版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年漳州理工職業(yè)學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.對變量x、y有觀測數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點圖1;對變量u,v有觀測數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點圖2.由這兩個散點圖可以判斷()
A.變量x與y正相關,u與v正相關
B.變量x與y正相關,u與v負相關
C.變量x與y負相關,u與v正相關
D.變量x與y負相關,u與v負相關答案:C2.將n2個正整數(shù)1,2,3,…,n2填入n×n方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形就叫做n階幻方.記f(n)為n階幻方對角線的和,如右表就是一個3階幻方,可知f(3)=15,則f(4)=()
816357492A.32B.33C.34D.35答案:由等差數(shù)列得前n項和公式可得,所有數(shù)之和S=1+2+3+…+42=16?(1+16)2=136,所以,f(4)=1364=34,故選C.3.已知點A分BC所成的比為-13,則點B分AC所成的比為______.答案:由已知得B是AC的內分點,且2|AB|=|BC|,故B分AC
的比為ABBC=|AB||BC|=12,故為12.4.甲、乙、丙、丁四名射擊選手在選撥賽中所得的平均環(huán)數(shù),其方差S2如下表所示,則選送參加決賽的最佳人選是()
甲
乙
丙
丁
8
9
9
8
S2
5.7
6.2
5.7
6.4
A.甲
B.乙
C.丙
D.丁答案:C5.一個算法的流程圖如圖所示,則輸出S的值為
.答案:根據(jù)程序框圖,題意為求:s=1+2+3+4+5+6+7+8+9,計算得:s=45,故為:45.6.以數(shù)集A={a,b,c,d}中的四個元素為邊長的四邊形只能是()A.平行四邊形B.矩形C.菱形D.梯形答案:∵數(shù)集A={a,b,c,d}中的四個元素互不相同,∴以數(shù)集A={a,b,c,d}中的四個元素為邊長的四邊形,四條邊不相等∴四邊形只可能是梯形故選D.7.已知向量p=a|a|+2b|b|,其中a、b均為非零向量,則|p|的取值范圍是
______.答案:∵|a|a||=1,|2b|b||=2
∴p2=|p|2=1+4+4a|a|?b|b|?cos<a|a|,2b|b|>=5+4?cos<a|a|,2b|b|>∈[1,9],開方可得
|p|的取值范圍[1,3],故為[1,3].8.三個數(shù)a=60.5,b=0.56,c=log0.56的大小順序為______.(按大到小順序)答案:∵a=60.5>60=1,0<b=0.56<0.50=1,c=log0.56<log0.51=0.∴a>b>c.故為a>b>c.9.(1)把參數(shù)方程(t為參數(shù))x=secty=2tgt化為直角坐標方程;
(2)當0≤t<π2及π≤t<3π2時,各得到曲線的哪一部分?答案:(1)利用公式sec2t=1+tg2t,得x2=1+y24.∴曲線的直角坐標普通方程為x2-y24=1.(2)當0≤t≤π2時,x≥1,y≥0,得到的是曲線在第一象限的部分(包括(1,0)點);當0≤t≤3π2時,x≤-1,y≥0,得到的是曲線在第二象限的部分,(包括(-1,0)點).10.已知隨機變量X的分布列為:P(X=k)=,k=1,2,…,則P(2<X≤4)等于()
A.
B.
C.
D.答案:A11.已知命題p、q,若命題“p∨q”與命題“¬p”都是真命題,則()A.命題q一定是真命題B.命題q不一定是真命題C.命題p不一定是假命題D.命題p與命題q的真值相等答案:∵命題“¬p”與命題“p∨q”都是真命題,∴命題p為假命題,q為真命題.故選A.12.給出20個數(shù):87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88它們的和是()A.1789B.1799C.1879D.1899答案:由題意知本題是一個求和問題,87+91+94+88+93+91+89+87+92+86+90+92+88+90+91+86+89+92+95+88=1799,故選B.13.口袋中裝有三個編號分別為1,2,3的小球,現(xiàn)從袋中隨機取球,每次取一個球,確定編號后放回,連續(xù)取球兩次.則“兩次取球中有3號球”的概率為()A.59B.49C.25D.12答案:每次取球時,出現(xiàn)3號球的概率為13,則兩次取得球都是3號求得概率為C22?(13)2=19,兩次取得球只有一次取得3號求得概率為C12?13?23=49,故“兩次取球中有3號球”的概率為19+49=59,故選A.14.某商人將彩電先按原價提高40%,然后“八折優(yōu)惠”,結果是每臺彩電比原價多賺144元,那么每臺彩電原價是______元.答案:設每臺彩電原價是x元,由題意可得(1+40%)x?0.8-x=144,解得x=1200,故為1200.15.(《幾何證明選講》選做題)如圖,在Rt△ABC中,∠C=90°,⊙O分別切AC、BC于M、N,圓心O在AB上,⊙O的半徑為4,OA=5,則OB的長為______.答案:連接OM,ON,則∵⊙O分別切AC、BC于M、N∴OM⊥AC,ON⊥BC∵∠C=90°,∴OMCN為正方形∵⊙O的半徑為4,OA=5∴AM=3∴CA=7∵ON∥AC∴ONAC=OBBA∴47=OBOB+5∴OB=203故為:20316.已知:關于x的方程2x2+kx-1=0
(1)求證:方程有兩個不相等的實數(shù)根;
(2)若方程的一個根是-1,求另一個根及k值.答案:(1)證明:2x2+kx-1=0,△=k2-4×2×(-1)=k2+8,無論k取何值,k2≥0,所以k2+8>0,即△>0,∴方程2x2+kx-1=0有兩個不相等的實數(shù)根.(2)設2x2+kx-1=0的另一個根為x,則x-1=-k2,(-1)?x=-12,解得:x=12,k=1,∴2x2+kx-1=0的另一個根為12,k的值為1.17.某房間有四個門,甲要各進、出這個房間一次,不同的走法有多少種?()
A.12
B.7
C.16
D.64答案:C18.已知圓M的方程為:(x+3)2+y2=100及定點N(3,0),動點P在圓M上運動,線段PN的垂直平分線交圓M的半徑MP于Q點,設點Q的軌跡為曲線C,則曲線C的方程是______.答案:連接QN,如圖由已知,得|QN|=|QP|,所以|QM|+|QN|=|QM|+|QN|=|MP|=10又|MN|=6,10>6,根據(jù)橢圓的定義,點Q的軌跡是M,N為焦點,以10為長軸長的橢圓,所以2a=10,2c=6,所以b=4,所以,點Q的軌跡方程為:x225+y216=1故為:x225+y216=119.某細胞在培養(yǎng)過程中,每15分鐘分裂一次(由1個細胞分裂成2個),則經(jīng)過兩個小時后,1個這樣的細胞可以分裂成______個.答案:由于每15分鐘分裂一次,則兩個小時共分裂8次.一個這樣的細胞經(jīng)過一次分裂后,由1個分裂成2個;經(jīng)過2次分裂后,由1個分裂成22個;…經(jīng)過8次分裂后,由1個分裂成28個.∴1個這樣的細胞經(jīng)過兩個小時后,共分裂成28個,即256個.故為:25620.已知向量=(x,1),=(3,6),且⊥,則實數(shù)x的值為()
A.
