版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
長風(fēng)破浪會有時,直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年煙臺文化旅游職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹(jǐn)慎購買!第1卷一.綜合題(共50題)1.若2x+3y=1,求4x2+9y2的最小值,并求出最小值點(diǎn).答案:由柯西不等式(4x2+9y2)(12+12)≥(2x+3y)2=1,∴4x2+9y2≥12.當(dāng)且僅當(dāng)2x?1=3y?1,即2x=3y時取等號.由2x=3y2x+3y=1得x=14y=16∴4x2+9y2的最小值為12,最小值點(diǎn)為(14,16).2.已知向量a=2e1-3e2,b=2e1+3e2,其中e1、e2不共線,向量c=2e1-9e2.問是否存在這樣的實(shí)數(shù)λ、μ,使向量d=λa+μb與c共線?答案:∵d=λ(2e1-3e2)+μ(2e1+3e2)=(2λ+2μ)e1+(-3λ+3μ)e2,若d與c共線,則存在實(shí)數(shù)k≠0,使d=kc,即(2λ+2μ)e1+(-3λ+3μ)e2=2ke1-9ke2,由2λ+2μ=2k-3λ+3μ=-9k得λ=-2μ.故存在這樣的實(shí)數(shù)λ、μ,只要λ=-2μ,就能使d與c共線.3.若點(diǎn)A的坐標(biāo)為(3,2),F(xiàn)是拋物線y2=2x的焦點(diǎn),點(diǎn)M在拋物線上移動時,使|MF|+|MA|取得最小值的M的坐標(biāo)為()A.(0,0)B.(12,1)C.(1,2)D.(2,2)答案:由題意得F(12,0),準(zhǔn)線方程為x=-12,設(shè)點(diǎn)M到準(zhǔn)線的距離為d=|PM|,則由拋物線的定義得|MA|+|MF|=|MA|+|PM|,故當(dāng)P、A、M三點(diǎn)共線時,|MF|+|MA|取得最小值為|AP|=3-(-12)=72.把y=2代入拋物線y2=2x得x=2,故點(diǎn)M的坐標(biāo)是(2,2),故選D.4.在吸煙與患肺病這兩個分類變量的計(jì)算中,“若x2的觀測值為6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系”這句話的意思是指()
A.在100個吸煙的人中,必有99個人患肺病
B.有1%的可能性認(rèn)為推理出現(xiàn)錯誤
C.若某人吸煙,則他有99%的可能性患有肺病
D.若某人患肺病,則99%是因?yàn)槲鼰煷鸢福築5.k取何值時,一元二次方程kx2+3kx+k=0的兩根為負(fù)。答案:解:∴k≤或k>36.在平行四邊形ABCD中,等于()
A.
B.
C.
D.答案:C7.將1,2,3,9這9個數(shù)字填在如圖的9個空格中,要求每一行從左到右,每一列從上到下分別依次增大,當(dāng)3,4固定在圖中的位置時,填寫空格的方法數(shù)為()
A.6種
B.12種
C.18種
D.24種
答案:A8.參數(shù)方程表示什么曲線?答案:見解析解析:解:顯然,則即得,即9.如圖,在△ABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M為AB邊上的一個動點(diǎn),求PM的最小值.答案:過C作CM⊥AB,連接PM,因?yàn)镻C⊥AB,所以AB⊥平面PCM,所以PM⊥AB,此時PM最短,∵∠BAC=60°,AB=8,∴AC=AB?cos60°=4.∴CM=AC?sin60°=4?32=23.∴PM=PC2+CM2=16+12=27.10.某次我市高三教學(xué)質(zhì)量檢測中,甲、乙、丙三科考試成績的直方圖如如圖所示(由于人數(shù)眾多,成績分布的直方圖可視為正態(tài)分布),則由如圖曲線可得下列說法中正確的一項(xiàng)是()
A.甲科總體的標(biāo)準(zhǔn)差最小
B.丙科總體的平均數(shù)最小
C.乙科總體的標(biāo)準(zhǔn)差及平均數(shù)都居中
D.甲、乙、丙的總體的平均數(shù)不相同
答案:A11.在邊長為1的正方形中,有一個封閉曲線圍成的陰影區(qū)域,在正方形中隨機(jī)的撒入100粒豆子,恰有60粒落在陰影區(qū)域內(nèi),那么陰影區(qū)域的面積為______.
答案:設(shè)陰影部分的面積為x,由概率的幾何概型知,則60100=x1,解得x=35.故為:35.12.下列各組集合,表示相等集合的是()
①M(fèi)={(3,2)},N={(2,3)};
②M={3,2},N={2,3};
③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不對答案:①中M中表示點(diǎn)(3,2),N中表示點(diǎn)(2,3);②中由元素的無序性知是相等集合;③中M表示一個元素,即點(diǎn)(1,2),N中表示兩個元素分別為1,2.所以表示相等的集合是②.故選B.13.如圖所示,以直角三角形ABC的直角邊AC為直徑作⊙O,交斜邊AB于點(diǎn)D,過點(diǎn)D作⊙O的切線,交BC邊于點(diǎn)E.則BEBC=______.答案:連接CD,∵AC是⊙O的直徑,∴CD⊥AB.∵BC經(jīng)過半徑OC的端點(diǎn)C且BC⊥AC,∴BC是⊙O的切線,而DE是⊙O的切線,∴EC=ED.∴∠ECD=∠CDE,∴∠B=∠BDE,∴DE=BE.∴BE=CE=12BC.∴BEBC=12.故為12.14.將兩枚質(zhì)地均勻透明且各面分別標(biāo)有1,2,3,4的正四面體玩具各擲一次,設(shè)事件A={兩個玩具底面點(diǎn)數(shù)不相同},B={兩個玩具底面點(diǎn)數(shù)至少出現(xiàn)一個2點(diǎn)},則P(B|A)=______.答案:設(shè)事件A={兩個玩具底面點(diǎn)數(shù)不相同},包括以下12個基本事件:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).事件B={兩個玩具底面點(diǎn)數(shù)至少出現(xiàn)一個2點(diǎn)},則包括以下6個基本事件:(1,2),(2,1),(2,3),(2,4),(3,2),(4,2).故P(B|A)=612=12.故為12.15.如圖是一個空間幾何體的三視圖,試用斜二測畫法畫出它的直觀圖.(尺寸不作嚴(yán)格要求,但是凡是未用鉛筆作圖不得分,隨手畫圖也不得分)答案:由題可知題目所述幾何體是正六棱臺,畫法如下:畫法:(1)、畫軸畫x軸、y軸、z軸,使∠x′O′y′=45°,∠x′O′z′=90°
(圖1)(2)、畫底面以O(shè)′為中心,在XOY坐標(biāo)系內(nèi)畫正六棱臺下底面正方形的直觀圖ABCDEF.在z′軸上取線段O′O1等于正六棱臺的高;過O1
畫O1M、O1N分別平行O’x′、O′y′,再以O(shè)1為中心,畫正六棱臺上底面正方形的直觀圖A′B′C′E′F′(3)、成圖連接AA′、BB′、CC′、DD′、EE′、FF′,并且加以整理,就得到正六棱臺的直觀圖
(如圖2).16.若隨機(jī)變量ξ~N(2,9),則隨機(jī)變量ξ的數(shù)學(xué)期望c=()
A.4
B.3
C.2
D.1答案:C17.點(diǎn)P(,)與圓x2+y2=1的位置關(guān)系是()
A.在圓內(nèi)
B.在圓外
C.在圓上
