gè)奇數(shù),它的立方不是奇數(shù)
D.不存在一個(gè)奇數(shù),它的立方是奇數(shù)答案:C29.關(guān)于斜二測(cè)畫法畫直觀圖說法不正確的是()
A.在實(shí)物圖中取坐標(biāo)系不同,所得的直觀圖有可能不同
B.平行于坐標(biāo)軸的線段在直觀圖中仍然平行于坐標(biāo)軸
C.平行于坐標(biāo)軸的線段長度在直觀圖中仍然保持不變
D.斜二測(cè)坐標(biāo)系取的角可能是135°答案:C30.設(shè)O是正△ABC的中心,則向量AO,BO.CO是()
A.相等向量
B.模相等的向量
C.共線向量
D.共起點(diǎn)的向量答案:B31.假設(shè)兩圓互相外切,求證:用連心線做直徑的圓,必與前兩圓的外公切線相切.答案:證明:設(shè)⊙O1及⊙O2為互相外切的兩個(gè)圓,其一外公切線為A1A2,切點(diǎn)為A1及A2令點(diǎn)O為連心線O1O2的中點(diǎn),過O作OA⊥A1A2,由直角梯形的中位線性質(zhì)得:OA=12(O1A1+O2A2)=12O1O2,∴以O(shè)1O2為直徑,即以O(shè)為圓心,OA為半徑的圓必與直線A1A2相切,同理可證,此圓必切于⊙O1及⊙O2的另一條外公切線.32.在平面幾何里,我們知道,正三角形的外接圓和內(nèi)切圓的半徑之比是2:1。拓展到空間,研究正四面體(四個(gè)面均為全等的正三角形的四面體)的外接球和內(nèi)切球的半徑關(guān)系,可以得出的正確結(jié)論是:正四面體的外接球和內(nèi)切球的半徑之比是(
)。答案:3:133.某射擊運(yùn)動(dòng)員在四次射擊中分別打出了9,x,10,8環(huán)的成績,已知這組數(shù)據(jù)的平均數(shù)為9,則這組數(shù)據(jù)的方差是______.答案:∵四次射擊中分別打出了10,x,10,8環(huán),這組數(shù)據(jù)的平均數(shù)為9,∴9+x+10+84,∴x=9,∴這組數(shù)據(jù)的方差是14(00+1+1)=12,故為:1234.如圖,CD是⊙O的直徑,AE切⊙O于點(diǎn)B,連接DB,若∠D=20°,則∠DBE的大小為()
A.20°
B.40°
C.60°
D.70°答案:D35.已知函數(shù)f(x)=x+3x+1(x≠-1).設(shè)數(shù)列{an}滿足a1=1,an+1=f(an),數(shù)列{bn}滿足bn=|an-3|,Sn=b1+b2+…+bn(n∈N*).
(Ⅰ)用數(shù)學(xué)歸納法證明bn≤(3-1)n2n-1;
(Ⅱ)證明Sn<233.答案:證明:(Ⅰ)當(dāng)x≥0時(shí),f(x)=1+2x+1≥1.因?yàn)閍1=1,所以an≥1(n∈N*).下面用數(shù)學(xué)歸納法證明不等式bn≤(3-1)n2n-1.(1)當(dāng)n=1時(shí),b1=3-1,不等式成立,(2)假設(shè)當(dāng)n=k時(shí),不等式成立,即bk≤(3-1)k2k-1.那么bk+1=|ak+1-3|=(3-1)|ak-3|1+ak3-12bk≤(3-1)k+12k.所以,當(dāng)n=k+1時(shí),不等式也成立.根據(jù)(1)和(2),可知不等式對(duì)任意n∈N*都成立.(Ⅱ)由(Ⅰ)知,bn≤(3-1)n2n-1.所以Sn=b1+b2+…+bn≤(3-1)+(3-1)22+…+(3-1)n2n-1=(3-1)?1-(3-12)n1-3-12<(3-1)?11-3-12=233.故對(duì)任意n∈N*,Sn<233.36.“a>1”是“1a<1”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:由1a<1得:當(dāng)a>0時(shí),有1<a,即a>1;當(dāng)a<0時(shí),不等式恒成立.所以1a<1?a>1或a<0從而a>1是1a<1的充分不必要條件.故應(yīng)選:A37.參數(shù)方程(0<θ<2π)表示()
A.雙曲線的一支,這支過點(diǎn)(1,)
B.拋物線的一部分,這部分過(1,)
C.雙曲線的一支,這支過點(diǎn)(-1,)
D.拋物線的一部分,這部分過(-1,)答案:B38.設(shè)集合A={l,2},B={2,4),則A∪B=()A.{1}B.{4}C.{l,4}D.{1,2,4}答案:∵集合A={1,2},集合B={2,4},∴集合A∪B={1,2,4}.故選D.39.雙曲線x2-4y2=4的兩個(gè)焦點(diǎn)F1、F2,P是雙曲線上的一點(diǎn),滿足·=0,則△F1PF2的面積為()
A.1
B.