B.-2
C.2
D.-答案:B21.已知曲線C的參數(shù)方程是(θ為參數(shù)),曲線C不經(jīng)過第二象限,則實數(shù)a的取值范圍是()
A.a(chǎn)≥2
B.a(chǎn)>3
C.a(chǎn)≥1
D.a(chǎn)<0答案:A22.已知點A(-3,0),B(3,0),動點C到A、B兩點的距離之差的絕對值為2,點C的軌跡與直線
y=x-2交于D、E兩點,求線段DE的中點坐標及其弦長DE.答案:∵|CB|-|CA|=2<23=|AB|,∴點C的軌跡是以A、B為焦點的雙曲線,2a=2,2c=23,∴a=1,c=3,∴b=2,∴點C的軌跡方程為x2-y22=1.把直線
y=x-2代入x2-y22=1化簡可得x2+4x-6=0,△=16-4(-6)=40>0,設D、E兩點的坐標分別為(x1,y1
)、(x2,y2),∴x1+x2=-4,x1?x2=-6.∴線段DE的中點坐標為M(-2,4),DE=1+1?|x1-x2|=2?(x1
+x2)2-4x1
?x2
=216-4(-6)=45.23.已知正方形ABCD的邊長為a,則|AC+AD|等于______.答案:∵正方形ABCD的邊長為a,∴AC=2a,AC與AD的夾角為45°|AC+AD|2=|AC
|2+2AC?AD+|AD|2=2a2+2×2a×a×22+a2=5a2∴|AC+AD|=5a故為:5a24.向量a、b滿足|a|=1,|b|=2,且a與b的夾角為π3,則|a+2b|=______.答案:∵|a|=1,|b|=2,且a與b的夾角為π3,∴a?b=|a|?|b|?cosπ3=1因此,(a+2b)2=|a|2+4a?b+4|b|2=12+4×1+4|b|2=21∴|a+2b|=21故為:2125.下列圖象中不能作為函數(shù)圖象的是()A.
B.
C.
D.
答案:根據(jù)函數(shù)的概念:如果在一個變化過程中,有兩個變量x、y,對于x的每一個值,y都有唯一確定的值與之對應,這時稱y是x的函數(shù).結合選項可知,只有選項B中是一個x對應1或2個y故選B.26.若|x-4|+|x+5|>a對于x∈R均成立,則a的取值范圍為______.答案:∵|x-4|+|x+5|=|4-x|+|x+5|≥|4-x+x+5|=9,故|x-4|+|x+5|的最小值為9.再由題意可得,當a<9時,不等式對x∈R均成立.故為(-∞,9).27.在平行六面體ABCD-A′B′C′D′中,若AC′=xAB+2yBC-3zC′C,則x+y+z等于______.答案:根據(jù)向量的加法法則可得,AC′=AC+CC′=AB+BC+CC′∵AC′=xAB+2yBC-3zC′C∴x=1,2y=1,-3z=1∴x=1,y=12,z=-13∴x+y+z=1+12-13=76故為:7628.(選做題)已知x+2y=1,則x2+y2的最小值是______.答案:x2+y2表示(0,0)到x+2y=1上點的距離的平方∴x2+y2的最小值是(0,0)到x+2y=1的距離d的平方據(jù)點到直線的距離公式得d=11+4=15∴x2+y2的最小值是15故為1529.設拋物線y2=8x的焦點為F,準線為l,P為拋物線上一點,PA⊥l,A為垂足.如果直線AF的斜率為-3,那么|PF|=()A.43B.8C.83D.16答案:拋物線的焦點F(2,0),準線方程為x=-2,直線AF的方程為y=-3(x-2),所以點A(-2,43)、P(6,43),從而|PF|=6+2=8故選B.30.兩條互相平行的直線分別過點A(6,2)和B(-3,-1),并且各自繞著A,B旋轉,如果兩條平行直線間的距離為d.
求:
(1)d的變化范圍;
(2)當d取最大值時兩條直線的方程.答案:(1)方法一:①當兩條直線的斜率不存在時,即兩直線分別為x=6和x=-3,則它們之間的距離為9.…(2分)②當兩條直線的斜率存在時,設這兩條直線方程為l1:y-2=k(x-6),l2:y+1=k(x+3),即l1:kx-y-6k+2=0,l2:kx-y+3k-1=0,…(4分)∴d=|3k-1+6k-2|k2+1=3|3k-1|k2+1.即(81-d2)k2-54k+9-d2=0.∵k∈R,且d≠9,d>0,∴△=(-54)2-4(81-d2)(9-d2)≥0,即0<d≤310且d≠9.…(9分)綜合①②可知,所求d的變化范圍為(0,310].方法二:如圖所示,顯然有0<d≤|AB|.而|AB|=[6-(-3)]2+[2-(-1)]2=310.故所求的d的變化范圍為(0,310].(2)由圖可知,當d取最大值時,兩直線垂直于AB.而kAB=2-(-1)6-(-3)=13,∴所求直線的斜率為-3.故所求的直線方程分別為y-2=-3(x-6),y+1=-3(x+3),即3x+y-20=0和3x+y+10=0-…(13分)31.設拋物線y2=8x上一點P到y(tǒng)軸的距離是4,則點P到該拋物線焦點的距離是()A.4B.6C.8D.12答案:拋物線y2=8x的準線為x=-2,∵點P到y(tǒng)軸的距離是4,∴到準線的距離是4+2=6,根據(jù)拋物線的定義可知點P到該拋物線焦點的距離是6故選B32.在直角梯形ABCD中,已知A(-5,-10),B(15,0),C(5,10),AD是腰且垂直兩底,求頂點D的坐標.答案:設D(x,y),則∵DC∥AB,∴y-10x-5=0+1015+5,又∵DA⊥AB,∴y+10x+5?0+1015+5=-1.由以上方程組解得:x=-11,y=2.∴D(-11,2).33.一個口袋內有5個白球和3個黑球,任意取出一個,如果是黑球,則這個黑球不放回且另外放入一個白球,這樣繼續(xù)下去,直到取出的球是白球為止.求取到白球所需的次數(shù)ξ的概率分布列及期望.答案:由題意知變量的可能取值是1,2,3,4P(ξ=1)=58,P(ξ=2)=932,P(ξ=3)=21256
P(ξ=1)=3256
∴ξ的分布列是ξ1234P58932212563256∴Eξ=1×58+2×923+3×21256+4×3256=37925634.設、、為實數(shù),,則下列四個結論中正確的是(
)A.B.C.且D.且答案:D解析:若,則,則.若,則對于二次函數(shù),由可得結論.35.用反證法證明命題:“三角形的內角至多有一個鈍角”,正確的假設是()
A.三角形的內角至少有一個鈍角
B.三角形的內角至少有兩個鈍角
C.三角形的內角沒有一個鈍角
D.三角形的內角沒有一個鈍角或至少有兩個鈍角答案:B36.求證:答案:證明見解析解析:證明:此題采用了從第三項開始拆項放縮的技巧,放縮拆項時,不一定從第一項開始,須根據(jù)具體題型分別對待,即不能放的太寬,也不能縮的太窄,真正做到恰倒好處。37.對于一組數(shù)據(jù)的兩個函數(shù)模型,其殘差平方和分別為153.4
和200,若從中選取一個擬合程度較好的函數(shù)模型,應選殘差平方和為______的那個.答案:殘差的平方和是用來描述n個點與相應回歸直線在整體上的接近程度殘差的平方和越小,擬合效果越好,由于153.4<200,故擬合效果較好的是殘差平方和是153.4的那個模型.故為:153.4.38.橢圓上有一點P,F(xiàn)1,F(xiàn)2是橢圓的左、右焦點,△F1PF2為直角三角形,則這樣的點P有()
A.3個
B.4個
C.6個
D.8個答案:C39.