D.與t有關(guān)答案:C18.在用樣本頻率估計(jì)總體分布的過程中,下列說法正確的是()A.總體容量越大,估計(jì)越精確B.總體容量越小,估計(jì)越精確C.樣本容量越大,估計(jì)越精確D.樣本容量越小,估計(jì)越精確答案:∵用樣本頻率估計(jì)總體分布的過程中,估計(jì)的是否準(zhǔn)確與總體的數(shù)量無關(guān),只與樣本容量在總體中所占的比例有關(guān),∴樣本容量越大,估計(jì)的月準(zhǔn)確,故選C.19.雙曲線x225-y29=1的兩個焦點(diǎn)分別是F1,F(xiàn)2,雙曲線上一點(diǎn)P到F1的距離是12,則P到F2的距離是()A.17B.7C.7或17D.2或22答案:由題意,a=5,則由雙曲線的定義可知PF1-PF2=±10,∴PF2=2或22,故選D.20.若復(fù)數(shù)(1+bi)?(2-i)是純虛數(shù)(i是虛數(shù)單位,b是實(shí)數(shù)),則b=()A.-2B.-12C.12D.2答案:由(1+bi)?(2-i)=2+b+(2b-1)i是純虛數(shù),則2+b=02b-1≠0,解得b=-2.故選A.21.用反證法證明某命題時,對結(jié)論:“自然數(shù)a,b,c中恰有一個偶數(shù)”正確的假設(shè)為()
A.a(chǎn),b,c都是奇數(shù)
B.a(chǎn),b,c都是偶數(shù)
C.a(chǎn),b,c中至少有兩個偶數(shù)
D.a(chǎn),b,c中至少有兩個偶數(shù)或都是奇數(shù)答案:D22.已知函數(shù)f(x)=x2+px+q與函數(shù)y=f(f(f(x)))有一個相同的零點(diǎn),則f(0)與f(1)()
A.均為正值
B.均為負(fù)值
C.一正一負(fù)
D.至少有一個等于0答案:D23.設(shè)U={(x,y)|x2+y2≤1,x,y∈R},M={(x,y)|x|+|y|≤1,x,y∈R},現(xiàn)有一質(zhì)點(diǎn)隨機(jī)落入?yún)^(qū)域U中,則質(zhì)點(diǎn)落入M中的概率是()A.2πB.12πC.1πD.2π答案:滿足條件U={(x,y)|x2+y2≤1,x,y∈R}的圓,如下圖示:其中滿足條件M={(x,y)|x|+|y|≤1,x,y∈R}的平面區(qū)域如圖中陰影所示:則圓的面積S圓=π陰影部分的面積S陰影=2故質(zhì)點(diǎn)落入M中的概率概率P=S陰影S正方形=2π故選D24.設(shè)函數(shù)f(x)=(2a-1)x+b是R上的減函數(shù),則a的范圍為______.答案:∵f(x)=(2a-1)x+b是R上的減函數(shù),∴2a-1<0,解得a<12.故為:a<12.25.點(diǎn)(2,-2)的極坐標(biāo)為______.答案:∵點(diǎn)(2,-2)中x=2,y=-2,∴ρ=x2+y2=4+4=22,tanθ=yx=-1,∴取θ=-π4.∴點(diǎn)(2,-2)的極坐標(biāo)為(22,-π4)故為(22,-π4).26.若不等式logax>sin2x(a>0,a≠1)對任意x∈(0,π4)都成立,則a的取值范圍是()A.(0,π4)B.(π4,1)C.(π4,π2)D.(0,1)答案:∵當(dāng)x∈(0,π4)時,函數(shù)y=logax的圖象要恒在函數(shù)y=sin2x圖象的上方∴0<a<1如右圖所示當(dāng)y=logax的圖象過點(diǎn)(π4,1)時,a=π4,然后它只能向右旋轉(zhuǎn),此時a在增大,但是不能大于1故選B.27.如果如圖所示的程序中運(yùn)行后輸出的結(jié)果為132,那么在程序While后面的“條件”應(yīng)為______.答案:第一次循環(huán)之后s=12,i=11;第二次循環(huán)之后結(jié)果是s=132,i=10,已滿足題意跳出循環(huán).由于此循環(huán)體是當(dāng)型循環(huán)i=12、11都滿足條件,i=10不滿足條件.故為:i≥1128.對某種花卉的開放花期追蹤調(diào)查,調(diào)查情況如表:
花期(天)11~1314~1617~1920~22個數(shù)20403010則這種卉的平均花期為______天.答案:由表格知,花期平均為12天的有20個,花期平均為15天的有40個,花期平均為18天的有30個,花期平均為21天的有10個,∴這種花卉的評價花期是12×20+15×40+18×30+21×10100=16,故為:1629.(每題6分共12分)解不等式
(1)(2)答案:(1)(2)解析:本試題主要是考查了分式不等式和一元二次不等式的求解,以及含有根式的二次不等式的求解運(yùn)用。(1)移向,通分,合并,將分式化為整式,然后得到解集。(2)首先分析函數(shù)式有意義的x的取值,然后保證兩邊都有意義的時候,且都為正,兩邊平方求解得到。解:(2)當(dāng)8-x<0顯然成立。當(dāng)8-x》0時,則兩邊平方可得。所以30.已知平行四邊形的三個頂點(diǎn)A(-2,1),B(-1,3),C(3,4),求第四個頂點(diǎn)D的坐標(biāo).答案:若構(gòu)成的平行四邊形為ABCD1,即AC為一條對角線,設(shè)D1(x,y),則由AC中點(diǎn)也是BD1中點(diǎn),可得
-2+32=x-121+42=y+32,解得
x=2y=2,∴D1(2,2).同理可得,若構(gòu)成以AB為對角線的平行四邊形ACBD2,則D2(-6,0);以BC為對角線的平行四邊形ACD3B,則D3(4,6),∴第四個頂點(diǎn)D的坐標(biāo)為:(2,2),或(-6,0),或(4,6).31.(參數(shù)方程與極坐標(biāo))已知F是曲線x=2cosθy=1+cos2θ(θ∈R)的焦點(diǎn),M(12,0),則|MF|的值是
______.答案:y=1+cos2θ=2cos2θ=2?(x2)2化簡得x2=2y∴F(0,12)而M(12,0),∴|MF|=22故為:2232.復(fù)數(shù)i2000=______.答案:復(fù)數(shù)i2009=i4×500=i0=1故為:133.H:x-y+z=2為坐標(biāo)空間中一平面,L為平面H上的一直線.已知點(diǎn)P(2,1,1)為L上距離原點(diǎn)O最近的點(diǎn),則______為L的方向向量.答案:∵x-y+z=2為坐標(biāo)空間中一平面∴平面的一個法向量是n=(1,-1,1)設(shè)直線L的方向向量為d=(2,b,c)∵L在H上,∴d與平面H的法向量n=(1,-1,1)垂直故d?n=0?2-b+c=0∵P(2,1,1)為直線L上距離原點(diǎn)O最近的點(diǎn),∴.OP⊥L故OP?d=0?(2,1,1)?(2,b,c)=0?4+b+c=0解得b=-1,c=-3故為:(2,-1,-3)34.下列函數(shù)中,定義域?yàn)椋?,+∞)的是()A.y=1xB.y=xC.y=1x2D.y=12x答案:由于函數(shù)y=1x的定義域?yàn)椋?,+∞),函數(shù)y=x的定義域?yàn)閇0,+∞),函數(shù)y=1x2的定義域?yàn)閧x|x≠0},函數(shù)y=12x的定義域?yàn)镽,故只有A中的函數(shù)滿足定義域?yàn)椋?,+∞),故選A.35.曲線x=t+1ty=12(t+1t)(t為參數(shù))的直角坐標(biāo)方程是______.答案:∵曲線C的參數(shù)方程x=t+1ty=12(t+1t)(t為參數(shù))x=t+1t≥2,可得x的限制范圍是x≥2,再根據(jù)x2=t+1t+2,∴t+1t=x2-2,可得直角坐標(biāo)方程是:x2=2(y+1),(x≥2),故為:x2=2(y+1),(x≥2).36.某醫(yī)療研究所為了檢驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把500名使用血清的人與另外500名未用血清的人一年中的感冒記錄作比較,提出假設(shè)H0:“這種血清不能起到預(yù)防感冒的作用”,利用2×2列聯(lián)表計(jì)算得Χ2≈3.918,經(jīng)查對臨界值表知P(Χ2≥3.841)≈0.05.則下列結(jié)論中,正確結(jié)論的序號是______
(1)有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”