C.2
D.答案:A40.設(shè)a=log132,b=log1213,c=(12)0.3,則()A.a(chǎn)<b<cB.a(chǎn)<c<bC.b<c<aD.b<a<c答案:解;∵a=log132<log131=0,b=log1213>log1212=1,c=(12)0.3∈(0,1)∴b>c>a.故選B.41.已知A、B、M三點(diǎn)不共線,對(duì)于平面ABM外的任意一點(diǎn)O,確定在下列條件下,點(diǎn)P是否與A、B、M一定共面,答案:解:為共面向量,∴P與A、B、M共面,,根據(jù)空間向量共面的推論,P位于平面ABM內(nèi)的充要條件是,∴P與A、B、M不共面.42.(幾何證明選講選做題)如圖,△ABC的外角平分線AD交外接圓于D,BD=4,則CD=______.答案:∵A、B、C、D共圓,∴∠DAE=∠BCD.又∵CD=CD,∴∠DAC=∠DBC.而∠DAE=∠DAC,∴∠DBC=∠DCB.∴CD=BD=4.故為4.43.若長方體的三個(gè)面的對(duì)角線長分別是a,b,c,則長方體體對(duì)角線長為()A.a(chǎn)2+b2+c2B.12a2+b2+c2C.22a2+b2+c2D.32a2+b2+c2答案:解析:設(shè)同一頂點(diǎn)的三條棱分別為x,y,z,則x2+y2=a2,y2+z2=b2,x2+z2=c2得x2+y2+z2=12(a2+b2+c2),則對(duì)角線長為12(a2+b2+c2)=22a2+b2+c2.故選C.44.下列命題中,錯(cuò)誤的是()
A.平行于同一條直線的兩個(gè)平面平行
B.平行于同一個(gè)平面的兩個(gè)平面平行
C.一個(gè)平面與兩個(gè)平行平面相交,交線平行
D.一條直線與兩個(gè)平行平面中的一個(gè)相交,則必與另一個(gè)相交答案:A45.
已知拋物線y2=2px(p>0)的焦點(diǎn)為F,過F的直線交y軸正半軸于點(diǎn)P,交拋物線于A,B兩點(diǎn),其中點(diǎn)A在第一象限,若,,,則μ的取值范圍是()
A.[1,]
B.[,2]
C.[2,3]
D.[3,4]答案:B46.下列四個(gè)散點(diǎn)圖中,使用線性回歸模型擬合效果最好的是()
A.
B.
C.
D.