已知橢圓(θ為參數(shù))上的點P到它的兩個焦點F1、F2的距離之比,
且∠PF1F2=α(0<α<),則α的最大值為()
A.
B.
C.
D.答案:A40.某飲料公司招聘了一名員工,現(xiàn)對其進行一項測試,以便確定工資級別.公司準備了兩種不同的飲料共8杯,其顏色完全相同,并且其中4杯為A飲料,另外4杯為B飲料,公司要求此員工一一品嘗后,從8杯飲料中選出4杯A飲料.若4杯都選對,則月工資定位3500元;若4杯選對3杯,則月工資定為2800元,否則月工資定為2100元,今X表示此人選對A飲料的杯數(shù),假設此人對A和B兩種飲料沒有鑒別能力.
(1)求X的分布列;
(2)求此員工月工資的期望.答案:(1)X的所有可能取值為0,1,2,3,4,P(X=0)=1C48=170P(X=1)=C14C34C48=1670P(X=2)=C24C24C48=3670P(X=3)=C14C34C48=1670P(X=4)=1C48=170(2)此員工月工資Y的所有可能取值有3500、2800、2100,P(Y=3500)=P(X=4)=1C48=170P(Y=2800)=P(X=3)=C14C34C48=1670P(Y=2100)=P(X=0)+P(X=1)+P(X=2)=5370EY=3500×170+2800×1670+2100×5370=228041.某海域有A、B兩個島嶼,B島在A島正東40海里處.經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線像一個橢圓,其焦點恰好是A、B兩島.曾有漁船在距A島正西20海里發(fā)現(xiàn)過魚群.某日,研究人員在A、B兩島同時用聲納探測儀發(fā)出不同頻率的探測信號(傳播速度相同),A、B兩島收到魚群反射信號的時間比為5:3.你能否確定魚群此時分別與A、B兩島的距離?答案:以AB的中點為原點,AB所在直線為x軸建立直角坐標系設橢圓方程為:x2a2+y2b2=1(a>b>0)且c=a2-b2------(3分)因為焦點A的正西方向橢圓上的點為左頂點,所以a-c=20------(5分)又|AB|=2c=40,則c=20,a=40,故b=203------(7分)所以魚群的運動軌跡方程是x21600+y21200=1------(8分)由于A,B兩島收到魚群反射信號的時間比為5:3,因此設此時距A,B兩島的距離分別為5k,3k-------(10分)由橢圓的定義可知5k+3k=2×40=80?k=10--------(13分)即魚群分別距A,B兩島的距離為50海里和30海里.------(14分)42.已知
p:所有國產(chǎn)手機都有陷阱消費,則¬p是()
A.所有國產(chǎn)手機都沒有陷阱消費
B.有一部國產(chǎn)手機有陷阱消費
C.有一部國產(chǎn)手機沒有陷阱消費
D.國外產(chǎn)手機沒有陷阱消費答案:C43.若關于x的不等式(1+k2)x≤k4+4的解集是M,則對任意實常數(shù)k,總有(
)
A.
B.
C.
D.,0∈M答案:A44.一支田徑隊有男運動員112人,女運動員84人,用分層抽樣的方法從全體男運動員中抽出了32人,則應該從女運動員中抽出的人數(shù)為()
A.12
B.13
C.24
D.28答案:C45.在空間直角坐標系中,已知A,B兩點的坐標分別是A(2,3,5),B(3,1,4),則這兩點間的距離|AB|=______.答案:∵A,B兩點的坐標分別是A(2,3,5),B(3,1,4),∴|AB|=(3-2)2+(1-3)2+(4-5)2,=1+4+1=6,故為:6.46.隨機變量ξ服從二項分布ξ~B(n,p),且Eξ=300,Dξ=200,則p等于()
A.
B.0
C.1
D.答案:D47.過點P(-3,0)且傾斜角為30°的直線和曲線x=t+1ty=t-1t(t為參數(shù))相交于A,B兩點.求線段AB的長.答案:直線的參數(shù)方程為
x
=
-3
+
32sy
=
12s
(s
為參數(shù)),曲線x=t+1ty=t-1t
可以化為
x2-y2=4.將直線的參數(shù)方程代入上式,得
s2-63s+
10
=
0.設A、B對應的參數(shù)分別為s1,s2,∴s1+
s2=
6
3,s1?s2=10.∴AB=|s1-s2|=(s1+s2)2-4s1s2=217.48.參數(shù)方程(0<θ<2π)表示()
A.雙曲線的一支,這支過點(1,)
B.拋物線的一部分,這部分過(1,)
C.雙曲線的一支,這支過點(-1,)
D.拋物線的一部分,這部分過(-1,)答案:B49.(幾何證明選講選做題)已知PA是⊙O的切線,切點為A,直線PO交⊙O于B、C兩點,AC=2,∠PAB=120°,則⊙O的面積為______.答案:∵PA是圓O的切線,∴OA⊥AP又∵∠PAB=120°∴∠BAO=∠ABO=30°又∵在Rt△ABC中,AC=2∴BC=4,即圓O的直徑2R=4∴圓O的面積S=πR2=4π故為:4π.50.若一點P的極坐標是(r,θ),則它的直角坐標如何?答案:由題意可知x=rcosθ,y=rsinθ.所以點P的極坐標是(r,θ)的直角坐標為:(rcosθ,rsinθ).第2卷一.綜合題(共50題)1.設F1,F(xiàn)2分別是橢圓E:x2+y2b2=1(0<b<1)的左、右焦點,過F1的直線l與E相交于A,B兩點,且|AF2|,|AB|,|BF2|成等差數(shù)列,則|AB|的長為______.答案:∵|AF2|,|AB|,|BF2|成等差數(shù)列∴|AF2|+|BF2|=2|AB|,又橢圓E:x2+y2b2=1(0<b<1)中a=1∴|AF2|+|AB|+|BF2|=4,∴3|AB|=4,∴|AB|=43故為:432.已知隨機變量x服從二項分布x~B(6,),則P(x=2)=()
A.