(2)若某人未使用該血清,那么他在一年中有95%的可能性得感冒
(3)這種血清預(yù)防感冒的有效率為95%
(4)這種血清預(yù)防感冒的有效率為5%答案:查對臨界值表知P(Χ2≥3.841)≈0.05,故有95%的把握認(rèn)為“這種血清能起到預(yù)防感冒的作用”950/0僅是指“血清與預(yù)防感冒”可信程度,但也有“在100個使用血清的人中一個患感冒的人也沒有”的可能.故為:(1).37.已知偶函數(shù)f(x)的圖象與x軸有五個公共點(diǎn),那么方程f(x)=0的所有實(shí)根之和為______.答案:∵函數(shù)y=f(x)是偶函數(shù)∴其圖象關(guān)于y軸對稱∴其圖象與x軸有五個交點(diǎn)也關(guān)于y軸對稱其中一個為0.另四個關(guān)于y軸對稱.∴方程f(x)=0的所有實(shí)根之和為0故為:0.38.“所有9的倍數(shù)(M)都是3的倍數(shù)(P),某奇數(shù)(S)是9的倍數(shù)(M),故此奇數(shù)(S)是3的倍數(shù)(P)”,上述推理是()
A.小前提錯
B.結(jié)論錯
C.正確的
D.大前提錯答案:C39.拋物線y=4x2的焦點(diǎn)坐標(biāo)是______.答案:由題意可知x2=14y∴p=18∴焦點(diǎn)坐標(biāo)為(0,116)故為(0,116)40.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,點(diǎn)M(ρ,θ)關(guān)于極點(diǎn)的對稱點(diǎn)的極坐標(biāo)是______.答案:由點(diǎn)的極坐標(biāo)的意義可得,點(diǎn)M(ρ,θ)關(guān)于極點(diǎn)的對稱點(diǎn)到極點(diǎn)的距離等于ρ,極角為π+θ,故點(diǎn)M(ρ,θ)關(guān)于極點(diǎn)的對稱點(diǎn)的極坐標(biāo)是(ρ,π+θ),故為(ρ,π+θ).41.已知a、b均為單位向量,它們的夾角為60°,那么|a+3b|=()
A.
B.
C.
D.4答案:C42.設(shè)a=0.7,b=0.8,c=log30.7,則()
A.c<b<a
B.c<a<b
C.a(chǎn)<b<c
D.b<a<c答案:B43.某工廠生產(chǎn)A,B,C三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:5.現(xiàn)用分層抽樣方法抽出一個容量為n的樣本,樣本中A型號產(chǎn)品有16件,則此樣本的容量為()
A.40
B.80
C.160
D.320答案:B44.從裝有2個紅球和2個黒球的口袋內(nèi)任取2個球,那么互斥而不對立的兩個事件是()
A.至少有一個黒球與都是紅球
B.至少有一個黒球與都是黒球
C.至少有一個黒球與至少有1個紅球
D.恰有1個黒球與恰有2個黒球答案:D45.設(shè)集合M={x|0<x≤3},N={x|0<x≤1},那么“a∈M”是“a∈N”的()
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件答案:B46.已知點(diǎn)A(1,0,-3)和向量AB=(-1,-2,0),則點(diǎn)B的坐標(biāo)為______.答案:設(shè)B(x,y,z),根據(jù)向量的坐標(biāo)運(yùn)算,AB=(x,y,z)
-
(1,0,-3)=(x-1,y,z+3)=(-1,-2,0)∴x=0,y=-2,z=-3.故為:(0,-2,-3).47.如圖,以1×3方格紙中的格點(diǎn)為起點(diǎn)和終點(diǎn)的所有向量中,有多少種大小不同的模?有多少種不同的方向?
答案:模為1的向量;模為2的向量;模為3的向量;模為2的向量;模為5的向量;模為10的向量共有6個模,進(jìn)而分析方向,正方形的邊對應(yīng)的向量共有四個方向,邊長為1的正方形的對角線對應(yīng)的向量共四個方向;1×2的矩形的對角線對應(yīng)的向量共四個方向;1×3的矩形對角線對應(yīng)的向量共有四個方向共有16個方向48.某自動化儀表公司組織結(jié)構(gòu)如圖所示,其中采購部的直接領(lǐng)導(dǎo)是()
A.副總經(jīng)理(甲)
B.副總經(jīng)理(乙)
C.總經(jīng)理
D.董事會
答案:B49.已知圓錐的母線長與底面半徑長之比為3:1,一個正方體有四個頂點(diǎn)在圓錐的底面內(nèi),另外的四個頂點(diǎn)在圓錐的側(cè)面上(如圖),則圓錐與正方體的表面積之比為(
)
A.π:1
B.3π:1
C.3π:2
D.3π:4
答案:D50.已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個底邊長為8,高為4的等腰三角形,左視圖是一個底邊長為6、高為4的等腰三角形.則該幾何體的體積為______.答案:由題意幾何體復(fù)原是一個底面邊長為8,6的距離,高為4,且頂點(diǎn)在底面的射影是底面矩形的中心的四棱錐.底面矩形的面積是48所以幾何體的體積是:13×46×4=64故為:64.第2卷一.綜合題(共50題)1.已知一種材料的最佳加入量在100g到200g之間,若用0.618法安排試驗(yàn),則第一次試點(diǎn)的加入量可以是(
)g。答案:161.8或138.22.已知圓的極坐標(biāo)方程是ρ=2cosθ,那么該圓的直角坐標(biāo)方程是()
A.(x-1)2+y2=1
B.x2+(y-1)2=1
C.(x+1)2+y2=1
D.x2+y2=2答案:A3.已知點(diǎn)D是△ABC的邊BC的中點(diǎn),若記AB=a,AC=b,則用a,b表示AD為______.答案:以AB,AC為臨邊作平行四邊形ACEB,連接其對角線AE、BC交與點(diǎn)D,易知D是△ABC的邊BC的中點(diǎn),且D是AE的中點(diǎn),如圖:由向量的平行四邊形法則可得AB+AC=a+b=AE=2AD,解得AD=12(a+b),故為:AD=12(a+b)4.設(shè)a,b∈R,ab≠0,則直線ax-y+b=0和曲線bx2+ay2=ab的大致圖形是()
A.
B.
C.
D.
答案:B5.在正方體ABCD-A1B1C1D1中,若E為A1C1中點(diǎn),則直線CE垂直于()A.ACB.BDC.A1DD.A1A答案:以A為原點(diǎn),AB、AD、AA1所在直線分別為x,y,z軸建空間直角坐標(biāo)系,設(shè)正方體棱長為1,則A(0,0,0),C(1,1,0),B(1,0,0),D(0,1,0),A1(0,0,1),E(12,12,1),∴CE=(-12,-12,1),AC=(1,1,0),BD=(-1,1,0),A1D=(0,1,-1),A1A=(0,0,-1),顯然CE?BD=12-12+0=0,∴CE⊥BD,即CE⊥BD.
