2023年阿壩職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第1頁(yè)
2023年阿壩職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第2頁(yè)
2023年阿壩職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第3頁(yè)
2023年阿壩職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第4頁(yè)
2023年阿壩職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析_第5頁(yè)
已閱讀5頁(yè),還剩42頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

長(zhǎng)風(fēng)破浪會(huì)有時(shí),直掛云帆濟(jì)滄海。住在富人區(qū)的她2023年阿壩職業(yè)學(xué)院高職單招(數(shù)學(xué))試題庫(kù)含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請(qǐng)謹(jǐn)慎購(gòu)買!第1卷一.綜合題(共50題)1.下列函數(shù)f(x)與g(x)表示同一函數(shù)的是

()A.f(x)=x0與g(x)=1B.f(x)=2lgx與g(x)=lgx2C.f(x)=|x|與g(x)=(x)2D.f(x)=x與g(x)=3x3答案:A、∵f(x)=x0,其定義域?yàn)閧x|x≠0},而g(x)的定義域?yàn)镽,故A錯(cuò)誤;B、∵f(x)=2lgx,的定義域?yàn)閧x|x>0},而g(x)=lgx2的定義域?yàn)镽,故B錯(cuò)誤;C、∵f(x)=|x|與g(x)=(x)2=x,其中f(x)的定義域?yàn)镽,g(x)的定義域?yàn)閧x|x≥0},故C錯(cuò)誤;D、∵f(x)=x與g(x)=3x3=x,其中f(x)與g(x)的定義域?yàn)镽,故D正確.故選D.2.直線l:y-1=k(x-1)和圓C:x2+y2-2y=0的關(guān)系是()

A.相離

B.相切或相交

C.相交

D.相切答案:C3.已知集合A滿足{1,2,3}∪A={1,2,3,4},則集合A的個(gè)數(shù)為_(kāi)_____.答案:∵{1,2,3}∪A={1,2,3,4},∴A={4};{1,4};{2,4};{3,4};{1,2,4};{1,3,4};{2,3,4};{1,2,3,4},則集合A的個(gè)數(shù)為8.故為:84.教學(xué)大樓共有五層,每層均有兩個(gè)樓梯,由一層到五層的走法有()

A.10種

B.25種

C.52種

D.24種答案:D5.已知R為實(shí)數(shù)集,Q為有理數(shù)集.設(shè)函數(shù)f(x)=0,(x∈CRQ)1,(x∈Q),則()A.函數(shù)y=f(x)的圖象是兩條平行直線B.limx→∞f(x)=0或limx→∞f(x)=1C.函數(shù)f[f(x)]恒等于0D.函數(shù)f[f(x)]的導(dǎo)函數(shù)恒等于0答案:函數(shù)y=f(x)的圖象是兩條平行直線上的一些孤立的點(diǎn),故A不正確;函數(shù)f(x)的極限只有唯一的值,左右極限不等,則該函數(shù)不存在極限,故B不正確;若x是無(wú)理數(shù),則f(x)=0,f[f(x)]=f(0)=1,故C不正確;∵f[f(x)]=1,∴函數(shù)f[f(x)]的導(dǎo)函數(shù)恒等于0,故D正確;故選D.6.已知直線y=kx+1與橢圓x25+y2m=1恒有公共點(diǎn),則實(shí)數(shù)m的取值范圍為()A.m≥1B.m≥1,或0<m<1C.0<m<5,且m≠1D.m≥1,且m≠5答案:由于直線y=kx+1恒過(guò)點(diǎn)M(0,1)要使直線y=kx+1與橢圓x25+y2m=1恒有公共點(diǎn),則只要M(0,1)在橢圓的內(nèi)部或在橢圓上從而有m>0m≠505+1m≤1,解可得m≥1且m≠5故選D.7.若隨機(jī)變量X的概率分布如下表,則表中a的值為()

X

1

2

3

4

P

0.2

0.3

0.3

a

A.1

B.0.8

C.0.3

D.0.2答案:D8.以原點(diǎn)為圓心,且截直線3x+4y+15=0所得弦長(zhǎng)為8的圓的方程是()A.x2+y2=5B.x2+y2=16C.x2+y2=4D.x2+y2=25答案:弦心距是:1525=3,弦長(zhǎng)為8,所以半徑是5所求圓的方程是:x2+y2=25故選D.9.函數(shù)f(x)=ex(e為自然對(duì)數(shù)的底數(shù))對(duì)任意實(shí)數(shù)x、y,都有()

A.f(x+y)=f(x)f(y)

B.f(x+y)=f(x)+f(y)

C.f(xy)=f(x)f(y)

D.f(xy)=f(x)+f(y)答案:A10.設(shè)向量與的夾角為θ,,,則cosθ等于()

A.

B.

C.

D.答案:D11.用數(shù)學(xué)歸納法證明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)時(shí),第一步驗(yàn)證n=1時(shí),左邊應(yīng)取的項(xiàng)是______答案:在等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+)中,當(dāng)n=1時(shí),n+3=4,而等式左邊起始為1的連續(xù)的正整數(shù)的和,故n=1時(shí),等式左邊的項(xiàng)為:1+2+3+4故為:1+2+3+412.設(shè)a=lg2+lg5,b=ex(x<0),則a與b的大小關(guān)系是?答案:a═lg2+lg5=lg10=1又b=ex,由指數(shù)函數(shù)的性質(zhì)知,當(dāng)x<0時(shí),0<b<1∴a>b13.命題:“如果ab=0,那么a、b中至少有一個(gè)等于0.”的逆否命題為_(kāi)_____

______.答案:∵ab=0的否命題是ab≠0,a、b中至少有一個(gè)為零的否命題是a≠0,且b≠0,∴命題“若ab=0,則a、b中至少有一個(gè)為零”的逆否命題是“若a≠0,且b≠0,則ab≠0.”故:如果a、b都不為等于0.那么ab≠014.(本題滿分12分)已知對(duì)任意的平面向量,把繞其起點(diǎn)沿逆時(shí)針?lè)较蛐D(zhuǎn)角,得到向量,叫做把點(diǎn)B繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)角得到點(diǎn)P

①已知平面內(nèi)的點(diǎn)A(1,2),B,把點(diǎn)B繞點(diǎn)A沿逆時(shí)針?lè)较蛐D(zhuǎn)后得到點(diǎn)P,求點(diǎn)P的坐標(biāo)

②設(shè)平面內(nèi)曲線C上的每一點(diǎn)繞逆時(shí)針?lè)较蛐D(zhuǎn)后得到的點(diǎn)的軌跡是曲線,求原來(lái)曲線C的方程.答案:解:

……2分

……6分

解得x="0,y="-1

……7分②

…………10分

即…………11分又x’2-y’2="1

"……12分

……13分

化簡(jiǎn)得:

……14分解析:略15.我們稱正整數(shù)n為“好數(shù)”,如果n的二進(jìn)制表示中1的個(gè)數(shù)多于0的個(gè)數(shù).如6=(110):為好數(shù),1984=(11111000000);不為好數(shù),則:

(1)二進(jìn)制表示中恰有5位數(shù)碼的好數(shù)共有______個(gè);

(2)不超過(guò)2012的好數(shù)共有______個(gè).答案:(1)二進(jìn)制表示中恰有5位數(shù)碼的二進(jìn)制數(shù)分別為:10000,10001,10010,10011,10100,10101,10110,10111,11000,11001,11010,11011,11100,11101,11110,11111,共十六個(gè)數(shù),再結(jié)合好數(shù)的定義,得到其中好數(shù)有11個(gè);(2)整數(shù)2012的二進(jìn)制數(shù)為:11111011100,它是一個(gè)十一位的二進(jìn)制數(shù).其中一位的二進(jìn)制數(shù)是:1,共有C11個(gè);其中二位的二進(jìn)制數(shù)是:11,共有C22個(gè);

其中三位的二進(jìn)制數(shù)是:101,110,111,共有C12+C22個(gè);

其中四位的二進(jìn)制數(shù)是:1011,1101,1110,1111,共有C23+C33個(gè);

其中五位的二進(jìn)制數(shù)是:10011,10101,10110,11001,11010,11100,10111,11011,11101,11110,11111,共有C24+C34+C44個(gè);