B.
C.
D.答案:D3.若一點P的極坐標是(r,θ),則它的直角坐標如何?答案:由題意可知x=rcosθ,y=rsinθ.所以點P的極坐標是(r,θ)的直角坐標為:(rcosθ,rsinθ).4.1
甲、乙、丙三臺機床各自獨立地加工同一種零件,已知甲機床加工的零件是一等品而乙機床加工的零件不是一等品的概率為,乙機床加工的零件是一等品而丙機床加工的零件不是一等品的概率為,甲、丙兩臺機床加工的零件都是一等品的概率為
(1)分別求甲、乙、丙三臺機床各自加工零件是一等品的概率;
(2)從甲、乙、丙加工的零件中各取一個檢驗,求至少有一個一等品的概率.答案:見解析解析:解:(1)設A、B、C分別為甲、乙、丙三臺機床各自加工的零件是一等品的事件①②③5.已知兩組樣本數(shù)據(jù)x1,x2,…xn的平均數(shù)為h,y1,y2,…ym的平均數(shù)為k,則把兩組數(shù)據(jù)合并成一組以后,這組樣本的平均數(shù)為()
A.
B.
C.
D.答案:B6.若向量=(2,-3,1),=(2,0,3),=(0,2,2),則(+)=()
A.4
B.15
C.7
D.3答案:D7.a、b、c∈R,則下列命題為真命題的是______.
①若a>b,則ac2>bc2
②若ac2>bc2,則a>b
③若a<b<0,則a2>ab>b2
④若a<b<0,則1a<1b.答案:當c=0時,ac2=bc2,故①不成立;若ac2>bc2,則c2≠0,即c2>0,則a>b,故②成立;若a<b<0,則a2>ab且ab>b2,故a2>ab>b2,故③成立;若a<b<0,則ab>0,故aab<bab,即1a>1b,故④不成立故②③為真命題故為:②③8.已知A、B、M三點不共線,對于平面ABM外的任意一點O,確定在下列條件下,點P是否與A、B、M一定共面,答案:解:為共面向量,∴P與A、B、M共面,,根據(jù)空間向量共面的推論,P位于平面ABM內的充要條件是,∴P與A、B、M不共面.9.不等式≥0的解集為[-2,3∪[7,+∞,則a-b+c的值是(
)A.2B.-2C.8D.6答案:B解析:∵-a、b的值為-2,7中的一個,x≠c
c=3∴a-b=-(b-a)=-(-2+7)=-5a-b+c=-5+3=-2
選B評析:考察考生對不等式解集的結構特征的理解,關注不等式中等號與不等號的關系。10.若A(0,2,198),B(1,-1,58),C(-2,1,58)是平面α內的三點,設平面α的法向量a=(x,y,z),則x:y:z=______.答案:AB=(1,-3,-74),AC=(-2,-1,-74),α?AB=0,α?AC=0,∴x=23yz=-43y,x:y:z=23y:y:(-43y)=2:3:(-4).故為2:3:-4.11.曲線C:x=t-2y=1t+1(t為參數(shù))的對稱中心坐標是______.答案:曲線C:x=t-2y=1t+1(t為參數(shù))即y-1=1x+2,其對稱中心為(-2,1).故為:(-2,1).12.已知隨機變量X~B(n,0.8),D(X)=1.6,則n的值是()
A.8
B.10
C.12
D.14答案:B13.如圖所示,在Rt△ABC內有一內接正方形,它的一條邊在斜邊BC上,設AB=a,∠ABC=θ
(1)求△ABC的面積f(θ)與正方形面積g(θ);
(2)當θ變化時,求f(θ)g(θ)的最小值.答案:(1)由題得:AC=atanθ∴f(θ)=12a2tanθ(0<θ<π2)
設正方形的邊長為x,則BG=xsinθ,由幾何關系知:∠AGD=θ∴AG=xcosθ
由BG+AG=a?xsinθ+xcosθ=a?x=asinθ1+sinθcosθ∴g(θ)=a2sin2θ(1+sinθcosθ)2(0<θ<π2)(2)f(θ)g(θ)=(1+sinθcoθ)22sinθcosθ=1+1sin2θ+sin2θ4
令:t=sin2θ∵0<θ<π2∴t∈(0,1]∴y=1+1t+t4=1+14(t+t4)∵函數(shù)y=1+14(t+t4)在(0,1]遞減∴ymin=94(當且僅當t=1即θ=π4時成立)∴當θ=π4時,f(θ)g(θ)的最小值為94.14.設集合A={1,2},={2,3},C={2,3,4},則(A∩B)∪C=______.答案:由題得:A∩B={2},又因為C={2,3,4},(故A∩B)∪C={2,3,4}.故為
{2,3,4}.15.如圖所示,圓的內接△ABC的∠C的平分線CD延長后交圓于點E,連接BE,已知BD=3,CE=7,BC=5,則線段BE=()
A.
B.
C.
D.4
答案:B16.如圖,在復平面內,點A表示復數(shù)z的共軛復數(shù),則復數(shù)z對應的點是()A.AB.BC.CD.D答案:兩個復數(shù)是共軛復數(shù),兩個復數(shù)的實部相同,下部相反,對應的點關于x軸對稱.所以點A表示復數(shù)z的共軛復數(shù)的點是B.故選B.17.一個長方體共一頂點的三個面的面積分別是2、3、6,這個長方體的體積是()A.6B.6C.32D.23答案:可設長方體同一個頂點上的三條棱長分別為a,b,c,則有ab=2、bc=3、ca=6,解得:a=2,b=1,c=3故這個長方體的體積是6故為B18.與雙曲線x2-y24=1有共同的漸近線,且過點(2,2)的雙曲線的標準方程為______.答案:設雙曲線方程為x2-y24=λ∵過點(2,2),∴λ=3∴所求雙曲線方程為x23-y212=1故為x23-y212=119.已知實數(shù)x,y滿足2x+y+5=0,那么x2+y2的最小值為()A.5B.10C.25D.210答案:求x2+y2的最小值,就是求2x+y+5=0上的點到原點的距離的最小值,轉化為坐標原點到直線2x+y+5=0的距離,d=522+1=5.故選A.20.已知a=(1-t,1-t,t),b=(2,t,t),則|b-a|的最小值是______.答案:∵a=(1-t,1-t,t),b=(2,t,t),∴向量b-a=(1+t,2t-1,0)可得向量b-a的模|b-a|=(1+t)2+
(2t-1)2+02=5t2-2t+2∵5t2-2t+2=5(t-15)2+95∴當且僅當t=15時,5t2-2t+2的最小值為95所以當t=15時,|b-a|的最小值是95=355故為:35521.在極坐標系中,直線l經(jīng)過圓ρ=cosθ的圓心且與直線ρcosθ=3平行,則直線l與極軸的交點的極坐標為______.答案:由ρ=cosθ可知此圓的圓心為(12,0),直線ρcosθ=3是與極軸垂直的直線,所以所求直線的極坐標方程為ρcosθ=12,所以直線l與極軸的交點的極坐標為(12,0).故為:(12,0).22.(本小題滿分12分)
如圖,已知橢圓C1的中心在圓點O,長軸左、右端點M、N在x軸上,橢圓C1的短軸為MN,且C1,C2的離心率都為e,直線l⊥MN,l與C1交于兩點,與C1交于兩點,這四點按縱坐標從大到小依次為A、B、C、D.