故選B.6.mx+ny=1(mn≠0)與兩坐標(biāo)軸圍成的三角形面積為______.答案:由mx+ny=1(mn≠0),得x1m+y1n=1,所以mx+ny=1(mn≠0)在兩坐標(biāo)軸上的截距分別為1m,1n.則mx+ny=1(mn≠0)與兩坐標(biāo)軸圍成的三角形面積為12|mn|.故為12|mn|.7.向量在基底{,,}下的坐標(biāo)為(1,2,3),則向量在基底{}下的坐標(biāo)為()
A.(3,4,5)
B.(0,1,2)
C.(1,0,2)
D.(0,2,1)答案:D8.已知|a|=3,|b|=2,a與b的夾角為300,則|a+b|等于()A.13B.15C.17D.19答案:∵|a|=3,|b|=2,a與b的夾角為300,∴a?b=|a||b|cos30°=2×3×32=3則|a+b|=a2+2a?b+b2=13故選A9.設(shè)A、B為兩個事件,若事件A和B同時發(fā)生的概率為310,在事件A發(fā)生的條件下,事件B發(fā)生的概率為12,則事件A發(fā)生的概率為______.答案:根據(jù)題意,得∵P(A|B)=P(AB)P(B),P(AB)=310,P(A|B)=12∴12=310P(B),解得P(B)=31012=35故為:3510.拋物線C:y=x2上兩點(diǎn)M、N滿足MN=12MP,若OP=(0,-2),則|MN|=______.答案:設(shè)M(x1,x12),N(x2,x22),則MN=(x2-x1,x22-x12)MP=(-x1,-2-x12).因?yàn)镸N=12MP,所以(x2-x1,x22-x12)=12(-x1,-2-x12),即x2-x1=-12x1,x22-x12=12(-2-x12),所以x1=2x2,2x22=-2+x12,聯(lián)立解得:x2=1,x1=2或x2=-1,x1=-2即M(1,1),N(2,4)或M(-1,1),N(-2,4)所以|MN|=10故為10.11.若雙曲線的漸近線方程為y=±34x,則雙曲線的離心率為______.答案:由題意可得,當(dāng)焦點(diǎn)在x軸上時,ba=34,∴ca=a2+b2a=a2+(3a4)2a=54.當(dāng)焦點(diǎn)在y軸上時,ab=34,∴ca=a2+b2a=a2+(4a3)2a=53,故為:53
或54.12.若F1、F2是橢圓x24+y2=1的左、右兩個焦點(diǎn),M是橢圓上的動點(diǎn),則1|MF1|+1|MF2|的最小值為______.答案:∵F1、F2是橢圓x24+y2=1的左、右兩個焦點(diǎn),M是橢圓上的動點(diǎn),∴1|MF1|+1|MF2|=|MF1|+|MF2||MF1|?|MF2|=4|MF1|?|MF2|,∵|MF1|?|MF2|的最大值為a2=4,∴1|MF1|+1|MF2|的最小值=44=1.故為:1.13.在空間坐標(biāo)中,點(diǎn)B是A(1,2,3)在yOz坐標(biāo)平面內(nèi)的射影,O為坐標(biāo)原點(diǎn),則|OB|等于()
A.
B.
C.2
D.答案:B14.點(diǎn)M(2,-3,1)關(guān)于坐標(biāo)原點(diǎn)對稱的點(diǎn)是()
A.(-2,3,-1)
B.(-2,-3,-1)
C.(2,-3,-1)
D.(-2,3,1)答案:A15.如果關(guān)于x的不等式組有解,那么實(shí)數(shù)a的取值范圍(
)
A.(-∞,-3)∪(1,+∞)
B.(-∞,-1)∪(3,+∞)
C.(-1,3)
D.(-3,1)答案:C16.不等式log32x-log3x2-3>0的解集為()
A.(,27)
B.(-∞,-1)∪(27,+∞)
C.(-∞,)∪(27,+∞)
D.(0,)∪(27,+∞)答案:D17.敘述并證明勾股定理.答案:證明:如圖左邊的正方形是由1個邊長為a的正方形和1個邊長為b的正方形以及4個直角邊分別為a、b,斜邊為c的直角三角形拼成的.右邊的正方形是由1個邊長為c的正方形和4個直角邊分別為a、b,斜邊為c的直角三角形拼成的.因?yàn)檫@兩個正方形的面積相等(邊長都是a+b),所以可以列出等式a2+b2+4×12ab=c2+4×12ab,化簡得a2+b2=c2.下面是一個錯誤證法:勾股定理:直角三角形的兩直角邊的平方和等于斜邊的平方這一特性叫做勾股定理或勾股弦定理,又稱畢達(dá)哥拉斯定理或畢氏定理證明:作兩個全等的直角三角形,設(shè)它們的兩條直角邊長分別為a、b(b>a),斜邊長為c.再做一個邊長為c的正方形.把它們拼成如圖所示的多邊形,使E、A、C三點(diǎn)在一條直線上.過點(diǎn)Q作QP∥BC,交AC于點(diǎn)P.過點(diǎn)B作BM⊥PQ,垂足為M;再過點(diǎn)F作FN⊥PQ,垂足為N.∵∠BCA=90°,QP∥BC,∴∠MPC=90°,∵BM⊥PQ,∴∠BMP=90°,∴BCPM是一個矩形,即∠MBC=90°.∵∠QBM+∠MBA=∠QBA=90°,∠ABC+∠MBA=∠MBC=90°,∴∠QBM=∠ABC,又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,∴Rt△BMQ≌Rt△BCA.同理可證Rt△QNF≌Rt△AEF.即a2+b2=c218.過拋物線y2=2px(p>0)的焦點(diǎn)F的直線與拋物線相交于M,N兩點(diǎn),自M,N向準(zhǔn)線l作垂線,垂足分別為M1,N1,則∠M1FN1等于()
A.45°
B.60°
C.90°
D.120°答案:C19.一個底面是正三角形的三棱柱的側(cè)視圖如圖所示,則該幾何體的側(cè)面積等于()A.3B.6C.23D.2答案:由正視圖知:三棱柱是以底面邊長為2,高為1的正三棱柱,側(cè)面積為3×2×1=6,故為:B.20.已知x與y之間的一組數(shù)據(jù)是()
x0123y2468則y與x的線性回歸方程y=bx+a必過點(diǎn)()A.(2,2)B.(1,2)C.(1.5,0)D.(1.5,5)答案:根據(jù)所給的表格得到.x=0+1+2+34=1.5,.y=2+4+6+84=5,∴這組數(shù)據(jù)的樣本中心點(diǎn)是(1.5,5)∵線性回歸直線一定過樣本中心點(diǎn),∴y與x的線性回歸方程y=bx+a必過點(diǎn)(1.5,5)故選D.21.經(jīng)過拋物線y2=2x的焦點(diǎn)且平行于直線3x-2y+5=0的直線的方程是()
A.6x-4y-3=0
B.3x-2y-3=0
C.2x+3y-2=0
D.2x+3y-1=0答案:A22.若長方體的三個面的對角線長分別是a,b,c,則長方體體對角線長為()A.a(chǎn)2+b2+c2B.12a2+b2+c2C.22a2+b2+c2D.32a2+b2+c2答案:解析:設(shè)同一頂點(diǎn)的三條棱分別為x,y,z,則x2+y2=a2,y2+z2=b2,x2+z2=c2得x2+y2+z2=12(a2+b2+c2),則對角線長為12(a2+b2+c2)=22a2+b2+c2.故選C.23.設(shè)a、b∈R+且a+b=3,求證1+a+1+b≤10.答案:證明:證法一:(綜合法)∵(1+a+1+b)2=2+a+b+2(1+a)?(1+b)≤5+(1+a+1+b)=10∴1+a+1+b≤10證法二:(分析法)∵a、b∈R+且a+b=3,∴欲證1+a+1+b≤10只需證(1+a+1+b)2≤10即證2+a+b+2(1+a)?(1+b)≤10即證2(1+a)?(1+b)≤5只需證4(1+a)?(1+b)≤25只需證4(1+a)?(1+b)≤25即證4(1+a+b+ab)≤25只需證4ab≤9即證ab≤94∵ab≤(a+b2)2=(32)2=94成立∴1+a+1+b≤10成立24.有一個質(zhì)地均勻的正四面體,它的四個面上分別標(biāo)有1,2,3,4這四個數(shù)字.現(xiàn)將它連續(xù)拋擲3次,其底面落于桌面,記三次在正四面體底面的數(shù)字和為S,則“S恰好為4”的概率為______.