以此類推,其中十位的二進(jìn)制數(shù)是:共有C49+C59+C69+C79+C89+C99個(gè);其中十一位的小于2012二進(jìn)制數(shù)是:共有24+4個(gè);一共不超過(guò)2012的好數(shù)共有1164個(gè).故1065個(gè)16.在如圖所示的莖葉圖中,甲、乙兩組數(shù)據(jù)的中位數(shù)分別是______.答案:由莖葉圖可得甲組共有9個(gè)數(shù)據(jù)中位數(shù)為45乙組共9個(gè)數(shù)據(jù)中位數(shù)為46故為45、4617.確定方程3x2-9+4x2-16+5x2-25=120x的解集______.答案:由題意,x2-9≥0x2-16≥0x2-25≥0x>0,∴x≥5∴x2-9≥4,x2-16≥3,x2-25≥0,∴3x2-9+4x2-16+5x2-25≥24∵3x2-9+4x2-16+5x2-25=120x∴120x≥24∵x≥5,∴120x≤24∴120x=24∴x=5故為:{5}18.下列說(shuō)法中正確的是()

A.以直角三角形的一邊為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓錐

B.以直角梯形的一腰為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓臺(tái)

C.圓柱、圓錐、圓臺(tái)的底面都是圓

D.圓錐側(cè)面展開(kāi)圖為扇形,這個(gè)扇形所在圓的半徑等于圓錐的底面圓的半徑答案:C19.若已知中心在坐標(biāo)原點(diǎn)的橢圓過(guò)點(diǎn)(1,233),且它的一條準(zhǔn)線方程為x=3,則該橢圓的方程為_(kāi)_____.答案:設(shè)橢圓的方程是x2a2+y2b2=1,由題設(shè),中心在坐標(biāo)原點(diǎn)的橢圓過(guò)點(diǎn)(1,233),且它的一條準(zhǔn)線方程為x=3,∴1a2+43b2=1,a2c=3,又a2=c2+b2三式聯(lián)立可以解得a=3,b=2,c=1或a=7,b=143,c=73故該橢圓的方程為x23+y22=1或x27+y2149=1故應(yīng)填x23+y22=1或x27+y2149=120.若“x∈[2,5]或x∈{x|x<1或x>4}”是假命題,則x的取值范圍是______.答案:若“x∈[2,5]或x∈{x|x<1或x>4}”是假命題則它的否命題為真命題即{x|x<2或x>5}且{x|1≤x≤4}是真命題所以的取值范圍是[1,2),故為[1,2).21.已知A(4,1,9),B(10,-1,6),則A,B兩點(diǎn)間距離為_(kāi)_____.答案:∵A(4,1,9),B(10,-1,6),∴A,B兩點(diǎn)間距離為|AB|=(10-4)2+(-1-1)2+(6-9)2=7故為:722.已知圓C與直線x-y=0及x-y-4=0都相切,圓心在直線x+y=0上,則圓C的方程為()A.(x+1)2+(y-1)2=2B.(x-1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x+1)2+(y+1)2=2答案:圓心在x+y=0上,圓心的縱橫坐標(biāo)值相反,顯然能排除C、D;驗(yàn)證:A中圓心(-1,1)到兩直線x-y=0的距離是|2|2=2;圓心(-1,1)到直線x-y-4=0的距離是62=32≠2.故A錯(cuò)誤.故選B.23.已知點(diǎn)M的極坐標(biāo)為,下列所給四個(gè)坐標(biāo)中能表示點(diǎn)M的坐標(biāo)是()

A.

B.

C.

D.答案:D24.(選做題)

設(shè)集合A={x|x2﹣5x+4>0},B={x|x2﹣2ax+(a+2)=0},若A∩B≠,求實(shí)數(shù)a的取值范圍.答案:解:A={x|x2﹣5x+4>0}={x|x<1或x>4}.∵A∩B≠,∴方程x2﹣2ax+(a+2)=0有解,且至少有一解在區(qū)間(﹣∞,1)∪(4,+∞)內(nèi)直接求解情況比較多,考慮補(bǔ)集設(shè)全集U={a|△≥0}=(﹣∞,﹣1]∪[2,+∞),P={a|方程x2﹣2ax+(a+2)=0的兩根都在[1,4]內(nèi)}記f(x)=x2﹣2ax+(a+2),且f(x)=0的兩根都在[1,4]內(nèi)∴,∴,∴,∴∴實(shí)數(shù)a的取值范圍為.25.袋子A和袋子B均裝有紅球和白球,從A中摸出一個(gè)紅球的概率是13,從B中摸出一個(gè)紅球的概率是P.

(1)從A中有放回地摸球,每次摸出一個(gè),共摸5次,求恰好有3次摸到紅球的概率;

(2)若A、B兩個(gè)袋子中的總球數(shù)之比為1:2,將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率為25,求P的值.答案:(1)每次從A中摸一個(gè)紅球的概率是13,摸不到紅球的概率為23,根據(jù)獨(dú)立重復(fù)試驗(yàn)的概率公式,故共摸5次,恰好有3次摸到紅球的概率為:P=C35(13)3(23)2=10×127×49=40243.(2)設(shè)A中有m個(gè)球,A、B兩個(gè)袋子中的球數(shù)之比為1:2,則B中有2m個(gè)球,∵將A、B中的球裝在一起后,從中摸出一個(gè)紅球的概率是25,∴13m+2mp3m=25,解得p=1330.26.如圖所示,正四面體V—ABC的高VD的中點(diǎn)為O,VC的中點(diǎn)為M.

(1)求證:AO、BO、CO兩兩垂直;

(2)求〈,〉.答案:(1)證明略(2)45°解析:(1)

設(shè)=a,=b,=c,正四面體的棱長(zhǎng)為1,則=(a+b+c),=(b+c-5a),=(a+c-5b),=(a+b-5c)∴·=(b+c-5a)·(a+c-5b)=(18a·b-9|a|2)=(18×1×1·cos60°-9)=0.∴⊥,∴AO⊥BO,同理⊥,BO⊥CO,∴AO、BO、CO兩兩垂直.(2)

=+=-(a+b+c)+=(-2a-2b+c).∴||==,||==,·=(-2a-2b+c)·(b+c-5a)=,∴cos〈,〉==,∵〈,〉∈(0,),∴〈,〉=45°.27.在△ABC中,=,=,且=2,則等于()

A.+

B.+

C.+

D.+答案:A28.已知l1、l2是過(guò)點(diǎn)P(-2,0)的兩條互相垂直的直線,且l1、l2與雙曲線y2-x2=1各有兩個(gè)交點(diǎn),分別為A1、B1和A2、B2.

(1)求l1的斜率k1的取值范圍;

(2)若|A1B1|=5|A2B2|,求l1、l2的方程.答案:(1)顯然l1、l2斜率都存在,否則l1、l2與曲線不相交.設(shè)l1的斜率為k1,則l1的方程為y=k1(x+2).聯(lián)立得y=k1(x+2),y2-x2=1,消去y得(k12-1)x2+22k12x+2k12-1=0.①根據(jù)題意得k12-1≠0,②△1>0,即有12k12-4>0.③完全類似地有1k21-1≠0,④△2>0,即有12?1k21-4>0,⑤從而k1∈(-3,-33)∪(33,3)且k1≠±1.(2)由弦長(zhǎng)公式得|A1B1|=1+k2112k21-4(k21-1)2.⑥完全類似地有|A2B2|=1+1k2112-4k21(k21-1)2.⑦∵|A1B1|=5|A2B2|,∴k1=±2,k2=.+22.從而l1:y=2(x+2),l2:y=-22(x+2)或l1:y=-2(x+2),l2:y=22(x+2).29.若直線l經(jīng)過(guò)原點(diǎn)和點(diǎn)A(-2,-2),則它的斜率為()

A.-1

B.1

C.1或-1

D.0答案:B30.(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)

A.(不等式選做題)不等式|x-5|+|x+3|≥10的解集是______.

B.(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,圓ρ=-2sinθ的圓心的極坐標(biāo)是______.