(I)設e=,求|BC|與|AD|的比值;
(II)當e變化時,是否存在直線l,使得BO//AN,并說明理由.答案:(II)t=0時的l不符合題意,t≠0時,BO//AN當且僅當BO的斜率kBO與AN的斜率kAN相等,即,解得。因為,又,所以,解得。所以當時,不存在直線l,使得BO//AN;當時,存在直線l使得BO//AN。解析:略23.已知邊長為1的正方形ABCD,則|AB+BC+CD|=______.答案:利用向量加法的幾何性質,得AB+BC=AC∴AB+BC+CD=AD因為正方形的邊長等于1所以|AB+BC+CD|=|AD|
=1故為:124.在平行六面體ABCD-A′B′C′D′中,若AC′=xAB+2yBC-3zC′C,則x+y+z等于______.答案:根據(jù)向量的加法法則可得,AC′=AC+CC′=AB+BC+CC′∵AC′=xAB+2yBC-3zC′C∴x=1,2y=1,-3z=1∴x=1,y=12,z=-13∴x+y+z=1+12-13=76故為:7625.如圖:在平行六面體ABCD-A1B1C1D1中,M為A1C1與B1D1的交點.若則下列向量中與相等的向量是()
A.
B.
C.
D.
答案:A26.已知α、β均為銳角,若p:sinα<sin(α+β),q:α+β<π2,則p是q的()A.充分而不必要條件B.必要而不充分條件C.充要條件D.既不充分也不必要條件答案:當sinα<sin(α+β)時,α+β<π2不一定成立故sinα<sin(α+β)?α+β<π2,為假命題;而若α+β<π2,則由正弦函數(shù)在(0,π2)單調遞增,易得sinα<sin(α+β)成立即α+β<π2?sinα<sin(α+β)為真命題故p是q的必要而不充分條件故選B.27.數(shù)據(jù)a1,a2,a3,…,an的方差為σ2,則數(shù)據(jù)2a1+3,2a2+3,2a3+3,…,2an+3的方差為______.答案:∵數(shù)據(jù)a1,a2,a3,…,an的方差為σ2,∴數(shù)據(jù)2a1+3,2a2+3,2a3+3,…,2an+3的方差是22σ2=4σ2,故為:4σ2.28.方程組的解集是()
A.{-1,2}
B.(-1,2)
C.{(-1,2)}
D.{(x,y)|x=-1或y=2}答案:C29.如圖,AC是⊙O的直徑,∠ACB=60°,連接AB,過A、B兩點分別作⊙O的切線,兩切線交于點P.若已知⊙O的半徑為1,則△PAB的周長為______.答案:∵AC是⊙O的直徑,∴∠ABC=90°,∠BAC=30°,CB=1,AB=3,∵AP為切線,∴∠CAP=90°,∠PAB=60°,又∵AP=BP,∴△PAB為正三角形,∴周長=33.故填:33.30.如圖,AB,CD是半徑為a的圓O的兩條弦,他們相交于AB的中點P,PD=2a3,∠OAP=30°,則CP=______.答案:因為點P是AB的中點,由垂徑定理知,OP⊥AB.在Rt△OPA中,BP=AP=acos30°=32a.由相交弦定理知,BP?AP=CP?DP,即32a?32a=CP?23a,所以CP=98a.故填:98a.31.若向量=(1,λ,2),=(-2,1,1),,夾角的余弦值為,則λ等于()
A.1
B.-1
C.±1
D.2答案:A32.已知A(k,12,1),B(4,5,1),C(-k,10,1),且A、B、C三點共線,則k=______.答案:∵AB=(4-k,-7,0),BC=(-k-4,5,0),且A、B、C三點共線,∴存在實數(shù)λ滿足AB=λBC,即4-k=λ(-k-4)-7=5λ0=0,解得k=-23.故為-23.33.已知向量a,b,向量c=2a+b,且|a|=1,|b|=2,a與b的夾角為60°
(1)求|c|2;(2)若向量d=ma-b,且d∥c,求實數(shù)m的值.答案:(1)∵|a|=1,|b|=2,a和b的夾角為60°∴a?b=|a||b|cos60°=1∴|c|2=(
2a+b)2=4a2+4ab+b2=4+4+4=12(2)∵d∥c∴存在實數(shù)λ使得d=λc即ma-b=λ(2a+b)又∵a,b不共線∴2λ=m,λ=-1∴m=-234.已知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)過點(3,8),求f(4)=______.答案:設指數(shù)函數(shù)為y=ax(a>0且a≠1)將(3,8)代入得8=a3解得a=2,所以y=2x,則f(4)=42=16故為16.35.兩個正方體M1、M2,棱長分別a、b,則對于正方體M1、M2有:棱長的比為a:b,表面積的比為a2:b2,體積比為a3:b3.我們把滿足類似條件的幾何體稱為“相似體”,下列給出的幾何體中是“相似體”的是()
A.兩個球
B.兩個長方體
C.兩個圓柱
D.兩個圓錐答案:A36.如圖,正方體ABCD-A1B1C1D1的棱長為3,點M在AB上,且AM=13AB,點P在平面ABCD上,且動點P到直線A1D1的距離與P到點M的距離相等,在平面直角坐標系xAy中,動點P的軌跡方程是______.答案:作PN⊥AD,則PN⊥面A1D1DA,作NH⊥A1D1,N,H為垂足,由三垂線定理可得PH⊥A1D1.以AD,AB,AA1為x軸,y軸,z軸,建立空間坐標系,設P(x,y,0),由題意可得M(0,1,0),H(x,0,3),|PM|=|pH|,∴x2+(y-1)2=y2+9,整理,得x2=2y+8.故為:x2=2y+8.37.棱長為a的正四面體中,AB?BC+AC?BD=______.答案:棱長為a的正四面體中,AB=BC=a,且AB與BC的夾角為120°,AC⊥BD.∴AB?BC+AC?BD=a?acos120°+0=-a22,故為:-12.38.已知OA=a,OB=b,,且|a|=|b|=2,∠AOB=60°,則|a+b|=______;a+b與b的夾角為______.答案:∵|a+b|2=(a+b)2=a2+b2+2a?b
由|a|=|b|=2,∠AOB=60°,得:a2=b2=
4,a?b
=2∴|a+b|2=12,∴|a+b|=23令a+b與b的夾角為θ則0≤θ≤π,且cosθ=a?(a+b)|a|?|a+b|=32∴θ=π6故為:23,π639.下面程序框圖輸出的S表示什么?虛線框表示什么結構?答案:由框圖知,當r=5時,輸出的s=πr2所以程序框圖輸出的S表示:求半徑為5的圓的面積的算法的程序框圖,虛線框是一個順序結構.40.對任意實數(shù)x,y,定義運算x*y為:x*y=ax+by+cxy,其中a,b,c為常數(shù),等式右端運算為通常的實數(shù)加法和乘法,現(xiàn)已知1*2=3,2*3=4,并且有一個非零實數(shù)m,使得對于任意的實數(shù)都有x*m=x,則d的值為(
)
A.4
B.1
C.0
D.不確定答案:A41.如圖,在△ABC中,D是AC的中點,E是BD的中點,AE交BC于F,則的值等于()
A.