答案:由題意知本題是一個古典概型,試驗(yàn)發(fā)生包含的事件是拋擲這顆正四面體骰子兩次,共有4×4×4=64種結(jié)果,滿足條件的事件是三次在正四面體底面的數(shù)字和為S,S恰好為4,可以列舉出這種事件,(1,1,2),(1,2,1),(2,1,1)共有3種結(jié)果,根據(jù)古典概型概率公式得到P=364,故為:364.25.滿足{1,2}∪A={1,2,3}的集合A的個數(shù)為______.答案:由{1,2}∪A={1,2,3},所以A={3},或{1,3},或{2,3},或{1,2,3}.所以集合A的個數(shù)為4.26.下列說法中正確的是()A.一個命題的逆命題為真,則它的逆否命題一定為真B.“a>b”與“a+c>b+c”不等價C.“a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”D.一個命題的否命題為真,則它的逆命題一定為真答案:A、逆命題與逆否命題之間不存在必然的真假關(guān)系,故A錯誤;B、由不等式的性質(zhì)可知,“a>b”與“a+c>b+c”等價,故B錯誤;C、“a2+b2=0,則a,b全為0”的逆否命題是“若a,b不全為0,則a2+b2≠0”,故C錯誤;D、否命題和逆命題是互為逆否命題,有著一致的真假性,故D正確;故選D27.對于回歸方程y=4.75x+2.57,當(dāng)x=28時,y
的估計(jì)值是______.答案:∵回歸方程y=4.75x+2.57,∴當(dāng)x=28時,y的估計(jì)值是4.75×28+2.57=135.57.故為:135.57.28.已知M為橢圓x2a2+y2b2=1(a>b>0)上的動點(diǎn),F(xiàn)1、F2為橢圓焦點(diǎn),延長F2M至點(diǎn)B,則ρF1MB的外角的平分線為MN,過點(diǎn)F1作
F1Q⊥MN,垂足為Q,當(dāng)點(diǎn)M在橢圓上運(yùn)動時,則點(diǎn)Q的軌跡方程是______.答案:點(diǎn)F1關(guān)于∠F1MF2的外角平分線MQ的對稱點(diǎn)N在直線F1M的延長線上,故|F1N|=|PF1|+|PF2|=2a(橢圓長軸長),又OQ是△F2F1N的中位線,故|OQ|=a,點(diǎn)Q的軌跡是以原點(diǎn)為圓心,a為半徑的圓,點(diǎn)Q的軌跡方程是x2+y2=a2故為:x2+y2=a229.如果隨機(jī)變量ξ~N(0,σ2),且P(-2<ξ≤0)=0.4,則P(ξ>2)等于()
A.0.1
B.0.2
C.0.3
D.0.4答案:A30.如圖是容量為150的樣本的頻率分布直方圖,則樣本數(shù)據(jù)落在[6,10)內(nèi)的頻數(shù)為()A.12B.48C.60D.80答案:根據(jù)頻率分布直方圖,樣本數(shù)據(jù)落在[6,10)內(nèi)的頻數(shù)為0.08×4×150=48故選B.31.如圖,已知圓中兩條弦AB與CD相交于點(diǎn)F,E是AB延長線上一點(diǎn),且
DF=CF=2,AF:FB:BE=4:2:1.若CE與圓相切,則CE的長為.答案:設(shè)AF=4k,BF=2k,BE=k,由DF?FC=AF?BF,得2=8k2,即k=12,∴AF=2,BF=1,BE=12,AE=72,由切割定理得CE2=BE?EA=12×72=74∴CE=7232.已知直線l的參數(shù)方程為x=3+12ty=7+32t(t為參數(shù)),曲線C的參數(shù)方程為x=4cosθy=4sinθ(θ為參數(shù)).
(I)將曲線C的參數(shù)方程轉(zhuǎn)化為普通方程;
(II)若直線l與曲線C相交于A、B兩點(diǎn),試求線段AB的長.答案:(I)由x=4cosθy=4sinθ得x2=16cos2θy2=16sin2θ故圓的方程為x2+y2=16.(II)把x=3+12ty=7+32t代入方程x2+y2=16,得t2+83t+36=0∴線段AB的長為|AB|=|t1-t2|=(t1+t2)2-4t1t2=43.33.有5組(x,y)的統(tǒng)計(jì)數(shù)據(jù):(1,2),(2,4),(4,5),(3,10),(10,12),要使剩下的數(shù)據(jù)具有較強(qiáng)的相關(guān)關(guān)系,應(yīng)去掉的一組數(shù)據(jù)是()
A.(1,2)
B.(4,5)
C.(3,10)
D.(10,12)答案:C34.已知a=(1,2),則|a|=______.答案:∵a=(1,2),∴|a|=12+22=5.故為5.35.設(shè)平面α的法向量為(1,2,-2),平面β的法向量為(-2,-4,k),若α∥β,則k=______.答案:∵α∥β∴平面α、β的法向量互相平行,由此可得a=(1,2,-2),b=(-2,-4,k),a∥b∴1-2=2-4=-2k,解之得k=4.故為:436.如圖,在扇形OAB中,∠AOB=60°,C為弧AB上且與A,B不重合的一個動點(diǎn),OC=xOA+yOB,若u=x+λy,(λ>0)存在最大值,則λ的取值范圍為()A.(12,1)B.(1,3)C.(12,2)D.(13,3)答案:設(shè)射線OB上存在為B',使OB′=1λOB,AB'交OC于C',由于OC=xOA+yOB=xOA+λy?1λOB=xOA+λy?OB′,設(shè)OC=tOC′,OC′=x′OA+λy′OB′,由A,B',C'三點(diǎn)共線可知x'+λy'=1,所以u=x+2y=tx'+t?2y'=t,則u=|OC||OC′|存在最大值,即在弧AB(不包括端點(diǎn))上存在與AB'平行的切線,所以λ∈(12,2).故選C.37.一個口袋內(nèi)有5個白球和3個黑球,任意取出一個,如果是黑球,則這個黑球不放回且另外放入一個白球,這樣繼續(xù)下去,直到取出的球是白球?yàn)橹梗笕〉桨浊蛩璧拇螖?shù)ξ的概率分布列及期望.答案:由題意知變量的可能取值是1,2,3,4P(ξ=1)=58,P(ξ=2)=932,P(ξ=3)=21256
P(ξ=1)=3256
∴ξ的分布列是ξ1234P58932212563256∴Eξ=1×58+2×923+3×21256+4×3256=37925638.設(shè)15000件產(chǎn)品中有1000件次品,從中抽取150件進(jìn)行檢查,則查得次品數(shù)的數(shù)學(xué)期望為______.答案:∵15000件產(chǎn)品中有1000件次品,從中抽取150件進(jìn)行檢查,∴查得次品數(shù)的數(shù)學(xué)期望為150×100015000=10.故為10.39.如圖,花園中間是噴水池,噴水池周圍的A、B、C、D區(qū)域種植草皮,要求相鄰的區(qū)域種不同顏色的草皮,現(xiàn)有4種不同顏色的草皮可供選用,則共有______種不同的種植方法(以數(shù)字作答).答案:若AD相同,有4×(3+3×2)種種植方法,若AD不同,有4×3×(2+2×1)種種植方法∴共有4×(3+3×2)+4×3×(2+2×1)=36+48=84種不同方法.故為84.40.橢圓焦點(diǎn)在x軸,離心率為32,直線y=1-x與橢圓交于M,N兩點(diǎn),滿足OM⊥ON,求橢圓方程.答案:設(shè)橢圓方程x2a2+y2b2=1(a>b>0),∵e=32,∴a2=4b2,即a=2b.∴橢圓方程為x24b2+y2b2=1.把直線方程代入化簡得5x2-8x+4-4b2=0.設(shè)M(x1,y1)、N(x2,y2),則x1+x2=85,x1x2=15(4-4b2).∴y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2=15(1-4b2).由于OM⊥ON,∴x1x2+y1y2=0.解得b2=58,a2=52.∴橢圓方程為25x2+85y2=1.41.一射手對靶射擊,直到第一次命中為止每次命中的概率為0.6,現(xiàn)有4顆子彈,命中后的剩余子彈數(shù)目ξ的期望為()
A.2.44