C.(幾何證明選做題)如圖,已知圓中兩條弦AB與CD相交于點(diǎn)F,E是AB延長(zhǎng)線上一點(diǎn),且DF=CF=22,BE=1,BF=2,若CE與圓相切,則線段CE的長(zhǎng)為_(kāi)_____.答案:A.∵|x-5|+|x+3|≥10,∴當(dāng)x≥5時(shí),x-5+x+3≥10,∴x≥6;當(dāng)x≤-3時(shí),有5-x+(-x-3)≥10,∴x≤-4;當(dāng)-4<x<5時(shí),有5-x+x+3≥8,不成立;故不等式|x-5|+|x+3|≥10的解集是{x|x≤-4或x≥6};B.由ρ=-2sinθ得:ρ2=-2ρsinθ,即x2+y2=-2y,∴x2+(y+1)2=1,∴該圓的圓心的直角坐標(biāo)為(-1,0),∴其極坐標(biāo)是(1,3π2);C.∵DF=CF=22,BE=1,BF=2,依題意,由相交線定理得:AF?FB=DF?FC,∴AF×2=22×22,∴AF=4;又∵CE與圓相切,∴|CE|2=|EB|?|EA|=1×(1+2+4)=7,∴|CE|=7.故為:A.{x|x≤-4或x≥6};B.(1,3π2);C.7.31.命題:“方程X2-2=0的解是X=±2”中使用邏輯聯(lián)系詞的情況是()A.沒(méi)有使用邏輯連接詞B.使用了邏輯連接詞“且”C.使用了邏輯連接詞“或”D.使用了邏輯連接詞“非”答案:命題:“方程X2-2=0的解是X=±2”可以化為:“方程X2-2=0的解是X=2,或X=-2”故命題:“方程X2-2=0的解是X=±2”中使用邏輯聯(lián)系詞為:或故選C32.已知雙曲線的漸近線方程為2x±3y=0,F(xiàn)(0,-5)為雙曲線的一個(gè)焦點(diǎn),則雙曲線的方程為()

A.

B.

C.

D.答案:B33.如圖,在直角坐標(biāo)系中,A,B,C三點(diǎn)在x軸上,原點(diǎn)O和點(diǎn)B分別是線段AB和AC的中點(diǎn),已知AO=m(m為常數(shù)),平面上的點(diǎn)P滿足PA+PB=6m.

(1)試求點(diǎn)P的軌跡C1的方程;

(2)若點(diǎn)(x,y)在曲線C1上,求證:點(diǎn)(x3,y22)一定在某圓C2上;

(3)過(guò)點(diǎn)C作直線l,與圓C2相交于M,N兩點(diǎn),若點(diǎn)N恰好是線段CM的中點(diǎn),試求直線l的方程.答案:(1)由題意可得點(diǎn)P的軌跡C1是以A,B為焦點(diǎn)的橢圓.…(2分)且半焦距長(zhǎng)c=m,長(zhǎng)半軸長(zhǎng)a=3m,則C1的方程為x29m2+y28m2=1.…(5分)(2)若點(diǎn)(x,y)在曲線C1上,則x29m2+y28m2=1.設(shè)x3=x0,y22=y0,則x=3x0,y=22y0.…(7分)代入x29m2+y28m2=1,得x02+y02=m2,所以點(diǎn)(x3,y22)一定在某一圓C2上.…(10分)(3)由題意C(3m,0).…(11分)設(shè)M(x1,y1),則x12+y12=m2.…①因?yàn)辄c(diǎn)N恰好是線段CM的中點(diǎn),所以N(x1+3m2,y12).代入C2的方程得(x1+3m2)2+(y12)2=m2.…②聯(lián)立①②,解得x1=-m,y1=0.…(15分)故直線l有且只有一條,方程為y=0.…(16分)(若只寫出直線方程,不說(shuō)明理由,給1分)34.設(shè)平面α內(nèi)兩個(gè)向量的坐標(biāo)分別為(1,2,1)、(-1,1,2),則下列向量中是平面的法向量的是()

A.(-1,-2,5)

B.(-1,1,-1)

C.(1,1,1)

D.(1,-1,-1)答案:B35.拋物線y=-12x2上一點(diǎn)N到其焦點(diǎn)F的距離是3,則點(diǎn)N到直線y=1的距離等于______.答案:∵拋物線y=-12x2化成標(biāo)準(zhǔn)方程為x2=-2y∴拋物線的焦點(diǎn)為F(0,-12),準(zhǔn)線方程為y=12∵點(diǎn)N在拋物線上,到焦點(diǎn)F的距離是3,∴點(diǎn)N到準(zhǔn)線y=12的距離也是3因此,點(diǎn)N到直線y=1的距離等于3+(1-12)=72故為:7236.執(zhí)行下列程序后,輸出的i的值是()

A.5

B.6

C.10

D.11答案:D37.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表

廣告費(fèi)用x(萬(wàn)元)4235銷售額y(萬(wàn)元)49263954根據(jù)上表可得回歸方程

y=

bx+

a中的

b為9.4,則

a=______.答案:由圖表中的數(shù)據(jù)可知.x=14(4+2+3+5)=144=3.5,.y=14(49+26+39+54)=42,即樣本中心為(3.5,42),將點(diǎn)代入回歸方程y=bx+a,得42=9.4×3.5+a,解得a=9.1.故為:9.1.38.一個(gè)路口的紅綠燈,紅燈的時(shí)間為30秒,黃燈的時(shí)間為5秒,綠燈的時(shí)間為40秒,一學(xué)生到達(dá)該路口時(shí),見(jiàn)到紅燈的概率是()A.25B.58C.115D.35答案:由題意知本題是一個(gè)那可能事件的概率,試驗(yàn)發(fā)生包含的事件是總的時(shí)間長(zhǎng)度為30+5+40=75秒,設(shè)紅燈為事件A,滿足條件的事件是紅燈的時(shí)間為30秒,根據(jù)等可能事件的概率得到出現(xiàn)紅燈的概率P(A)=構(gòu)成事件A的時(shí)間長(zhǎng)度總的時(shí)間長(zhǎng)度=3075=25.故選A.39.在復(fù)數(shù)范圍內(nèi)解方程|z|2+(z+.z)i=3-i2+i(i為虛數(shù)單位).答案:原方程化簡(jiǎn)為|z|2+(z+.z)i=1-i,設(shè)z=x+yi(x、y∈R),代入上述方程得x2+y2+2xi=1-i,∴x2+y2=1且2x=-1,解得x=-12且y=±32,∴原方程的解是z=-12±32i.40.在吸煙與患肺病這兩個(gè)分類變量的計(jì)算中,“若x2的觀測(cè)值為6.635,我們有99%的把握認(rèn)為吸煙與患肺病有關(guān)系”這句話的意思是指()

A.在100個(gè)吸煙的人中,必有99個(gè)人患肺病

B.有1%的可能性認(rèn)為推理出現(xiàn)錯(cuò)誤

C.若某人吸煙,則他有99%的可能性患有肺病

D.若某人患肺病,則99%是因?yàn)槲鼰煷鸢福築41.把10個(gè)相同的小正方體,按如圖所示的位置堆放,它的外表含有若干小正方形。如果將圖中標(biāo)有A的一個(gè)小正方體搬去,這時(shí)外表含有的小正方形個(gè)數(shù)與搬去前相比(

)答案:A42.不等式log32x-log3x2-3>0的解集為()

A.(,27)

B.(-∞,-1)∪(27,+∞)

C.(-∞,)∪(27,+∞)

D.(0,)∪(27,+∞)答案:D43.用反證法證明:“方程ax2+bx+c=0,且a,b,c都是奇數(shù),則方程沒(méi)有整數(shù)根”正確的假設(shè)是方程存在實(shí)數(shù)根x0為()

A.整數(shù)

B.奇數(shù)或偶數(shù)

C.正整數(shù)或負(fù)整數(shù)

D.自然數(shù)或負(fù)整數(shù)答案:A44.設(shè)全集U={1,2,3,4,5},A∩C∪B={1,2},則集合C∪A∩B的所有子集個(gè)數(shù)最多為()A.3B.4C.7D.8答案:∵全集U={1,2,3,4,5},A∩C∪B={1,2},∴當(dāng)集合C∪A∩B的所有子集個(gè)數(shù)最多時(shí),集合B中最多有三個(gè)元素:3,4,5,且A∩B=?,作出文氏圖∴CUA∩B={3,4,5},∴集合C∪A∩B的所有子集個(gè)數(shù)為:23=8.故選D.45.實(shí)數(shù)變量m,n滿足m2+n2=1,則坐標(biāo)(m+n,mn)表示的點(diǎn)的軌跡是()