B.
C.
D.
答案:A42.設a>2,給定數(shù)列{xn},其中x1=a,xn+1=x2n2(xn-1)(n=1,2…)求證:
(1)xn>2,且xn+1xn<1(n=1,2…);
(2)如果a≤3,那么xn≤2+12n-1(n=1,2…).答案:證明:(1)①當n=1時,∵x2=x122(x1-1)=x1+(2-x1)x12(x1-1),x2=x122(x1-1)=4(x1-1)+x12
-4x1+42(x1-1)=2+(x1-2)22(x1-1),x1=a>2,∴2<x2<x1.結論成立.②假設n=k時,結論成立,即2<xk+1<xk(k∈N+),則xk+2=xk+122(xk+1-1)=xk+1+(2-xk+1)xk+12(xk+1-1)>xk+1,xk+2=xk+122(xk+1-1)=2+(xk+1-2)22(xk+1-1)>2.∴2<xk+2<xk+1,綜上所述,由①②知2<xn+1<xn.∴xn>2且xn+1xn<1.(2)由條件x1=a≤3知不等式當n=1時成立假設不等式當n=k(k≥1)時成立當n=k+1時,由條件及xk>2知xk+1≤1+12k?x2k≤2(xk-1)(2+12k)?x2k-2(2+12k)xk+2(2+12k)≤0?(xk-2)[xk-(2+12k-1)]≤0,再由xk>2及歸納假設知,上面最后一個不等式一定成立,所以不等式xk+1≤2+12k也成立,從而不等式xn≤2+12n-1對所有的正整數(shù)n成立43.若向量a,b的夾角為120°,且|a|=1,|b|=2,c=a+b,則有()A.c⊥aB.c⊥bC.c‖bD.c‖a答案:由題意知ac=a
(a+b)=a2+
a
b=1+1×2cos120°=0,所以a⊥c.故選A.44.在航天員進行的一項太空實驗中,要先后實施6個程序,其中程序A只能出現(xiàn)在第一步或最后一步,程序B和C實施時必須相鄰,請問實驗順序的編排方法共有()
A.24種
B.48種
C.96種
D.144種答案:C45.一圓錐側面展開圖為半圓,平面α與圓錐的軸成45°角,則平面α與該圓錐側面相交的交線為()A.圓B.拋物線C.雙曲線D.橢圓答案:設圓錐的母線長為R,底面半徑為r,則:πR=2πr,∴R=2r,∴母線與高的夾角的正弦值=rR=12,∴母線與高的夾角是30°.由于平面α與圓錐的軸成45°>30°;則平面α與該圓錐側面相交的交線為橢圓.故選D.46.經(jīng)過點P(4,-2)的拋物線的標準方程為()
A.y2=-8x
B.x2=-8y
C.y2=x或x2=-8y
D.y2=x或y2=8x答案:C47.下圖是由A、B、C、D中的哪個平面圖旋轉而得到的(
)答案:A48.袋中有5個小球(3白2黑),現(xiàn)從袋中每次取一個球,不放回地抽取兩次,則在第一次取到白球的條件下,第二次取到白球的概率是()
A.
B.
C.
D.答案:C49.P是以F1,F(xiàn)2為焦點的橢圓上一點,過焦點F2作∠F1PF2外角平分線的垂線,垂足為M,則點M的軌跡是()
A.橢圓
B.圓
C.雙曲線
D.雙曲線的一支答案:B50.直線(t為參數(shù))的傾斜角等于()
A.
B.
C.
D.答案:A第3卷一.綜合題(共50題)1.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i為虛數(shù)單位),求復數(shù)z2+i的虛部.
(Ⅱ)已知z1=a+2i,z2=3-4i(i為虛數(shù)單位),且z1z2為純虛數(shù),求實數(shù)a的值.答案:(Ⅰ)設z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,復數(shù)z2+i=3+4i2+i=2+i,虛部為1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2為純虛數(shù)則3a-8=0,且4a+6≠0,解得a=832.某處有供水龍頭5個,調查表明每個水龍頭被打開的可能性為,隨機變量ξ表示同時被打開的水龍頭的個數(shù),則P(ξ=3)為A.0.0081B.0.0729C.0.0525D.0.0092答案:A解析:本題考查n次獨立重復試驗中,恰好發(fā)生k次的概率.對5個水龍頭的處理可視為做5次試驗,每次試驗有2種可能結果:打開或未打開,相應的概率為0.1或1-0.1="0.9."根據(jù)題意ξ~B(5,0.1),從而P(ξ=3)=(0.1)3(0.9)2=0.0081.3.已知不等式a≤對x取一切負數(shù)恒成立,則a的取值范圍是____________.答案:a≤2解析:要使a≤對x取一切負數(shù)恒成立,令t=|x|>0,則a≤.而≥=2,∴a≤2.4.設m、n是兩條不同的直線,α、β是兩個不同的平面,則下列命題中正確的是()
A.若m∥n,m∥α,則n∥α
B.若α⊥β,m∥α,則m⊥β
C.若α⊥β,m⊥β,則m∥α
D.若m⊥n,m⊥α,n⊥β,則α⊥β答案:D5.設兩個正態(tài)分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)曲線如圖所示,則有()
A.μ1<μ2,σ1>σ2
B.μ1<μ2,σ1<σ2
C.μ1>μ2,σ1>σ2
D.μ1>μ2,σ1<σ2
答案:A6.(參數(shù)方程與極坐標)已知F是曲線x=2cosθy=1+cos2θ(θ∈R)的焦點,M(12,0),則|MF|的值是
______.答案:y=1+cos2θ=2cos2θ=2?(x2)2化簡得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故為:227.已知a=(a1,a2),b=(b1,b2),丨a丨=5,丨b丨=6,a?b=30,則a1+a2b1+b2=______.答案:因為丨a丨=5,丨b丨=6,a?b=30,又a?b=|a|?|b|cos<a,b>=30,即cos<a,b>=1,所以a,b同向共線.設b=ka,(k>0).則b1=ka1,b2=ka2,所以|b|=k|a|,所以k=65,所以a1+a2b1+b2=a1+a2k(a1+a2)=1k=56.故為:56.8.已知按向量平移得到,則
.答案:3解析:由平移公式可得解得.9.如圖所示,O點在△ABC內部,D、E分別是AC,BC邊的中點,且有OA+2OB+3OC=O,則△AEC的面積與△AOC的面積的比為()
A.2
B.