B.3.376
C.2.376
D.2.4答案:C42.已知單位正方體ABCD-A1B1C1D1,E分別是棱C1D1的中點(diǎn),試求:
(1)AE與平面BB1C1C所成的角的正弦值;
(2)二面角C1-DB-A的余弦值.答案:以D為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,如圖所示:(1)設(shè)正方體棱長為2.則E(0,1,2),A(2,0,0).AE=(-2,1,2),平面BCC1B1的法向量為n=(0,1,0).設(shè)AE與平面BCC1B1所成的角為θ.sinθ=|cos<AE,n>|=|AE?n||AE|
|n|=19=13.∴sinθ=13.(2)A(1,0,0),B(1,1,0),C1(0,1,1),∴DA=(1,0,0),DB=(1,1,0),DC1=(0,1,1).設(shè)平面DBC1的法向量為n1=(x,y,z),則n1?DB=x+y=0n1?DC1=y+z=0,令y=-1,則x=1,z=1.∴n1=(1,-1,1).取平面ADB的法向量為n2=(0,0,1).設(shè)二面角C1-DB-A的大小為α,從圖中可知:α為鈍角.∵cos<n1,n2>=n1?n2|n1|
|n2|=13=33,∴cosα=-33.43.圓柱的底面積為S,側(cè)面展開圖為正方形,那么這個圓柱的側(cè)面積為()A.πSB.2πSC.3πSD.4πS答案:設(shè)圓柱的底面半徑是R,母線長是l,∵圓柱的底面積為S,側(cè)面展開圖為正方形,∴πR2=S,且l=2πR,∴圓柱的側(cè)面積為2πRl=4πS.故選D.44.從A處望B處的仰角為α,從B處望A處的俯角為β,則α、β的關(guān)系為()A.α>βB.α=βC.α+β=90°D.α+β=180°答案:從點(diǎn)A看點(diǎn)B的仰角與從點(diǎn)B看點(diǎn)A的俯角互為內(nèi)錯角,大小相等.仰角和俯角都是水平線與視線的夾角,故α=β.故選:B.45.A、B、C是我軍三個炮兵陣地,A在B的正東方向相距6千米,C在B的北30°西方向,相距4千米,P為敵炮陣地.某時刻,A發(fā)現(xiàn)敵炮陣地的某信號,由于B、C比A距P更遠(yuǎn),因此,4秒后,B、C才同時發(fā)現(xiàn)這一信號(該信號的傳播速度為每秒1千米).若從A炮擊敵陣地P,求炮擊的方位角.答案:以線段AB的中點(diǎn)為原點(diǎn),正東方向?yàn)閤軸的正方向建立直角坐標(biāo)系,則A(3,0)
B(-3,0)
C(-5,23)依題意|PB|-|PA|=4∴P在以A、B為焦點(diǎn)的雙曲線的右支上.這里a=2,c=3,b2=5.其方程為
x24-y25=1
(x>0)…(3分)又|PB|=|PC|,∴P又在線段BC的垂直平分線上x-3y+7=0…(5分)由方程組x-3y+7=05x2-4y2=20解得
x=8(負(fù)值舍去)y=53即
P(8,53)…(8分)由于kAP=3,可知P在A北30°東方向.…(10分)46.定義直線關(guān)于圓的圓心距單位λ為圓心到直線的距離與圓的半徑之比.若圓C滿足:①與x軸相切于點(diǎn)A(3,0);②直線y=x關(guān)于圓C的圓心距單位λ=2,試寫出一個滿足條件的圓C的方程______.答案:由題意可得圓心的橫坐標(biāo)為3,設(shè)圓心的縱坐標(biāo)為r,則半徑為|r|>0,則圓心的坐標(biāo)為(3,r).設(shè)圓心到直線y=x的距離為d,d=|3-r|2,則由題意可得λ=d|r|=2,求得r=1,或r=-3,故一個滿足條件的圓C的方程是(x-3)2+(y-1)2=1,故為(x-3)2+(y-1)2=147.以過橢圓+=1(a>b>0)的右焦點(diǎn)的弦為直徑的圓與其右準(zhǔn)線的位置關(guān)系是()
A.相交
B.相切
C.相離
D.不能確定答案:C48.已知|a|=1,|b|=2,<a,b>=60°,則|2a+b|=______.答案:∵|a|=1,|b|=2,<a,b>=60°,∴a?b=|a|×|b|cos60°=1由此可得(2a+b)2=4a2+4a?b+b2=4×12+4×1+22=12∴|2a+b|=(2a+b)2=23故為:2349.方程x2+ky2=2表示焦點(diǎn)在y軸的橢圓,那么實(shí)數(shù)k的取值范圍是
______.答案:橢圓方程化為x22+y22k=1.焦點(diǎn)在y軸上,則2k>2,即k<1.又k>0,∴0<k<1.故為:0<k<150.如圖,平面內(nèi)有三個向量OA、OB、OC,其中與OA與OB的夾角為120°,OA與OC的夾角為30°,且|OA|=|OB|=1,|OC|=23,若OC=λOA+μOB(λ,μ∈R),則λ+μ的值為______.答案:過C作OA與OB的平行線與它們的延長線相交,可得平行四邊形,由∠BOC=90°,∠AOC=30°,由|OA|=|OB|=1,|OC|=23得平行四邊形的邊長為2和4,λ+μ=2+4=6.故為6.第3卷一.綜合題(共50題)1.已知|log12x+4i|≥5,則實(shí)數(shù)x
的取值范圍是______.答案:由題意,得(log12x)2+42≥5?|log12x|≥3?0<x≤18或x≥8.∴則實(shí)數(shù)x
的取值范圍是0<x≤18或x≥8.故為:0<x≤18或x≥8.2.如圖所示,在Rt△ABC內(nèi)有一內(nèi)接正方形,它的一條邊在斜邊BC上,設(shè)AB=a,∠ABC=θ
(1)求△ABC的面積f(θ)與正方形面積g(θ);
(2)當(dāng)θ變化時,求f(θ)g(θ)的最小值.答案:(1)由題得:AC=atanθ∴f(θ)=12a2tanθ(0<θ<π2)
設(shè)正方形的邊長為x,則BG=xsinθ,由幾何關(guān)系知:∠AGD=θ∴AG=xcosθ
由BG+AG=a?xsinθ+xcosθ=a?x=asinθ1+sinθcosθ∴g(θ)=a2sin2θ(1+sinθcosθ)2(0<θ<π2)(2)f(θ)g(θ)=(1+sinθcoθ)22sinθcosθ=1+1sin2θ+sin2θ4
令:t=sin2θ∵0<θ<π2∴t∈(0,1]∴y=1+1t+t4=1+14(t+t4)∵函數(shù)y=1+14(t+t4)在(0,1]遞減∴ymin=94(當(dāng)且僅當(dāng)t=1即θ=π4時成立)∴當(dāng)θ=π4時,f(θ)g(θ)的最小值為94.3.在空間直角坐標(biāo)系0xyz中有兩點(diǎn)A(2,5,1)和B(2,4,-1),則|AB|=______.答案:∵點(diǎn)A(2,5,1)和B(2,4,-1),∴AB=(0,-1,-2).∴|AB|=0+(-1)2+(-2)2=5.故為5.4.若回歸直線方程中的回歸系數(shù)b=0時,則相關(guān)系數(shù)r=______.答案:由于在回歸系數(shù)b的計(jì)算公式中,與相關(guān)指數(shù)的計(jì)算公式中,它們的分子相同,故為:0.5.“a=0”是“復(fù)數(shù)z=a+bi(a,b∈R)為純虛數(shù)”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:依題意,復(fù)數(shù)z=a+bi(a,b∈R)為純虛數(shù),?a=0且b≠0,∴“a=0”是“復(fù)數(shù)z=a+bi(a,b∈R)為純虛數(shù)”的必要不充分條件,故選B.6.用反證法證明命題“三角形的內(nèi)角中至多有一個是鈍角”時,第一步是:“假設(shè)______.答案:根據(jù)用反證法證明數(shù)學(xué)命題的方法和步驟,應(yīng)先假設(shè)命題的否定成立,而命題“三角形的內(nèi)角中至多有一個是鈍角”的否定為:“三角形的內(nèi)角中至少有兩個鈍角”,故為“三角形的內(nèi)角中至少有兩個鈍角”.7.四面體ABCD中,設(shè)M是CD的中點(diǎn),則化簡的結(jié)果是()
A.