答案:D47.已知F1(-8,3),F(xiàn)2(2,3),動(dòng)點(diǎn)P滿足PF1-PF2=10,則點(diǎn)P的軌跡是______.答案:由于兩點(diǎn)間的距離|F1F2|=10,所以滿足條件|PF1|-|PF2|=10的點(diǎn)P的軌跡應(yīng)是一條射線.故為一條射線.48.若向量a,b的夾角為120°,且|a|=1,|b|=2,c=a+b,則有()A.c⊥aB.c⊥bC.c‖bD.c‖a答案:由題意知ac=a
(a+b)=a2+
a
b=1+1×2cos120°=0,所以a⊥c.故選A.49.為了了解學(xué)校學(xué)生的身體發(fā)育情況,抽查了該校100名高中男生的體重情況,根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖如圖所示,根據(jù)此圖,估計(jì)該校2000名高中男生中體重大于70.5公斤的人數(shù)為()
A.300B.350C.420D.450答案:∵由圖得,∴70.5公斤以上的人數(shù)的頻率為:(0.04+0.035+0.016)×2=0.181,∴70.5公斤以上的人數(shù)為2000×0.181=362,故選B50.某地區(qū)居民生活用電分為高峰和低谷兩個(gè)時(shí)間段進(jìn)行分時(shí)計(jì)價(jià).該地區(qū)的電網(wǎng)銷售電價(jià)表如圖:高峰時(shí)間段用電價(jià)格表低谷時(shí)間段用電價(jià)格表高峰月用電量
(單位:千瓦時(shí))高峰電價(jià)(單位:元/千瓦時(shí))低谷月用電量
(單位:千瓦時(shí))低谷電價(jià)(單位:
元/千瓦時(shí))50及以下的部分0.56850及以下的部分0.288超過50至200的部分0.598超過50至200的部分0.318超過200的部分0.668超過200的部分0.388若某家庭5月份的高峰時(shí)間段用電量為200千瓦時(shí),低谷時(shí)間段用電量為100千瓦時(shí),則按這種計(jì)費(fèi)方式該家庭本月應(yīng)付的電費(fèi)為______元(用數(shù)字作答)答案:高峰時(shí)間段用電的電費(fèi)為50×0.568+150×0.598=28.4+89.7=118.1(元),低谷時(shí)間段用電的電費(fèi)為50×0.288+50×0.318=14.4+15.9=30.3(元),本月的總電費(fèi)為118.1+30.3=148.4(元),故為:148.4.第3卷一.綜合題(共50題)1.若一元二次方程x2+(a-1)x+1-a2=0有兩個(gè)正實(shí)數(shù)根,則a的取值范圍是(
)
A.(-1,1)
B.(-∞,)∪[1,+∞)
C.(-1,]
D.[,1)答案:C2.把一顆骰子擲兩次,觀察出現(xiàn)的點(diǎn)數(shù),并記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b,則點(diǎn)(a,b)在直線x+y=5左下方的概率為()A.16B.56C.112D.1112答案:由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的事件數(shù)是6×6=36種結(jié)果,滿足條件的事件是點(diǎn)(a,b)在直線x+y=5左下方即a+b<5,可以列舉出所有滿足的情況(1,1)(1,2)(1,3),(2,1),(2,2)(3,1)共有6種結(jié)果,∴點(diǎn)在直線的下方的概率是636=16故選A.3.執(zhí)行程序框圖,如果輸入的n是5,則輸出的p是()
A.1
B.2
C.3
D.5
答案:D4.已知正方形ABCD的邊長為a,則|AC+AD|等于______.答案:∵正方形ABCD的邊長為a,∴AC=2a,AC與AD的夾角為45°|AC+AD|2=|AC
|2+2AC?AD+|AD|2=2a2+2×2a×a×22+a2=5a2∴|AC+AD|=5a故為:5a5.如圖所示的幾何體ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA⊥AB,M是EC的中點(diǎn),
(Ⅰ)求證:DM⊥EB;
(Ⅱ)設(shè)二面角M-BD-A的平面角為β,求cosβ.答案:分別以直線AE,AB,AD為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,設(shè)CB=a,則A(0,0,0),E(2a,0,0),B(0,2a,0),C(0,2a,a),D(0,0,2a)所以M(a,a,a2).(Ⅰ):DM=(a,a,-3a2)
,EB=(-2a,2a,0)DM?EB=a?(-2a)+a?2a+0=0.∴DM⊥EB,即DM⊥EB.(Ⅱ)設(shè)平面MBD的法向量為n=(x,y,z),DB=(0,2a,-2a),由n⊥DB,n⊥DM,得n?DB=2ay-2az=0n?DM=ax+ay-3a2z=0?y=zx+y-3z2=0取z=2得平面MBD的一非零法向量為n=(1,2,2),又平面BDA的一個(gè)法向量n1=(1,0,0).∴cos<n,n1>
=1+0+012+22+22?12+02+
02=13,即cosβ=136.已知空間四邊形ABCD的對(duì)角線為AC、BD,設(shè)G是CD的中點(diǎn),則+(+)等于()
A.
B.
C.
D.