C.3
D.
答案:B10.若事件與相互獨立,且,則的值等于A.B.C.D.答案:B解析:事件“”表示的意義是事件與同時發(fā)生,因為二者相互獨立,根據(jù)相互獨立事件同時發(fā)生的概率公式得:.11.72的正約數(shù)(包括1和72)共有______個.答案:72=23×32.∴2m?3n(0≤m≤3,0≤n≤2,m,n∈N)都是72的正約數(shù).m的取法有4種,n的取法有3種,由分步計數(shù)原理共3×4個.故為:12.12.復數(shù)z=sin1+icos2在復平面內對應的點位于第______象限.答案:z對應的點為(sin1,cos2)∵1是第一象限的角,2是第二象限的角∵sin1>0,cos2<0所以(sin1,cos2)在第四象限故為:四13.某醫(yī)院計劃從10名醫(yī)生(7男3女)中選5人組成醫(yī)療小組下鄉(xiāng)巡診.
(I)設所選5人中女醫(yī)生的人數(shù)為ξ,求ξ的分布列及數(shù)學期望;
(II)現(xiàn)從10名醫(yī)生中的張強、李軍、王剛、趙永4名男醫(yī)生,李莉、孫萍2名女醫(yī)生共6人中選一正二副3名組長,在張強被選中的情況下,求李莉也被選中的概率.答案:(I)ξ的所有可能的取值為0,1,2,3,….….(2分)則P(ξ=0)=C57C510=112P(ξ=1)=C47C13C510=512P(ξ=2)=C27C23C510=512;P(ξ=3)=C27C33C510=112…(6分)ξ.的分布列為ξ0123P112512512112Eξ=1×112+2×512+3×112=32…(9分)(II)記“張強被選中”為事件A,“李莉也被選中”為事件B,則P(A)=C25C36=12,P(BA)=C14C36=15,所以P(B|A)=P(BA)P(A)=25…(12分)14.已知2,4,2x,4y四個數(shù)的平均數(shù)是5而5,7,4x,6y四個數(shù)的平均數(shù)是9,則xy的值是______.答案:因為2,4,2x,4y四個數(shù)的平均數(shù)是5,則2+4+2x+4y=4×5,又由5,7,4x,6y四個數(shù)的平均數(shù)是9,則5+7+4x+6y=4×9,x與y滿足的關系式為x+2y=72x+3y=12解得x=3y=2故為6.15.以下四組向量中,互相平行的是.()
(1)=(1,2,1),=(1,-2,3);
(2)=(8,4,-6),=(4,2,-3);
(3)=(0,1,-1),=(0,-3,3);
(4)=(-3,2,0),=(4,-3,3).
A.(1)(2)
B.(2)(3)
C.(2)(4)
D.(1)(3)答案:B16.設f(n)=nn+1,g(n)=(n+1)n,n∈N*.
(1)當n=1,2,3,4時,比較f(n)與g(n)的大?。?/p>
(2)根據(jù)(1)的結果猜測一個一般性結論,并加以證明.答案:(1)當n=1時,nn+1=1,(n+1)n=2,此時,nn+1<(n+1)n,當n=2時,nn+1=8,(n+1)n=9,此時,nn+1<(n+1)n,當n=3時,nn+1=81,(n+1)n=64,此時,nn+1>(n+1)n,當n=4時,nn+1=1024,(n+1)n=625,此時,nn+1>(n+1)n,(2)根據(jù)上述結論,我們猜想:當n≥3時,nn+1>(n+1)n(n∈N*)恒成立.①當n=3時,nn+1=34=81>(n+1)n=43=64即nn+1>(n+1)n成立.②假設當n=k時,kk+1>(k+1)k成立,即:kk+1(k+1)k>1則當n=k+1時,(k+1)k+2(k+2)k+1=(k+1)?(k+1k+2)k+1>(k+1)?(kk+1)k+1=kk+1(k+1)k>1即(k+1)k+2>(k+2)k+1成立,即當n=k+1時也成立,∴當n≥3時,nn+1>(n+1)n(n∈N*)恒成立.17.雙曲線x2-4y2=4的兩個焦點F1、F2,P是雙曲線上的一點,滿足·=0,則△F1PF2的面積為()
A.1
B.
C.2
D.答案:A18.若命題p的否命題是q,命題q的逆命題是r,則r是p的逆命題的()A.原命題B.逆命題C.否命題D.逆否命題答案:設命題p為“若k,則s”;則其否命題q是“若¬k,則¬s”;∴命題q的逆命題r是“若¬s,則¬k”,而p的逆命題為“若s,則k”,故r是p的逆命題的否命題.故選C.19.已知F1(-8,3),F(xiàn)2(2,3),動點P滿足PF1-PF2=10,則點P的軌跡是______.答案:由于兩點間的距離|F1F2|=10,所以滿足條件|PF1|-|PF2|=10的點P的軌跡應是一條射線.故為一條射線.20.已知點A(1,3),B(4,-1),則與向量同方向的單位向量為()
A.(,-)
B.(,-)
C.(-,)
D.(-,)答案:A21.在邊長為1的正方形中,有一個封閉曲線圍成的陰影區(qū)域,在正方形中隨機的撒入100粒豆子,恰有60粒落在陰影區(qū)域內,那么陰影區(qū)域的面積為______.
答案:設陰影部分的面積為x,由概率的幾何概型知,則60100=x1,解得x=35.故為:35.22.如圖所示直角梯形ABCD中,∠A=90°,PA⊥面ABCD,AD||BC,AB=BC=a,AD=2a,與底面ABCD成300角.若AE⊥PD,E為垂足,PD與底面成30°角.