A.拋物線

B.橢圓

C.雙曲線的一支

D.拋物線的一部分答案:A46.α為第一象限角是sinαcosα>0的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:若α為第一象限角,則sinα>0,cosα>0,所以sinαcosα>0,成立.若sinαcosα>0,則①sinα>0,cosα>0,此時(shí)α為第一象限角.或②sinα<0,cosα<0,此時(shí)α為第三象限角.所以α為第一象限角是sinαcosα>0的充分不必要條件.故選A.47.某校對(duì)文明班的評(píng)選設(shè)計(jì)了a,b,c,d,e五個(gè)方面的多元評(píng)價(jià)指標(biāo),并通過(guò)經(jīng)驗(yàn)公式樣S=ab+cd+1e來(lái)計(jì)算各班的綜合得分,S的值越高則評(píng)價(jià)效果越好,若某班在自測(cè)過(guò)程中各項(xiàng)指標(biāo)顯示出0<c<d<e<b<a,則下階段要把其中一個(gè)指標(biāo)的值增加1個(gè)單位,而使得S的值增加最多,那么該指標(biāo)應(yīng)為()A.a(chǎn)B.bC.cD.d答案:因a,b,cde都為正數(shù),故分子越大或分母越小時(shí),S的值越大,而在分子都增加1的前提下,分母越小時(shí),S的值增長(zhǎng)越多,由于0<c<d<e<b<a,分母中d最小,所以c增大1個(gè)單位會(huì)使得S的值增加最多.故選C.48.已知空間兩點(diǎn)A(4,a,-b),B(a,a,2),則向量AB=()A.(a-4,0,2+b)B.(4-a,0,-b-2)C.(0,a-4,2+b)D.(a-4,0,-b-2)答案:∵A(4,a,-b),B(a,a,2)∴AB=(a-4,a-a,2-(-b))=(a-4,0,2+b)故選A49.俊、杰兄弟倆分別在P、Q兩籃球隊(duì)效力,P隊(duì)、Q隊(duì)分別有14和15名球員,且每個(gè)隊(duì)員在各自隊(duì)中被安排首發(fā)上場(chǎng)的機(jī)會(huì)是均等的,則P、Q兩隊(duì)交戰(zhàn)時(shí),俊、杰兄弟倆同為首發(fā)上場(chǎng)交戰(zhàn)的概率是(首發(fā)上場(chǎng)各隊(duì)五名隊(duì)員)(

)A.B.C.D.答案:B解析:解:P(俊首發(fā))=

P(杰首發(fā))==P(俊、杰同首發(fā))=

選B評(píng)析:考察考生等可能事件的概率與相互獨(dú)立事件的概率問(wèn)題。50.已知函數(shù)f(x)=2x,x≥01,

x<0,若f(1-a2)>f(2a),則實(shí)數(shù)a的取值范圍是______.答案:函數(shù)f(x)=2x,x≥01,

x<0,x<0時(shí)是常函數(shù),x≥0時(shí)是增函數(shù),由f(1-a2)>f(2a),所以2a<1-a21-a2>0,解得:-1<a<2-1,故為:-1<a<2-1.第2卷一.綜合題(共50題)1.在極坐標(biāo)系中,點(diǎn)(2,)到圓ρ=2cosθ的圓心的距離為()

A.2

B.

C.

D.答案:D2.有一個(gè)正四棱錐,它的底面邊長(zhǎng)與側(cè)棱長(zhǎng)均為a,現(xiàn)用一張正方形包裝紙將其完全包?。ú荒懿眉艏垼梢哉郫B),那么包裝紙的最小邊長(zhǎng)應(yīng)為()A.2+62aB.(2+6)aC.1+32aD.(1+3)a答案:由題意可知:當(dāng)正四棱錐沿底面將側(cè)面都展開(kāi)時(shí)如圖所示:分析易知當(dāng)以PP′為正方形的對(duì)角線時(shí),所需正方形的包裝紙的面積最小,此時(shí)邊長(zhǎng)最小.設(shè)此時(shí)的正方形邊長(zhǎng)為x則:(PP′)2=2x2,又因?yàn)镻P′=a+2×32a=a+3a,∴(

a+3a)2=2x2,解得:x=6+22a.故選A3.閱讀程序框圖,運(yùn)行相應(yīng)的程序,則輸出i的值為()A.3B.4C.5D.6答案:該程序框圖是循環(huán)結(jié)構(gòu)經(jīng)第一次循環(huán)得到i=1,a=2;經(jīng)第二次循環(huán)得到i=2,a=5;經(jīng)第三次循環(huán)得到i=3,a=16;經(jīng)第四次循環(huán)得到i=4,a=65滿足判斷框的條件,執(zhí)行是,輸出4故選B4.

若向量,滿足||=||=2,與的夾角為60°,則|+|=()

A.

B.2

C.4

D.12答案:B5.已知圓柱與圓錐的底面積相等,高也相等,它們的體積分別為V1和V2,則V1:V2=()A.1:3B.1:1C.2:1D.3:1答案:設(shè)圓柱,圓錐的底面積為S,高為h,則由柱體,錐體的體積公式得:V1:V2=(Sh):(13Sh)=3:1故選D.6.不等式>1–log2x的解是(

A.x≥2

B.x>1

C.1xx>2答案:B7.長(zhǎng)方體的共頂點(diǎn)的三個(gè)側(cè)面面積分別為3,5,15,則它的體積為_(kāi)_____.答案:設(shè)長(zhǎng)方體過(guò)同一頂點(diǎn)的三條棱長(zhǎng)分別為a,b,c,∵從長(zhǎng)方體一個(gè)頂點(diǎn)出發(fā)的三個(gè)面的面積分別為3,5,15,∴a?b=3,a?c=5,b?c=15∴(a?b?c)2=152∴a?b?c=15即長(zhǎng)方體的體積為15,故為:15.8.下列給出的輸入語(yǔ)句、輸出語(yǔ)句和賦值語(yǔ)句

(1)輸出語(yǔ)句INPUT

a;b;c

(2)輸入語(yǔ)句INPUT

x=3

(3)賦值語(yǔ)句3=B

(4)賦值語(yǔ)句A=B=2

則其中正確的個(gè)數(shù)是()

A.0個(gè)

B.1個(gè)

C.2個(gè)

D.3個(gè)答案:A9.已知事件A與B互斥,且P(A)=0.3,P(B)=0.6,則P(A|.B)=______.答案:∵P(B)=0.6,∴P(.B)=0.4.又事件A與B互斥,且P(A)=0.3,∴P(A|.B)=P(A)P(.B)=0.30.4=34.故為:34.10.已知實(shí)數(shù)x,y滿足2x+y+5=0,那么x2+y2的最小值為()A.5B.10C.25D.210答案:求x2+y2的最小值,就是求2x+y+5=0上的點(diǎn)到原點(diǎn)的距離的最小值,轉(zhuǎn)化為坐標(biāo)原點(diǎn)到直線2x+y+5=0的距離,d=522+1=5.故選A.11.(x+2y)4展開(kāi)式中各項(xiàng)的系數(shù)和為_(kāi)_____.答案:令x=y=1,可得(1+2)4=81故為:81.12.已知a,b為正數(shù),求證:≥.答案:證明略解析:1:∵a>0,b>0,∴≥,≥,兩式相加,得≥,∴≥.解析2.≥.∴≥.解析3.∵a>0,b>0,∴,∴欲證≥,即證≥,只要證

≥,只要證

≥,即證

≥,只要證a3+b3≥ab(a+b),只要證a2+b2-ab≥ab,即證(a-b)2≥0.∵(a-b)2≥0成立,∴原不等式成立.【名師指引】當(dāng)要證明的不等式形式上比較復(fù)雜時(shí),常通過(guò)分析法尋求證題思路.“分析法”與“綜合法”是數(shù)學(xué)推理中常用的思維方法,特別是這兩種方法的綜合運(yùn)用能力,對(duì)解決實(shí)際問(wèn)題有重要的作用.這兩種數(shù)學(xué)方法是高考考查的重要數(shù)學(xué)思維方法.13.如圖,PA切圓O于點(diǎn)A,割線PBC經(jīng)過(guò)圓心O,OB=PB=1,OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)600到OD,則PD的長(zhǎng)為()

A.3

B.

C.

D.