答案:C7.表示隨機(jī)事件發(fā)生的可能性大小的數(shù)叫做該事件的______.答案:根據(jù)概率的定義:表示隨機(jī)事件發(fā)生的可能性大小的數(shù)叫做該事件的概率;一個(gè)隨機(jī)事件發(fā)生的可能性很大,那么P的值接近1又不等于1,故為:概率.8.若直線l經(jīng)過點(diǎn)M(1,5),且傾斜角為2π3,則直線l的參數(shù)方程為______.答案:由于過點(diǎn)(a,b)傾斜角為α的直線的參數(shù)方程為x=a+t?cosαy=b+t?sinα(t是參數(shù)),∵直線l經(jīng)過點(diǎn)M(1,5),且傾斜角為2π3,故直線的參數(shù)方程是x=1+t?cos2π3y=5+t?sin2π3即x=1-12ty=5+32t(t為參數(shù)).故為:x=1-12ty=5+32t(t為參數(shù)).9.設(shè)P1(4,-3),P2(-2,6),且P在P1P2的延長線上,使||=2||,則點(diǎn)P的坐標(biāo)
()
A.(-8,15)
B.(0,3)
C.(-,)
D.(1,)答案:A10.某市某年一個(gè)月中30天對(duì)空氣質(zhì)量指數(shù)的監(jiān)測(cè)數(shù)據(jù)如下:
61
76
70
56
81
91
55
91
75
81
88
67
101
103
57
91
77
86
81
83
82
82
64
79
86
85
75
71
49
45
(Ⅰ)完成下面的頻率分布表;
(Ⅱ)完成下面的頻率分布直方圖,并寫出頻率分布直方圖中a的值;
(Ⅲ)在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機(jī)選取兩天,求這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)的概率.
分組頻數(shù)頻率[41,51)2230[51,61)3330[61,71)4430[71,81)6630[81,91)[91,101)[101,111)2230答案:(Ⅰ)如下圖所示.
…(4分)(Ⅱ)如下圖所示.…(6分)由己知,空氣質(zhì)量指數(shù)在區(qū)間[71,81)的頻率為630,所以a=0.02.…(8分)分組頻數(shù)頻率………[81,91)101030[91,101)3330………(Ⅲ)設(shè)A表示事件“在本月空氣質(zhì)量指數(shù)大于等于91的這些天中隨機(jī)選取兩天,這兩天中至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)”,由己知,質(zhì)量指數(shù)在區(qū)間[91,101)內(nèi)的有3天,記這三天分別為a,b,c,質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)的有2天,記這兩天分別為d,e,則選取的所有可能結(jié)果為:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件數(shù)為10.…(10分)事件“至少有一天空氣質(zhì)量指數(shù)在區(qū)間[101,111)內(nèi)”的可能結(jié)果為:(a,d),(a,e),(b,d),(b,e),(c,d),(c,e),(d,e).基本事件數(shù)為7,…(12分)所以P(A)=710.…(13分)11.若復(fù)數(shù)z=a+bi(a、b∈R)是虛數(shù),則a、b應(yīng)滿足的條件是()A.a(chǎn)=0,b≠0B.a(chǎn)≠0,b≠0C.a(chǎn)≠0,b∈RD.b≠0,a∈R答案:∵復(fù)數(shù)z=a+bi(a、b∈R)是虛數(shù),∴根據(jù)虛數(shù)的定義得b≠0,a∈R,故選D.12.已知函數(shù)f(x)=(12)x,a,b∈R*,A=f(a+b2),B=f(ab),C=f(2aba+b),則A、B、C的大小關(guān)系為______.答案:∵a+b2≥ab,2aba+b=21a+1b≤221ab=ab,∴a+b2≥ab≥2aba+b>0又