B.
C.
D.答案:A8.已知點(diǎn)A(1,-2,0)和向量a=(-3,4,12),若AB=2a,則點(diǎn)B的坐標(biāo)為______.答案:∵向量a=(-3,4,12),AB=2a,∴AB=(-6,8,24)∵點(diǎn)A(1,-2,0)∴B(-6+1,8-2,24-0)=(-5,6,24)故為:(-5,6,24)9.如圖,在△ABC中,∠ACB=90°,AB=8,∠BAC=60°,PC⊥平面ABC,PC=4,M為AB邊上的一個動點(diǎn),求PM的最小值.答案:過C作CM⊥AB,連接PM,因?yàn)镻C⊥AB,所以AB⊥平面PCM,所以PM⊥AB,此時PM最短,∵∠BAC=60°,AB=8,∴AC=AB?cos60°=4.∴CM=AC?sin60°=4?32=23.∴PM=PC2+CM2=16+12=27.10.若矩陣滿足下列條件:①每行中的四個數(shù)所構(gòu)成的集合均為{1,2,3,4};②四列中有且只有兩列的上下兩數(shù)是相同的.則這樣的不同矩陣的個數(shù)為()
A.24
B.48
C.144
D.288答案:C11.若lga,lgb是方程2x2-4x+1=0的兩個根,則的值等于
A.2
B.
C.4
D.答案:A12.設(shè)ABC是坐標(biāo)平面上的一個三角形,P為平面上一點(diǎn)且AP=15AB+25AC,則△ABP的面積△ABC的面積=()A.12B.15C.25D.23答案:連接CP并延長交AB于D,∵P、C、D三點(diǎn)共線,∴AP=λAD+μAC且λ+μ=1設(shè)AB=kAD,結(jié)合AP=15AB+25AC得AP=k5AD+25AC由平面向量基本定理解之,得λ=35,k=3且μ=25∴AP=35AD+25AC,可得PD=25CD,∵△ABP的面積與△ABC有相同的底邊AB高的比等于|PD|與|CD|之比∴△ABP的面積與△ABC面積之比為25故選:C13.若a=(1,1),則|a|=______.答案:由題意知,a=(1,1),則|a|=1+1=2,故為:2.14.與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是______.答案:設(shè)M(x,y)為所求軌跡上任一點(diǎn),則由題意知1+|y|=x2+y2,化簡得x2=2|y|+1.因此與x軸相切并和圓x2+y2=1外切的圓的圓心的軌跡方程是x2=2|y|+1.故為x2=2|y|+1.15.(幾何證明選講選做題)如圖,⊙O中,直徑AB和弦DE互相垂直,C是DE延長線上一點(diǎn),連接BC與圓0交于F,若∠CFE=α(α∈(0,π2)),則∠DEB______.答案:∵直徑AB和弦DE互相垂直∴AB平分DE∴BD=BE,∠D=∠BED∵DEFB四點(diǎn)共圓∴∠EFC=∠D=α∴∠DEB=α故為:α16.一組數(shù)據(jù)12,15,24,25,31,31,36,36,37,39,44,49,50的中位數(shù)是()
A.31
B.36
C.35
D.34答案:B17.俊、杰兄弟倆分別在P、Q兩籃球隊(duì)效力,P隊(duì)、Q隊(duì)分別有14和15名球員,且每個隊(duì)員在各自隊(duì)中被安排首發(fā)上場的機(jī)會是均等的,則P、Q兩隊(duì)交戰(zhàn)時,俊、杰兄弟倆同為首發(fā)上場交戰(zhàn)的概率是(首發(fā)上場各隊(duì)五名隊(duì)員)(
)A.B.C.D.答案:B解析:解:P(俊首發(fā))=
P(杰首發(fā))==P(俊、杰同首發(fā))=
選B評析:考察考生等可能事件的概率與相互獨(dú)立事件的概率問題。18.若集合M={a,b,c}中的元素是△ABC的三邊長,則△ABC一定不是()
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.等腰三角形答案:D19.設(shè)U={三角形},M={直角三角形},N={等腰三角形},則M∩N=______.答案:∵M(jìn)={直角三角形},N={等腰三角形},∴M∩N={直角三角形且等腰三角形}={等腰直角三角形}故為{等腰直角三角形}20.已知函數(shù)y=f(x)是偶函數(shù),其圖象與x軸有四個交點(diǎn),則f(x)=0的所有實(shí)數(shù)根之和為______.答案:∵函數(shù)y=f(x)是偶函數(shù)∴其圖象關(guān)于y軸對稱∴其圖象與x軸有四個交點(diǎn)也關(guān)于y軸對稱∴方程f(x)=0的所有實(shí)根之和為0故為:021.若關(guān)于x的不等式xa2-2xa-3<0在[-1,1]上恒成立,則實(shí)數(shù)a的取值范圍是
A.[-1,1]
B.[-1,3]
C.(-1,1)
D.(-1,3)答案:D22.如圖,在正方體ABCD-A1B1C1D1中,E為AB的中點(diǎn).