答案:D14.集合{1,2,3}的真子集的個(gè)數(shù)為()A.5B.6C.7D.8答案:集合的真子集為{1},{2},{3},{1,2},{1,3},{2,3},?.共有7個(gè).故選C.15.若a1-i=1-bi,其中a,b都是實(shí)數(shù),i是虛數(shù)單位,則|a+bi|=______.答案:a1-i=a(1+i)(1-i)(1+i)=a2+a2i=1-bi∴a=2,b=-1∴|a+bi|=a2+b2=5故為:5.16.直線x=1和函數(shù)y=f(x)的圖象的公共點(diǎn)的個(gè)數(shù)為_(kāi)_____.答案:由函數(shù)定義知當(dāng)函數(shù)在x=1處有定義時(shí),直線x=1和函數(shù)y=f(x)的圖象的公共點(diǎn)的個(gè)數(shù)為1,若函數(shù)在x=1處有無(wú)定義時(shí),直線x=1和函數(shù)y=f(x)的圖象的公共點(diǎn)的個(gè)數(shù)為0故線x=1和函數(shù)y=f(x)的圖象的公共點(diǎn)的個(gè)數(shù)為0或1故為0或117.已知Sn=1+12+13+14+…+12n(n>1,n∈N*).求證:S2n>1+n2(n≥2,n∈N*).答案:證明:(1)當(dāng)n=2時(shí),左邊=1+12+13+14=2512,右邊=1+22=2,∴左邊>右邊(2)假設(shè)n=k(k≥2)時(shí)不等式成立,即S

2k=1+12+13+14+…+12k≥1+k2,當(dāng)n=k+1時(shí),不等式左邊S2(k+1)=1+12+13+14+…+12k+1+…+12k+1>1+k2+12k+1+…+12k+1>1+k2+2k2k+2k=1+k2+12=1+k+12,綜上(1)(2)可知S2n>1+n2對(duì)于任意的n≥2正整數(shù)成立.18.刻畫數(shù)據(jù)的離散程度的度量,下列說(shuō)法正確的是(

(1)應(yīng)充分利用所得的數(shù)據(jù),以便提供更確切的信息;

(2)可以用多個(gè)數(shù)值來(lái)刻畫數(shù)據(jù)的離散程度;

(3)對(duì)于不同的數(shù)據(jù)集,其離散程度大時(shí),該數(shù)值應(yīng)越?。?/p>

A.(1)和(3)

B.(2)和(3)

C.(1)和(2)

D.都正確答案:C19.已知橢圓C:x2a2+y2b2=1(a>b>0)的離心率為32,過(guò)右焦點(diǎn)F且斜率為k(k>0)的直線與C相交于A、B兩點(diǎn),若AF=3FB,則k=______.答案:設(shè)l為橢圓的右準(zhǔn)線,過(guò)A、B作AA1,BB1垂直于l,A1,B1為垂足,過(guò)B作BE⊥AA1于E,則|AA1|=|AF|e,|BB1|=|BF|e,由AF=3FB知,|AA1|=3|BF|e,∴cos<BAE=|AE||AB|=2|BF|e4|BF|=12e=33,∴sin∠BAE=63,∴tan∠BAE=2.∴k=2.故:2.20.若O(0,0),A(1,2)且OA′=2OA.則A′點(diǎn)坐標(biāo)為()A.(1,4)B.(2,2)C.(2,4)D.(4,2)答案:設(shè)A′(x,y),OA′=(x,y),OA=(1,2),∴(x,y)=2(1,2),故選C.21.已知正三角形ABC的邊長(zhǎng)為a,求△ABC的直觀圖△A′B′C′的面積.答案:如圖①、②所示的實(shí)際圖形和直觀圖.由②可知,A′B′=AB=a,O′C′=12OC=34a,在圖②中作C′D′⊥A′B′于D′,則C′D′=22O′C′=68a.∴S△A′B′C′=12A′B′?C′D′=12×a×68a=616a2.22.已知函數(shù)f(x)=x21+x2.

(1)求f(2)與f(12),f(3)與f(13);

(2)由(1)中求得結(jié)果,你能發(fā)現(xiàn)f(x)與f(1x)有什么關(guān)系?并證明你的結(jié)論;

(3)求f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)的值.答案:(1)f(2)=45,f(12)=15…1分f(3)=910,f(13)=110…2分(2)f(x)+f(1x)=1…5分證:f(x)+f(1x)=x21+x2+(1x)21+(1x)2=x21+x2+11+x2=1…8分(3)f(1)+f(2)+f(3)+…+f(2013)+f(12)+f(13)+…+f(12013)=f(1)+[f(2)+f(12)]+[f(3)+f(13)]+…+[f(2013)+f(12013)]=12+2012=40252…12分23.已知圓x2+y2=r2在曲線|x|+|y|=4的內(nèi)部,則半徑r的范圍是()A.0<r<22B.0<r<2C.0<r<2D.0<r<4答案:根據(jù)題意畫出圖形,如圖所示:可得曲線|x|+|y|=4表示邊長(zhǎng)為42的正方形,如圖ABCD為正方形,x2+y2=r2表示以原點(diǎn)為圓心的圓,過(guò)O作OE⊥AB,∵邊AB所在直線的方程為x+y=4,∴|OE|=42=22,則滿足題意的r的范圍是0<r<22.故選A24.如圖P為空間中任意一點(diǎn),動(dòng)點(diǎn)Q在△ABC所在平面內(nèi)運(yùn)動(dòng),且,則實(shí)數(shù)m=()

A.0

B.2

C.-2

D.1

答案:C25.若向量=(1,λ,2),=(2,-1,2)且與的夾角余弦為,則λ等于(

A.2

B.-2

C.-2或

D.2或答案:C26.如圖,AB是半圓O的直徑,C是AB延長(zhǎng)線上一點(diǎn),CD切半圓于D,CD=4,AB=3BC,則AC的長(zhǎng)是______.答案:∵CD是圓O的切線,∴由切割線定理得:CD2=CB×CA,∵AB=3BC,設(shè)BC=x,由CA=4x,又CD=4∴16=x×4x,x=2∴則AC的長(zhǎng)是8.故填:8.27.如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長(zhǎng)線上,BD=OB,CD與⊙O切于C,那么∠CAB═______.答案:連接OC,BC.∵CD是切線,∴OC⊥CD.∵BD=OB,∴BC=OB=OC.∴∠ABC=60°.∵AB是直徑,∴∠ACB=90°,∴∠CAB=30°故為:30°28.已知點(diǎn)P(x,y)在曲線x=2+cosθy=2sinθ(θ為參數(shù)),則ω=3x+2y的最大值為_(kāi)_____.答案:由題意,ω=3x+2y=3cosθ+4sinθ+6=5sin(θ+?)+6∴當(dāng)sin(θ+?)=1時(shí),ω=3x+2y的最大值為

11故為11.29.為了了解1200名學(xué)生對(duì)學(xué)校某項(xiàng)教改試驗(yàn)的意見(jiàn),打算從中抽取一個(gè)容量為30的樣本,考慮采用系統(tǒng)抽樣,則分段的間隔(抽樣距)K為()

A.40

B.30

C.20

D.12答案:A30.方程組的解集為()

A.{2,1}

B.{1,2}

C.{(2,1)}

D.(2,1)答案:C31.隨機(jī)變量ξ服從二項(xiàng)分布ξ~B(n,p),且Eξ=300,Dξ=200,則p等于()

A.

B.0

C.1

D.答案:D32.已知二項(xiàng)分布ξ~B(4,12),則該分布列的方差Dξ值為_(kāi)_____.答案:∵二項(xiàng)分布ξ~B(4,12),∴該分布列的方差Dξ=npq=4×12×(1-12)=1故為:133.已知頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的拋物線被直線y=2x+1截得的弦長(zhǎng)為15,求此拋物線方程.答案:由題意可設(shè)拋物線的方程y2=2px(p≠0),直線與拋物線交與A(x1,y1),B(x2,y2)聯(lián)立方程y2=2pxy=2x+1可得,4x2+(4-2p)x+1=0則x1+x2=12p-1,x1x2=14,y1-y2=2(x1-x2)AB=(x1-x2)2+(y1-y2)2=5(x1-x2)2=5[(x1+x2)2-4x1x2

]=5(12p-1)2-5=15解得p=6或p=-2∴拋物線的方程為y2=12x或y2=-4x34.已知函數(shù)f(x)=|x+2|-1,g(x)=|3-x|+2,若不等式f(x)-g(x)≤K的解集為R.則實(shí)數(shù)K的取值范圍為_(kāi)_____.答案:因?yàn)楹瘮?shù)f(x)=|x+2|-1,g(x)=|3-x|+2,所以f(x)-g(x)=|x+2|-|x-3|-3,它的幾何意義是數(shù)軸上的點(diǎn)到-2與到3距離的差再減去3,它的最大值為2,不等式f(x)-g(x)≤K的解集為R.所以K≥2.故為:[2,+∞).35.在極坐標(biāo)系下,圓C:ρ2+4ρsinθ+3=0的圓心坐標(biāo)為()

A.(2,0)

B.