f(x)=(12)x在R上是減函數(shù),∴f(a+b2)≤f(ab)
≤f(2aba+b)即A≤B≤C故為:A≤B≤C.13.已知圓C的圓心為(1,1),半徑為1.直線l的參數(shù)方程為x=2+tcosθy=2+tsinθ(t為參數(shù)),且θ∈[0,π3],點(diǎn)P的直角坐標(biāo)為(2,2),直線l與圓C交于A,B兩點(diǎn),求|PA|?|PB||PA|+|PB|的最小值.答案:圓C的普通方程是(x-1)2+(y-1)2=1,將直線l的參數(shù)方程代入并化簡得t2+2(sinθ+cosθ)t+1=0,由直線參數(shù)方程的幾何意義得|PA|+|PB|=2|sinθ+cosθ|,|PA|?|PB|=1所以|PA|?|PB||PA|+|PB|=122|sin(θ+π4)|,θ∈[0,π3],當(dāng)θ=π4時(shí),|PA|?|PB||PA|+|PB|取得最小值122×1=24,所以|PA|?|PB||PA|+|PB|的最小值是24.14.已知直線l的參數(shù)方程為x=-4+4ty=-1-2t(t為參數(shù)),圓C的極坐標(biāo)方程為ρ=22cos(θ+π4),則圓心C到直線l的距離是______.答案:直線l的普通方程為x+2y+6=0,圓C的直角坐標(biāo)方程為x2+y2-2x+2y=0.所以圓心C(1,-1)到直線l的距離d=|1-2+6|5=5.故為5.15.如圖,AB是⊙O的直徑,P是AB延長線上的一點(diǎn).過P作⊙O的切線,切點(diǎn)為C,PC=23,若∠CAP=30°,則⊙O的直徑AB=______.答案:連接BC,設(shè)圓的直徑是x則三角形ABC是一個(gè)含有30°角的三角形,∴BC=12AB,三角形BPC是一個(gè)等腰三角形,BC=BP=12AB,∵PC是圓的切線,PA是圓的割線,∴PC2=PB?PC=12x?32x=34x2,∵PC=23,∴x=4,故為:416.擬定從甲地到乙地通話m分鐘的電話費(fèi)由f(m)=1.06(0.50×[m]+1)給出,其中m>0,[m]是大于或等于m的最小整數(shù)(例如[3]=3,[3.7]=4,[3.1]=4),則從甲地到乙地通話時(shí)間為5.5分鐘的話費(fèi)為()A.3.71B.3.97C.4.24D.4.77C答案:由[m]是大于或等于m的最小整數(shù)可得[5.5]=6.所以f(5.5)=1.06×(0.50×[5.5]+1)=1.06×4=4.24.故選:C.17.若將推理“四邊形的內(nèi)角和為360°,所以平行四邊形的內(nèi)角和為360°”改為三段論的形式,則它的小前提是______.答案:將推理“四邊形的內(nèi)角和為360°,所以平行四邊形的內(nèi)角和為360°”改為三段論的形式,因?yàn)樗倪呅蔚膬?nèi)角和為360°,平行四邊形是四邊形,所以平行四邊形的內(nèi)角和為360°大前提:四邊形的內(nèi)角和為360°;小前提:平行四邊形是四邊形;結(jié)論:平行四邊形的內(nèi)角和為360°.故為:平行四邊形是四邊形.18.已知一個(gè)球與一個(gè)正三棱柱的三個(gè)側(cè)面和兩個(gè)底面相切,若這個(gè)球的體積是32π3,則這個(gè)三棱柱的體積是______.答案:由43πR3=32π3,得R=2.∴正三棱柱的高h(yuǎn)=4.設(shè)其底面邊長為a,則13?32a=2.∴a=43.∴V=34(43)2?4=483.故為:48319.當(dāng)圓x=4cosθy=4sinθ上一點(diǎn)P的旋轉(zhuǎn)角為θ=23π時(shí),點(diǎn)P的坐標(biāo)為______.答案:根據(jù)圓的參數(shù)方程的意義,當(dāng)圓x=4cosθy=4sinθ上一點(diǎn)P的旋轉(zhuǎn)角為θ=23π時(shí),點(diǎn)P的坐標(biāo)為(4cos2π3,4sin2π3),即(-2,23).故為:(-2,23).20.某品牌平板電腦的采購商指導(dǎo)價(jià)為每臺(tái)2000元,若一次采購數(shù)量達(dá)到一定量,還可享受折扣.