(1)求異面直線BD1與CE所成角的余弦值;
(2)求二面角A1-EC-A的余弦值.答案:以D為原點(diǎn),DC為y軸,DA為x軸,DD1為Z軸建立空間直角坐標(biāo)系,…(1分)則A1(1,0,1),B(1,1,0),C(0,1,0),D1(0,0,1),E(1,12,0),…(2分)(1)BD1=(-1,-1,1),CE=(1,-12,0)…(1分)cos<BD1,CE>=-1515,…(1分)所以所求角的余弦值為1515…(1分)(2)D1D⊥平面AEC,所以D1D為平面AEC的法向量,D1D=(0,0,1)…(1分)設(shè)平面A1EC法向量為n=(x,y,z),又A1E=(0,12,-1),A1C=(-1,1,-1),n?A1E=0n?A1C=0即12y-z=0-x+y-z=0,取n=(1,2,1),…(3分)所以cos<DD1,n>=66…(2分)23.已知隨機(jī)變量X的分布列是:(
)
X
4
a
9
10
P
0.3
0.1
b
0.2
且EX=7.5,則a的值為()
A.5
B.6
C.7
D.8答案:C24.若復(fù)數(shù)z=a+bi(a、b∈R)是虛數(shù),則a、b應(yīng)滿足的條件是()A.a(chǎn)=0,b≠0B.a(chǎn)≠0,b≠0C.a(chǎn)≠0,b∈RD.b≠0,a∈R答案:∵復(fù)數(shù)z=a+bi(a、b∈R)是虛數(shù),∴根據(jù)虛數(shù)的定義得b≠0,a∈R,故選D.25.六個不同大小的數(shù)按如圖形式隨機(jī)排列,設(shè)第一行這個數(shù)為M1,M2,M3分別表示第二、三行中最大數(shù),則滿足M1<M2<M3所有排列的個數(shù)______.答案:首先M3一定是6個數(shù)中最大的,設(shè)這六個數(shù)分別為a,b,c,d,e,f,不妨設(shè)a>b>c>d>e>f.因?yàn)槿绻鸻在第三行,則a一定是M3,若a不在第三行,則a一定是M1或M2,此時無法滿足M1<M2<M3,故a一定在第三行.故
M2一定是b,c,d中一個,否則,若M2是e,則第二行另一個數(shù)只能是f,那么第一行的數(shù)就比e大,無法滿足M1<M2<M3.當(dāng)M2是b時,此時,a在第三行,b在第二行,其它數(shù)任意排,所有的排法有C31
C21
A44=144(種),當(dāng)M2是c時,此時a和b必須在第三行,c在第二行,其它數(shù)任意排,所有的排法有A32
C21
A33=72(種),當(dāng)M2是d時,此時,a,b,c在第三行,d在第二行,其它數(shù)任意排,所有的排法有A33
C21
A22=24(種),故滿足M1<M2<M3所有排列的個數(shù)為:24+72+144=240種,故為:240.26.根據(jù)如圖的框圖,寫出打印的第五個數(shù)是______.答案:分析程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:該程序的作用是:輸出N<35時,打印A值.程序在運(yùn)行過程中各變量的情況如下表示:
是否繼續(xù)循環(huán)
A
N循環(huán)前
1
1
第一圈
2×1+1=3
2
是第二圈
2×3+1=7
3
是第三圈
2×7+1=15
4
是第四圈
2×15+1=31
5
是…所以這個打印的第五個數(shù)是31.故為:3127.設(shè)隨機(jī)變量X~N(μ,δ2),且p(X≤c)=p(X>c),則c的值()
A.0
B.1
C.μ
D.μ答案:C28.已知向量,,若與共線,則的值為
A
B
C
D
答案:D解析:,,由,得29.點(diǎn)P(1,2,2)到原點(diǎn)的距離是()
A.9
B.3
C.1
D.5答案:B30.如圖,在等腰△ABC中,AC=AB,以AB為直徑的⊙O交BC于點(diǎn)E,過點(diǎn)E作⊙O的切線交AC于點(diǎn)D,交AB的延長線于點(diǎn)P.問:PD與AC是否互相垂直?請說明理由.答案:PD與AC互相垂直.理由如下:連接OE,則OE⊥PD;∵AC=AB,OE=OB,∴∠OEB=∠B=∠C,∴OE∥AC,∴PD與AC互相垂直.31.若a=()x,b=x3,c=logx,則當(dāng)x>1時,a,b,c的大小關(guān)系式()
A.a(chǎn)<b<c
B.c<b<a
C.c<a<b
D.a(chǎn)<c<b答案:C32.已知拋物線的參數(shù)方程為(t為參數(shù)),其中p>0,焦點(diǎn)為F,準(zhǔn)線為l,過拋物線上一點(diǎn)M作l的垂線,垂足為E.若|EF|=|MF|,點(diǎn)M的橫坐標(biāo)是3,則p=(
)。答案:233.設(shè)集合A={0,1,2,3},B={1,2,3,4},則集合A∩B的真子集的個數(shù)為()A.32個B.16個C.8個D.7個答案:∵A={0,1,2,3},B={1,2,3,4},∴集合A∩B={1,2,3}.集合的真子集為{1},{2},{3},{1,2},{1,3},{2,3},?.共有7個.故選D.34.在極坐標(biāo)系中,若等邊三角形ABC(頂點(diǎn)A,B,C按順時針方向排列)的頂點(diǎn)A,B的極坐標(biāo)分別為(2,π6),(2,7π6),則頂點(diǎn)C的極坐標(biāo)為______.答案:如圖所示:由于A,B的極坐標(biāo)(2,π6),(2,7π6),故極點(diǎn)O為線段AB的中點(diǎn).故等邊三角形ABC的邊長為4,AB邊上的高(即點(diǎn)C到AB的距離)OC等于23.設(shè)點(diǎn)C的極坐標(biāo)為(23,π6+π2),即(23,2π3),故為(23,2π3).35.如圖,AB是半圓O的直徑,C是AB延長線上一點(diǎn),CD切半圓于D,CD=4,AB=3BC,則AC的長是______.答案:∵CD是圓O的切線,∴由切割線定理得:CD2=CB×CA,∵AB=3BC,設(shè)BC=x,由CA=4x,又CD=4∴16=x×4x,x=2∴則AC的長是8.故填:8.36.若一點(diǎn)P的極坐標(biāo)是(r,θ),則它的直角坐標(biāo)如何?答案:由題意可知x=rcosθ,y=rsinθ.所以點(diǎn)P的極坐標(biāo)是(r,θ)的直角坐標(biāo)為:(rcosθ,rsinθ).37.在極坐標(biāo)系中,若點(diǎn)A(ρ0,π3)(ρ0≠0)是曲線ρ=2cosθ上的一點(diǎn),則ρ0=______.答案:∵點(diǎn)A(ρ0,π3)(ρ0≠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 城市地鐵站鋼結(jié)構(gòu)施工合同范本
- 2024小貸公司借款合同范本
- 2024彩板施工安全合同
- 2024年東莞市特許經(jīng)營權(quán)許可合同
- 2024年制鋼原料訂購協(xié)議
- 2024水電裝修勞務(wù)承包合同范本
- 2024年農(nóng)產(chǎn)品產(chǎn)地冷鏈設(shè)施建設(shè)合同
- 2024年產(chǎn)業(yè)地產(chǎn)項(xiàng)目股權(quán)協(xié)議
- 2024年兼職銷售合同樣本
- 2024《銷售代理合同》
- 遼寧省大連市金普新區(qū)2024-2025學(xué)年七年級上學(xué)期11月期中英語試題(無答案)
- 河南科技大學(xué)《材料科學(xué)基礎(chǔ)》2021-2022學(xué)年第一學(xué)期期末試卷
- 區(qū)病案質(zhì)控中心匯報
- 期中測試卷(1-4單元)(試題)2024-2025學(xué)年四年級上冊數(shù)學(xué)人教版
- 2024塔吊司機(jī)的勞動合同范本
- 2024年國家公務(wù)員考試《行測》真題卷(副省級)答案及解析
- 教育局職業(yè)院校教師培訓(xùn)實(shí)施方案
- 《萬維網(wǎng)服務(wù)大揭秘》課件 2024-2025學(xué)年人教版新教材初中信息技術(shù)七年級全一冊
- 2024年新華社招聘應(yīng)屆畢業(yè)生及留學(xué)回國人員129人歷年高頻難、易錯點(diǎn)500題模擬試題附帶答案詳解
- 江蘇省南京市秦淮區(qū)2023-2024學(xué)年八年級上學(xué)期期中語文試題及答案
- 2024年個人車位租賃合同參考范文(三篇)
評論
0/150
提交評論