C.(2,π)

D.答案:D36.命題“若a>3,則a>5”的逆命題是______.答案:∵原命題“若a>3,則a>5”的條件是a>3,結(jié)論是a>5∴逆命題是“若a>5,則a>3”故為:若a>5,則a>337.在半徑為R的球內(nèi)作一內(nèi)接圓柱,這個(gè)圓柱的底面半徑和高為何值時(shí),它的側(cè)面積最大?并求此最大值.答案:解

如圖,設(shè)內(nèi)接圓柱的高為h,圓柱的底面半徑為r,則h2+4r2=4R2因?yàn)閔2+4r2≥4rh,當(dāng)且僅當(dāng)h=2r時(shí)取等.所以4R2≥4rh,即rh≤R2所以,S側(cè)=2πrh≤2πR2,當(dāng)且僅當(dāng)h=2r時(shí)取等.又因?yàn)閔2+4r2=4R2,所以r=22R,h=2R時(shí)取等綜上,當(dāng)內(nèi)接圓柱的底面半徑為22R,高為2R時(shí),它的側(cè)面積最大,為2πR238.某海域有A、B兩個(gè)島嶼,B島在A島正東40海里處.經(jīng)多年觀察研究發(fā)現(xiàn),某種魚群洄游的路線像一個(gè)橢圓,其焦點(diǎn)恰好是A、B兩島.曾有漁船在距A島正西20海里發(fā)現(xiàn)過(guò)魚群.某日,研究人員在A、B兩島同時(shí)用聲納探測(cè)儀發(fā)出不同頻率的探測(cè)信號(hào)(傳播速度相同),A、B兩島收到魚群反射信號(hào)的時(shí)間比為5:3.你能否確定魚群此時(shí)分別與A、B兩島的距離?答案:以AB的中點(diǎn)為原點(diǎn),AB所在直線為x軸建立直角坐標(biāo)系設(shè)橢圓方程為:x2a2+y2b2=1(a>b>0)且c=a2-b2------(3分)因?yàn)榻裹c(diǎn)A的正西方向橢圓上的點(diǎn)為左頂點(diǎn),所以a-c=20------(5分)又|AB|=2c=40,則c=20,a=40,故b=203------(7分)所以魚群的運(yùn)動(dòng)軌跡方程是x21600+y21200=1------(8分)由于A,B兩島收到魚群反射信號(hào)的時(shí)間比為5:3,因此設(shè)此時(shí)距A,B兩島的距離分別為5k,3k-------(10分)由橢圓的定義可知5k+3k=2×40=80?k=10--------(13分)即魚群分別距A,B兩島的距離為50海里和30海里.------(14分)39.設(shè)P、Q為兩個(gè)非空實(shí)數(shù)集,定義集合P+Q={a+b|a∈P,b∈Q}.若P={0,2,5},Q={1,2,6},則P+Q中元素的個(gè)數(shù)是()A.6B.7C.8D.9答案:∵P={0,2,5},Q={1,2,6},P+Q={a+b|a∈P,b∈Q}∴當(dāng)a=0時(shí),b∈Q,P+Q={1,2,6}當(dāng)a=2時(shí),b∈Q,P+Q={3,4,8}當(dāng)a=5時(shí),b∈Q,P+Q={6,7,11}∴P+Q={1,2,3,4,6,7,8,11}故選C40.某次我市高三教學(xué)質(zhì)量檢測(cè)中,甲、乙、丙三科考試成績(jī)的直方圖如如圖所示(由于人數(shù)眾多,成績(jī)分布的直方圖可視為正態(tài)分布),則由如圖曲線可得下列說(shuō)法中正確的一項(xiàng)是()

A.甲科總體的標(biāo)準(zhǔn)差最小

B.丙科總體的平均數(shù)最小

C.乙科總體的標(biāo)準(zhǔn)差及平均數(shù)都居中

D.甲、乙、丙的總體的平均數(shù)不相同

答案:A41.若則實(shí)數(shù)λ的值是()

A.

B.

C.

D.答案:D42.在坐標(biāo)平面內(nèi),與點(diǎn)A(1,2)距離為1,且與點(diǎn)B(3,1)距離為2的直線共有()A.1條B.2條C.3條D.4條答案:分別以A、B為圓心,以1、2為半徑作圓,兩圓的公切線有兩條,即為所求.故選B.43.若以(y+2)2=4(x-1)上任一點(diǎn)P為圓心作與y軸相切的圓,那么這些圓必定過(guò)平面內(nèi)的點(diǎn)()

A.(1,-2)

B.(3,-2)

C.(2,-2)

D.不存在這樣的點(diǎn)答案:C44.已知函數(shù)f(x)=ax,(a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)P(12,12),則常數(shù)a的值為()A.2B.4C.12D.14答案:∵函數(shù)f(x)=ax,(a>0,a≠1)的圖象經(jīng)過(guò)點(diǎn)P(12,12),∴a12=12,?a=14.故選D.45.若向量a=(1,1,x),b=(1,2,1),c=(1,1,1),滿足條件(c-a)?(2b)=-2,則x=______.答案:c-a=(0,0,1-x),(c-a)?(2b)

=(2,4,2)?(0,0,1-x)=2(1-x)=-2,解得x=2,故為2.46.若一元二次方程kx2-4x-5=0

有兩個(gè)不相等實(shí)數(shù)根,則k

的取值范圍是______.答案:∵kx2-4x-5=0有兩個(gè)不相等的實(shí)數(shù)根,∴△=16+20k>0,且k≠0,解得,k>-45且k≠0;故是:k>-45且k≠0.47.某市為抽查控制汽車尾氣排放的執(zhí)行情況,選擇了抽取汽車車牌號(hào)的末位數(shù)字是6的汽車進(jìn)行檢查,這樣的抽樣方式是(

A.抽簽法

B.簡(jiǎn)單隨機(jī)抽樣

C.分層抽樣

D.系統(tǒng)抽樣答案:D48.

如圖梯形A1B1C1D1是一平面圖形ABCD的斜二側(cè)直觀圖,若A1D1∥O′y′A1B1∥C1D1,A1B1=C1D1=2,A1D1=1,則四邊形ABCD的面積是()

A.10

B.5

C.2

D.10

答案:B49.橢圓x=5cosαy=3sinα(α是參數(shù))的一個(gè)焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為_(kāi)_____.答案:橢圓x=5cosαy=3sinα(α是參數(shù))的標(biāo)準(zhǔn)方程為:x225+y29=1,它的右焦點(diǎn)(4,0),右準(zhǔn)線方程為:x=254.一個(gè)焦點(diǎn)到相應(yīng)準(zhǔn)線的距離為:254-4=94.故為:94.50.定義直線關(guān)于圓的圓心距單位λ為圓心到直線的距離與圓的半徑之比.若圓C滿足:①與x軸相切于點(diǎn)A(3,0);②直線y=x關(guān)于圓C的圓心距單位λ=2,試寫出一個(gè)滿足條件的圓C的方程______.答案:由題意可得圓心的橫坐標(biāo)為3,設(shè)圓心的縱坐標(biāo)為r,則半徑為|r|>0,則圓心的坐標(biāo)為(3,r).設(shè)圓心到直線y=x的距離為d,d=|3-r|2,則由題意可得λ=d|r|=2,求得r=1,或r=-3,故一個(gè)滿足條件的圓C的方程是(x-3)2+(y-1)2=1,故為(x-3)2+(y-1)2=1第3卷一.綜合題(共50題)1.已知函數(shù)f(x)=x2+2,x≥13x,x<1,則f(f(0))=()A.4B.3C.9D.11答案:因?yàn)閒(0)=30=1,所以f[f(0)]═f(1)=1+2=3.故選B.2.如圖,在直角坐標(biāo)系中,A,B,C三點(diǎn)在x軸上,原點(diǎn)O和點(diǎn)B分別是線段AB和AC的中點(diǎn),已知AO=m(m為常數(shù)),平面上的點(diǎn)P滿足PA+PB=6m.

(1)試求點(diǎn)P的軌跡C1的方程;

(2)若點(diǎn)(x,y)在曲線C1上,求證:點(diǎn)(x3,y22)一定在某圓C2上;

(3)過(guò)點(diǎn)C作直線l,與圓C2相交于M,N兩點(diǎn),若點(diǎn)N恰好是線段CM的中點(diǎn),試求直線l的方程.答案:(1)由題意可得點(diǎn)P的軌跡C1是以A,B為焦點(diǎn)的橢圓.…(2分)且半焦距長(zhǎng)c=m,長(zhǎng)半軸長(zhǎng)a=3m,則C1的方程為x29m2+y28m2=1.…(5分)(2)若點(diǎn)(x,y)在曲線C1上,則x29m2+y28m2=1.設(shè)x3=x0,y22=y0,則x=3x0,y=22y0.…(7分)代入x29m2+y28m2=1,得x02+y02=m2,所以點(diǎn)(x3,y22)一定在某一圓C2上.…(10分)(3)由題意C(3m,0).…(11分)設(shè)M(x1,y1),則x12+y12=m2.…①因?yàn)辄c(diǎn)N恰好是線段CM的中點(diǎn),所以N(x1+3m2,y12).代入C2的方程得(x1+3m2)2+(y12)2=m2.…②聯(lián)立①②,解得x1=-m,y1=0.…(15分)故直線l有且只有一條,方程為y=0.…(16分)(若只寫出直線方程,不說(shuō)明理由,給1分)3.定義平面向量之間的一種運(yùn)算“⊙”如下:對(duì)任意的=(m,n),=(p,q)