如圖為某位采購商根據(jù)折扣情況設(shè)計(jì)的算法程序框圖,若一次采購85臺(tái)該平板電腦,則S=______元.答案:分析程序中各變量、各語句,其作用是:表示一次采購共需花費(fèi)的金額,再根據(jù)流程圖所示的順序,可知:該程序的作用是計(jì)算分段函數(shù)S=200×0.8?x,x>100200×0.9?x,50<x≤100200?x,0<x≤50的值,∵x=85,∴S=200×0.9×85=15300(元),故為:15300.21.已知拋物線y=14x2,則過其焦點(diǎn)垂直于其對(duì)稱軸的直線方程為______.答案:拋物線y=14x2的標(biāo)準(zhǔn)方程為x2=4y的焦點(diǎn)F(0,1),對(duì)稱軸為y軸所以拋物線y=14x2,則過其焦點(diǎn)垂直于其對(duì)稱軸的直線方程為y=1故為y=1.22.已知△ABC,D為AB邊上一點(diǎn),若AD=2DB,CD=13CA+λCB,則λ=
.答案:∵AD=2DB,CD=13CA+λCB,CD=CA+AD=CA+23AB=CA+23(
CB-CA)=13CA+23CB,∴λ=23,故為:23.23.由棱長為a的正方體的每個(gè)面向外側(cè)作側(cè)棱為a的正四棱錐,以這些棱錐的頂點(diǎn)為頂點(diǎn)的凸多面體的全面積是______.答案:由棱長為a的正方體的每個(gè)面向外側(cè)作側(cè)棱為a的正四棱錐,共可作6個(gè),得到6個(gè)頂點(diǎn),圍成一個(gè)正八面體.所作的正四棱錐的高為h′=2a2,正八面體相對(duì)的兩頂點(diǎn)的距離應(yīng)為2h′+a=1+2a正八面體的棱長x滿足2x=(1+2)a,x=(1+22)a,每個(gè)側(cè)面的面積為34x2=34×(1+22)2a2=33+268a2,全面積是8×33+268=33+26故為:(33+26)a224.1
甲、乙、丙三臺(tái)機(jī)床各自獨(dú)立地加工同一種零件,已知甲機(jī)床加工的零件是一等品而乙機(jī)床加工的零件不是一等品的概率為,乙機(jī)床加工的零件是一等品而丙機(jī)床加工的零件不是一等品的概率為,甲、丙兩臺(tái)機(jī)床加工的零件都是一等品的概率為
(1)分別求甲、乙、丙三臺(tái)機(jī)床各自加工零件是一等品的概率;
(2)從甲、乙、丙加工的零件中各取一個(gè)檢驗(yàn),求至少有一個(gè)一等品的概率.答案:見解析解析:解:(1)設(shè)A、B、C分別為甲、乙、丙三臺(tái)機(jī)床各自加工的零件是一等品的事件①②③25.如圖,海中有一小島,周圍3.8海里內(nèi)有暗礁.一軍艦從A地出發(fā)由西向東航行,望見小島B在北偏東75°,航行8海里到達(dá)C處,望見小島B在北偏東60°.若此艦不改變艦行的方向繼續(xù)前進(jìn),問此艦有沒有觸礁的危險(xiǎn)?答案:在△ABC中,∵∠BAC=15°,∠ACB=150°,AC=8,可得:∠ABC=15°.∴BC=8,過B作AC的垂線垂足為D,在△BCD中,可得BD=BC?sin30°=4.∵4>3.8,∴沒有危險(xiǎn).26.證明:等腰三角形底邊上任意一點(diǎn)到兩腰的距離之和等于一腰上的高.答案:證明見解析:建立如圖所示的直角坐標(biāo)系.設(shè),,其中,.則直線的方程為,直線的方程為.設(shè)底邊上任意一點(diǎn)為,則到的距離;到的距離;到的距離.因?yàn)?,所以,結(jié)論成立.27.極坐標(biāo)系中,若A(3,π3),B(-3,π6),則s△AOB=______(其中O是極點(diǎn)).答案:∵極坐標(biāo)系中,A(3,π3),B(-3,π6),3cosπ3=32,3sinπ3=332;-3cosπ6=-332,-3sinπ6=-32.∴在平面直角坐標(biāo)系中,A(32,332),B(-332,-32),∴OA=(32,332),OB=(-332,-32),∴|OA|
=