(1)求證:BE⊥PD;
(2)求異面直線AE與CD所成的角的大?。鸢福簽榱擞嬎惴奖悴环猎Oa=1.(1)證明:根據(jù)題意可得:以A為原點,AB,AD,AP所在直線為坐標軸建立直角坐標系(如圖)則A(0,0,0),B(1,0,0)D(0,2,0)P(0,0,233)AB?PD=(1,0,0)?(0,2,-233)=0又AE?PD=0∴AB⊥PD,AE⊥PD所以PD⊥面BEA,BE?面BEA,∴PD⊥BE(2)∵PA⊥面ABCD,PD與底面成30°角,∴∠PDA=30°過E作EF⊥AD,垂足為F,則AE=AD?sin30°=1,∠EAF=60°AF=12,EF=32∴E(0,12,32),于是AE=(0,12,32)又C(1,1,0),D(0,2,0),CD=(-1,1,0)則COSθ=AE?CD|AE||CD|=24∴AE與CD所成角的余弦值為24.23.一口袋內裝有5個黃球,3個紅球,現(xiàn)從袋中往外取球,每次取出一個,取出后記下球的顏色,然后放回,直到紅球出現(xiàn)10次時停止,停止時取球的次數(shù)ξ是一個隨機變量,則P(ξ=12)=______.(填算式)答案:若ξ=12,則取12次停止,第12次取出的是紅球,前11次中有9次是紅球,∴P(ξ=12)=C119(38)9×(58)2×38=C911(38)10(58)2
故為C911(38)10(58)224.給定點A(x0,y0),圓C:x2+y2=r2及直線l:x0x+y0y=r2,給出以下三個命題:
①當點A在圓C上時,直線l與圓C相切;
②當點A在圓C內時,直線l與圓C相離;
③當點A在圓C外時,直線l與圓C相交.
其中正確的命題個數(shù)是()
A.0
B.1
C.2
D.3答案:D25.將n2個正整數(shù)1,2,3,…,n2填入n×n方格中,使得每行、每列、每條對角線上的數(shù)的和相等,這個正方形就叫做n階幻方.記f(n)為n階幻方對角線的和,如右表就是一個3階幻方,可知f(3)=15,則f(4)=()
816357492A.32B.33C.34D.35答案:由等差數(shù)列得前n項和公式可得,所有數(shù)之和S=1+2+3+…+42=16?(1+16)2=136,所以,f(4)=1364=34,故選C.26.復數(shù)3+4i的模等于______.答案:|3+4i|=32+42=5,故為5.27.把38化為二進制數(shù)為()A.101010(2)B.100110(2)C.110100(2)D.110010(2)答案:可以驗證所給的四個選項,在A中,2+8+32=42,在B中,2+4+32=38經(jīng)過驗證知道,B中的二進制表示的數(shù)字換成十進制以后得到38,故選B.28.已知向量a表示“向東航行1km”,向量b表示“向北航行3km”,則向量a+b表示()A.向東北方向航行2kmB.向北偏東30°方向航行2kmC.向北偏東60°方向航行2kmD.向東北方向航行(1+3)km答案:如圖,作OA=a,OB=b.則OC=a+b,所以|OC|=3+1=2,且sin∠BOC=12,所以∠BOC=30°.因此
a+b表示向北偏東30°方向航行2km.故選B.29.拋物線y=4x2的焦點坐標為()
A.(1,0)
B.(0,)
C.(0,1)
D.(,0)答案:B30.若橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,則實數(shù)a的取值范圍是______.答案:橢圓x2+4(y-a)2=4與拋物線x2=2y聯(lián)立可得2y=4-4(y-a)2,∴2y2-(4a-1)y+2a2-2=0.∵橢圓x2+4(y-a)2=4與拋物線x2=2y有公共點,∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負根.∴△=(4a-1)2-16(a2-1)=-8a+17≥0,∴a≤178.又∵兩根皆負時,由韋達定理可得2a2>2,4a-1<0,∴-1<a<1且a<14,即a<-1.∴方程2y2-(4a-1)y+2a2-2=0至少有一個非負根時,-1≤a≤178故為:-1≤a≤17831.若f(x)=x2,則對任意實數(shù)x1,x2,下列不等式總成立的是(
)
A.f()≤
B.f()<
C.f()≥
D.f()>答案:A32.在極坐標系中,點(2,)到圓ρ=2cosθ的圓心的距離為()
A.2
B.
C.
D.答案:D33.底面直徑和高都是4cm的圓柱的側面積為______cm2.答案:∵圓柱的底面直徑和高都是4cm,∴圓柱的底面圓的周長是2π×2=4π∴圓柱的側面積是4π×4=16π,故為:16π.34.如圖,PA切圓O于點A,割線PBC經(jīng)過圓心O,OB=PB=1,OA繞點O逆時針旋轉600到OD,則PD的長為()
A.3
B.
C.
D.
答案:D35.在我市新一輪農(nóng)村電網(wǎng)改造升級過程中,需要選一個電阻調試某村某設備的線路,但調試者手中必有阻值分別為0.5KΩ,1KΩ,1.3KΩ,2KΩ,3KΩ,5KΩ,5.5KΩ等七種阻值不等的定值電阻,他用分數(shù)法進行優(yōu)選試驗時,依次將電阻從小到大安排序號,如果第1個試點與第2個試點比較,第1個試點是一個好點,則第3個試點值的阻值為[
]A、1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五不銹鋼扶手綠色環(huán)保認證服務合同2篇
- 體育經(jīng)紀人職業(yè)素養(yǎng)考核試卷
- 內陸?zhàn)B殖企業(yè)社會責任與可持續(xù)發(fā)展考核試卷
- 印刷設備智能故障診斷技術的行業(yè)發(fā)展前景考核試卷
- 2006年河南省中考滿分作文《我養(yǎng)成了一個好習慣》2
- 個性化離婚合同書補充條款參考樣式版
- LED照明器件在農(nóng)業(yè)生長燈中的應用考核試卷
- 2025年度鮮奶企業(yè)社會責任與公益事業(yè)合作合同3篇
- 中英文商品交易協(xié)議模板 2024版版B版
- 2025年華師大版九年級化學下冊階段測試試卷含答案
- 2024年度工程建設項目安全評價合同2篇
- 《飛機操縱面》課件
- 商業(yè)咨詢報告范文大全
- 自我發(fā)展與團隊管理課件
- 《婦產(chǎn)科學》課件-17.盆腔器官脫垂
- 監(jiān)理報告范本
- 店鋪交割合同范例
- 大型活動LED屏幕安全應急預案
- 2024年內蒙古包頭市中考道德與法治試卷
- 湖南省長沙市2024-2025學年高二上學期期中考試地理試卷(含答案)
- 金色簡約蛇年年終總結匯報模板
評論
0/150
提交評論