,令⊙=mq-np,下面說(shuō)法錯(cuò)誤的序號(hào)是()

①若若a與共線,則⊙=0

②⊙=⊙a(bǔ)

③對(duì)任意的λ∈R,有(λ)⊙=λ(⊙)

④(⊙)2+(a)2=||2||2

A.②

B.①②

C.②④

D.③④答案:A4.下列四個(gè)函數(shù)中,與y=x表示同一函數(shù)的是()A.y=(x)2B.y=3x3C.y=x2D.y=x2x答案:選項(xiàng)A中的函數(shù)的定義域與已知函數(shù)不同,故排除選項(xiàng)A.選項(xiàng)B中的函數(shù)與已知函數(shù)具有相同的定義域、值域和對(duì)應(yīng)關(guān)系,故是同一個(gè)函數(shù),故選項(xiàng)B滿足條件.選項(xiàng)C中的函數(shù)與已知函數(shù)的值域不同,故不是同一個(gè)函數(shù),故排除選項(xiàng)C.選項(xiàng)D中的函數(shù)與與已知函數(shù)的定義域不同,故不是同一個(gè)函數(shù),故排除選項(xiàng)D,故選B.5.假設(shè)要抽查某種品牌的850顆種子的發(fā)芽率,抽取60粒進(jìn)行實(shí)驗(yàn).利用隨機(jī)數(shù)表抽取種子時(shí),先將850顆種子按001,002,…,850進(jìn)行編號(hào),如果從隨機(jī)數(shù)表第8行第2列的數(shù)3開(kāi)始向右讀,請(qǐng)你依次寫出最先檢測(cè)的4顆種子的編號(hào)______,______,______,______.

(下面摘取了隨機(jī)數(shù)表第7行至第9行)

84

42

17

53

31

57

24

55

06

88

77

04

74

47

67

21

76

33

50

25

83

92

12

06

76

63

01

63

78

59

16

95

55

67

19

98

10

50

71

75

12

86

73

58

07

44

39

52

38

79

33

21

12

34

29

78

64

56

07

82

52

42

07

44

38

15

51

00

13

42

99

66

02

79

54.答案:第8行第2列的數(shù)3開(kāi)始向右讀第一個(gè)小于850的數(shù)字是301,第二個(gè)數(shù)字是637,也符合題意,第三個(gè)數(shù)字是859,大于850,舍去,第四個(gè)數(shù)字是169,符合題意,第五個(gè)數(shù)字是555,符合題意,故為:301,637,169,5556.用黃金分割法尋找最佳點(diǎn),試驗(yàn)區(qū)間為[1000,2000],若第一個(gè)二個(gè)試點(diǎn)為好點(diǎn),則第三個(gè)試點(diǎn)應(yīng)選在(

)。答案:12367.如圖所示,以直角三角形ABC的直角邊AC為直徑作⊙O,交斜邊AB于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線,交BC邊于點(diǎn)E.則BEBC=______.答案:連接CD,∵AC是⊙O的直徑,∴CD⊥AB.∵BC經(jīng)過(guò)半徑OC的端點(diǎn)C且BC⊥AC,∴BC是⊙O的切線,而DE是⊙O的切線,∴EC=ED.∴∠ECD=∠CDE,∴∠B=∠BDE,∴DE=BE.∴BE=CE=12BC.∴BEBC=12.故為12.8.設(shè)m∈R,向量=(1,m).若||=2,則m等于()

A.1

B.

C.±1

D.±答案:D9.設(shè)a=lg2+lg5,b=ex(x<0),則a與b的大小關(guān)系是?答案:a═lg2+lg5=lg10=1又b=ex,由指數(shù)函數(shù)的性質(zhì)知,當(dāng)x<0時(shí),0<b<1∴a>b10.底面直徑和高都是4cm的圓柱的側(cè)面積為_(kāi)_____cm2.答案:∵圓柱的底面直徑和高都是4cm,∴圓柱的底面圓的周長(zhǎng)是2π×2=4π∴圓柱的側(cè)面積是4π×4=16π,故為:16π.11.下列各圖形不是函數(shù)的圖象的是()A.

B.

C.

D.

答案:由函數(shù)的概念,B中有的x,存在兩個(gè)y與x對(duì)應(yīng),不符合函數(shù)的定義,而ACD均符合.故選B12.下列函數(shù)圖象中,正確的是()

A.

B.

C.

D.

答案:C13.在△ABC所在平面存在一點(diǎn)O使得OA+OB+OC=0,則面積S△OBCS△ABC=______.答案:∵OA+OB+OC=0,∴OB+

OC=AO,設(shè)OB+OC=OD∴O是AD的中點(diǎn),要求面積之比的兩個(gè)三角形是同底的三角形,∴面積之比等于三角形的高之比,∴比值是13,故為:13.14.雙曲線x2a2-y2b2=1,(a>0,b>0)的一條漸近線方程是y=3x,坐標(biāo)原點(diǎn)到直線AB的距離為32,其中A(a,0),B(0,-b).

(1)求雙曲線的方程;

(2)若B1是雙曲線虛軸在y軸正半軸上的端點(diǎn),過(guò)點(diǎn)B作直線交雙曲線于點(diǎn)M,N,求B1M⊥B1N時(shí),直線MN的方程.答案:(1)∵A(a,0),B(0,-b),∴設(shè)直線AB:xa-yb=1∴ba=3aba2+b2=32,∴a=3b=3,∴雙曲線方程為:x23-y29=1.(2)∵雙曲線方程為:x23-y29=1,∴A1(-3,0),A2(3,0),設(shè)P(x0,y0),∴kPA1=y0x0+3,kPA2=y0x0-3,∴k1k2=y02x02-3=3x02-9x02-3=3.B(0,-3)B1(0,3),設(shè)M(x1,y1),N(x2,y2)∴設(shè)直線l:y=kx-3,∴y=kx-33x2-y2=9,∴3x2-(kx-3)2=9.(3-k2)x2+6kx-18=0,∴x1+x2=6kk2-3

y1+y2=k(x1+x2)-6=18k2-3x1x2=18k2-3

y1y2=k2(x1x2)-3k(x1+x2)+9∵B1M=(x1,y1-3)

B1N=(x2,y2-3)∵B1M?B1N=0∴x1x2+y1y2-3(y1+y2)+9=018k2-3+9-54k2-3+9=0k2=5,即k=±5代入(1)有解,∴l(xiāng)MN:y=±5x-3.15.甲、乙兩位運(yùn)動(dòng)員在5場(chǎng)比賽的得分情況如莖葉圖所示,記甲、乙兩人的平均得分分別為.x甲,.x乙,則下列判斷正確的是()A..x甲>.x乙;甲比乙成績(jī)穩(wěn)定B..x甲>.x乙;乙比甲成績(jī)穩(wěn)定C..x甲<.x乙;甲比乙成績(jī)穩(wěn)定D..x甲<.x乙;乙比甲成績(jī)穩(wěn)定答案:5場(chǎng)比賽甲的得分為16、17、28、30、34,5場(chǎng)比賽乙的得分為15、26、28、28、33∴.x甲=15(16+17+28+30+34)=25,.x乙=15(15+26+28+28+33)=26s甲2=15(81+64+9+25+81)=52,s乙2=15(121+4+4+49)=35.6∴.x甲<.x乙,乙比甲成績(jī)穩(wěn)定故選D.16.如圖,四面體ABCD中,點(diǎn)E是CD的中點(diǎn),記=(

A.

B.

C.

D.

答案:B17.設(shè)U={x|x<7,x∈N+}A={1,2,5},B={2,3,4,5},求A∩B,CUA,A∪(CUB).答案:∵U={1,2,3,4,5,6}A∩B={2,5}CUA={3,4,6}A∪CUB={1}18.甲、乙兩人約定上午7:20至8:00之間到某站乘公共汽車,在這段時(shí)間內(nèi)有3班公共汽車,它們開(kāi)車的時(shí)刻分別是7:40、7:50和8:00,甲、乙兩人約定,見(jiàn)車就乘,則甲、乙同乘一車的概率為(假定甲、乙兩人到達(dá)車站的時(shí)刻是互相不牽連的,且每人在7:20至8:00時(shí)的任何時(shí)刻到達(dá)車站都是等可能的)()A.13B.12C.38D.58答案:甲、乙同乘第一輛車的概率為12×12=14,甲、乙同乘第二輛車的概率為14×14=116,甲、乙同乘第三輛車的概率為14×14=116,甲、乙同乘一車的概率為14+116+116=38,故選C.19.設(shè)a>0,f(x)=ax2+bx+c,曲線y=f(x)在點(diǎn)P(x0,f(x0))處切線的傾斜角的取值范圍為[0,],則P到曲線y=f(x)對(duì)稱軸距離的取值范圍為()

A.[0,]

B.[0,]

C.[0,||]

D.[0,||]答案:B20.過(guò)P(-1,1),Q(3,9)兩點(diǎn)的直線的斜率為(

A.2

B.