3,|OB|=3,∴cos<OA,OB>=-934-93494+274=-32,∴sin<OA,OB>=1-34=12,∴S△AOB=12×3×3×12=94.故為:94.28.編號(hào)為A、B、C、D、E的五個(gè)小球放在如圖所示的五個(gè)盒子中,要求每個(gè)盒子只能放一個(gè)小球,且A不能放1,2號(hào),B必需放在與A相鄰的盒子中,則不同的放法有()種.A.42B.36C.30D.28答案:根據(jù)題意,A不能放1,2號(hào),則A可以放在3、4、5號(hào)盒子,分2種情況討論:①當(dāng)A在4、5號(hào)盒子時(shí),B有1種放法,剩下3個(gè)有A33=6種不同放法,此時(shí),共有2×1×6=12種情況;②當(dāng)A在3號(hào)盒子時(shí),B有3種放法,剩下3個(gè)有A33=6種不同放法,此時(shí),共有1×3×6=18種情況;由加法原理,計(jì)算可得共有12+18=30種不同情況;故選C.29.已知方程x2-6x+a=0的兩個(gè)不等實(shí)根均大于2,則實(shí)數(shù)a的取值范圍為()
A.[4,9)
B.(4,9]
C.(4,9)
D.(8,9)答案:D30.經(jīng)過點(diǎn)P(4,-2)的拋物線的標(biāo)準(zhǔn)方程為()
A.y2=-8x
B.x2=-8y
C.y2=x或x2=-8y
D.y2=x或y2=8x答案:C31.曲線x=sinθy=sin2θ(θ為參數(shù))與直線y=a有兩個(gè)公共點(diǎn),則實(shí)數(shù)a的取值范圍是______.答案:曲線
x=sinθy=sin2θ
(θ為參數(shù)),為拋物線段y=x2(-1≤x≤1),借助圖形直觀易得0<a≤1.32.已知點(diǎn)A分BC所成的比為-13,則點(diǎn)B分AC所成的比為______.答案:由已知得B是AC的內(nèi)分點(diǎn),且2|AB|=|BC|,故B分AC
的比為ABBC=|AB||BC|=12,故為12.33.甲、乙兩人參加一次考試,已知在備選的10道試題中,甲能答對(duì)其中6題,乙能答對(duì)其中8題.若規(guī)定每次考試分別都從這10題中隨機(jī)抽出3題進(jìn)行測(cè)試,至少答對(duì)2題算合格.
(1)分別求甲、乙兩人考試合格的概率;
(2)求甲、乙兩人至少有一人合格的概率.答案:(1)(2)解析:(1)設(shè)甲、乙考試合格分別為事件A、B,甲考試合格的概率為P(A)=,乙考試合格的概率為P(B)=.(2)A與B相互獨(dú)立,且P(A)=,P(B)=,則甲、乙兩人至少有一人合格的概率為P(AB++A)=×+×+×=.34.方程組的解集是(
)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 房產(chǎn)項(xiàng)目轉(zhuǎn)讓我合同樣本
- 店面轉(zhuǎn)讓合同示范
- 面對(duì)挫折課程設(shè)計(jì)
- 2024購房合同協(xié)議書樣式參考
- 戶外廣告牌安裝合同范文
- 托幼機(jī)構(gòu)衛(wèi)生評(píng)價(jià)報(bào)告
- 二婚自愿離婚協(xié)議書樣本
- 工程機(jī)械轉(zhuǎn)租合同
- 2024年版知識(shí)產(chǎn)權(quán)合作協(xié)議書范本
- 弱電系統(tǒng)工程合同格式
- 【物料】活動(dòng)物料手冊(cè)共80頁課件
- 園林制圖課件透視
- 第五章電能計(jì)量裝置的接線檢查第二節(jié)電量的抄讀及退補(bǔ)電量的計(jì)算
- 漢語拼音發(fā)音口型及配圖[新版]
- 注塑IPQC培訓(xùn)教材
- 現(xiàn)場(chǎng)技術(shù)服務(wù)確認(rèn)單
- 惡性心律失常及常見心律失常識(shí)別與急診處理
- 滬教版七年級(jí)上冊(cè)數(shù)學(xué)復(fù)習(xí)知識(shí)點(diǎn)考點(diǎn)總結(jié)歸納提綱
- 砂石項(xiàng)目盈利能力分析報(bào)告(范文)
- 第13課 規(guī)劃每一天
- 2022年醫(yī)院文書檔案保管期限
評(píng)論
0/150
提交評(píng)論