C.4

D.答案:A21.設(shè)集合A={1,2},則滿足A∪B={1,2,3}的集合B的個(gè)數(shù)是()A.1B.3C.4D.8答案:A={1,2},A∪B={1,2,3},則集合B中必含有元素3,即此題可轉(zhuǎn)化為求集合A={1,2}的子集個(gè)數(shù)問(wèn)題,所以滿足題目條件的集合B共有22=4個(gè).故選擇C.22.根據(jù)《中華人民共和國(guó)道路交通安全法》規(guī)定:車輛駕駛員血液酒精濃度在20~80mg/100mL(不含80)之間,屬于酒后駕車;血液酒精濃度在80mg/100mL(含80)以上時(shí),屬醉酒駕車.據(jù)有關(guān)報(bào)道,2009年8月15日至8

月28日,某地區(qū)查處酒后駕車和醉酒駕車共500人,如圖是對(duì)這500人血液中酒精含量進(jìn)行檢測(cè)所得結(jié)果的頻率分布直方圖,則屬于醉酒駕車的人數(shù)約為()A.25B.50C.75D.100答案:∵血液酒精濃度在80mg/100ml(含80)以上時(shí),屬醉酒駕車,通過(guò)頻率分步直方圖知道屬于醉駕的頻率是(0.005+0.01)×10=0.15,∵樣本容量是500,∴醉駕的人數(shù)有500×0.15=75故選C.23.已知a,b

,c滿足a+2c=b,且a⊥c,|a|=1,|c|=2,則|b|=______.答案:根據(jù)題意,a⊥c?a?c=0,則|b|2=(a+2c)2=a2+4c2=17,則|b|=17;故為17.24.為了了解某地母親身高x與女兒身高Y的相關(guān)關(guān)系,隨機(jī)測(cè)得10對(duì)母女的身高如下表所示:

母親身x(cm)159160160163159154159158159157女兒身Y(cm)158159160161161155162157162156計(jì)算x與Y的相關(guān)系數(shù)r≈0.71,通過(guò)查表得r的臨界值r0.05=0.632,從而有______的把握認(rèn)為x與Y之間具有線性相關(guān)關(guān)系,因而求回歸直線方程是有意義的.通過(guò)計(jì)算得到回歸直線方程為y═34.92+0.78x,因此,當(dāng)母親的身高為161cm時(shí),可以估計(jì)女兒的身高大致為_(kāi)_____.答案:查對(duì)臨界值表,由臨界值r0.05=0.632,可得有95%的把握認(rèn)為x與Y之間具有線性相關(guān)關(guān)系,回歸直線方程為y=34.92+0.78x,因此,當(dāng)x=161cm時(shí),y=34.92+0.78x=34.92+0.78×161=161cm故為:95%,161cm.25.某廠一批產(chǎn)品的合格率是98%,檢驗(yàn)單位從中有放回地隨機(jī)抽取10件,則計(jì)算抽出的10件產(chǎn)品中正品數(shù)的方差是______.答案:用X表示抽得的正品數(shù),由于是有放回地隨機(jī)抽取,所以X服從二項(xiàng)分布B(10,0.98),所以方差D(X)=10×0.98×0.02=0.196故為:0.196.26.用反證法證明命題:“三角形的內(nèi)角中至少有一個(gè)不大于60度”時(shí),假設(shè)正確的是()

A.假設(shè)三內(nèi)角都不大于60度

B.假設(shè)三內(nèi)角都大于60度

C.假設(shè)三內(nèi)角至多有一個(gè)大于60度

D.假設(shè)三內(nèi)角至多有兩個(gè)大于60度答案:B27.某自動(dòng)化儀表公司組織結(jié)構(gòu)如圖所示,其中采購(gòu)部的直接領(lǐng)導(dǎo)是()

A.副總經(jīng)理(甲)

B.副總經(jīng)理(乙)

C.總經(jīng)理

D.董事會(huì)

答案:B28.某學(xué)院有四個(gè)飼養(yǎng)房,分別養(yǎng)有18,54,24,48只白鼠供實(shí)驗(yàn)用,某項(xiàng)實(shí)驗(yàn)需要抽取24只白鼠,你認(rèn)為最合適的抽樣方法是()A.在每個(gè)飼養(yǎng)房各抽取6只B.把所以白鼠都編上號(hào),用隨機(jī)抽樣法確定24只C.在四個(gè)飼養(yǎng)房應(yīng)分別抽取3,9,4,8只D.先確定這四個(gè)飼養(yǎng)房應(yīng)分別抽取3,9,4,8只樣品,再由各飼養(yǎng)房將白鼠編號(hào),用簡(jiǎn)單隨機(jī)抽樣確定各自要抽取的對(duì)象答案:A中對(duì)四個(gè)飼養(yǎng)房平均攤派,但由于各飼養(yǎng)房所養(yǎng)數(shù)量不一,反而造成了各個(gè)個(gè)體入選概率的不均衡,是錯(cuò)誤的方法.B中保證了各個(gè)個(gè)體入選概率的相等,但由于沒(méi)有注意到處在四個(gè)不同環(huán)境中會(huì)產(chǎn)生差異,不如采用分層抽樣可靠性高,且統(tǒng)一編號(hào)統(tǒng)一選擇加大了工作量.C中總體采用了分層抽樣,但在每個(gè)層次中沒(méi)有考慮到個(gè)體的差層(如健壯程度,靈活程度),貌似隨機(jī),實(shí)則各個(gè)個(gè)體概率不等.故選D.29.在投擲兩枚硬幣的隨機(jī)試驗(yàn)中,記“一枚正面朝上,一枚反面朝上”為事件A,“兩枚正面朝上”為事件B,則事件A,B()

A.既是互斥事件又是對(duì)立事件

B.是對(duì)立事件而非互斥事件

C.既非互斥事件也非對(duì)立事件

D.是互斥事件而非對(duì)立事件答案:D30.某校為提高教學(xué)質(zhì)量進(jìn)行教改實(shí)驗(yàn),設(shè)有試驗(yàn)班和對(duì)照班.經(jīng)過(guò)兩個(gè)月的教學(xué)試驗(yàn),進(jìn)行了一次檢測(cè),試驗(yàn)班與對(duì)照班成績(jī)統(tǒng)計(jì)如下的2×2列聯(lián)表所示(單位:人),則其中m=______,n=______.

80及80分以下80分以上合計(jì)試驗(yàn)班321850對(duì)照班12m50合計(jì)4456n答案:由題意,18+m=56,50+50=n,∴m=38.n=100,故為38,010.31.已知x、y的取值如下表:x0134y2.24.34.86.7從散點(diǎn)圖分析,y與x線性相關(guān),且回歸方程為y=0.95x+a,則a=______.答案:點(diǎn)(.x,.y)在回歸直線上,計(jì)算得.x=2,.y=4.5;代入得a=2.6;故為2.6.32.為了了解某社區(qū)居民是否準(zhǔn)備收看奧運(yùn)會(huì)開(kāi)幕式,某記者分別從社區(qū)的60~70歲,40~50歲,20~30歲的三個(gè)年齡段中的160,240,X人中,采用分層抽樣的方法共抽出了30人進(jìn)行調(diào)查,若60~70歲這個(gè)年齡段中抽查了8人,那么x為()

A.90

B.120

C.180

D.200答案:D33.在極坐標(biāo)系中圓ρ=2cosθ的垂直于極軸的兩條切線方程分別為()

A.θ=0(ρ∈R)和ρcosθ=2

B.θ=(ρ∈R)和ρcosθ=2

C.θ=(ρ∈R)和ρcosθ=1

D.θ=0(ρ∈R)和ρcosθ=1答案:B34.“a=18”是“對(duì)任意的正數(shù)x,2x+ax≥1的”()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分也不必要條件答案:當(dāng)“a=18”時(shí),由基本不等式可得:“對(duì)任意的正數(shù)x,2x+ax≥1”一定成立,即“a=18”?“對(duì)任意的正數(shù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論