2023年上海行健職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第1頁
2023年上海行健職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第2頁
2023年上海行健職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第3頁
2023年上海行健職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第4頁
2023年上海行健職業(yè)學院高職單招(數(shù)學)試題庫含答案解析_第5頁
已閱讀5頁,還剩44頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年上海行健職業(yè)學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調(diào)整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.已知F1、F2為橢圓x225+y216=1的左、右焦點,若M為橢圓上一點,且△MF1F2的內(nèi)切圓的周長等于3π,則滿足條件的點M有

()個.A.0B.1C.2D.4答案:設(shè)△MF1F2的內(nèi)切圓的內(nèi)切圓的半徑等于r,則由題意可得2πr=3π,∴r=32.由橢圓的定義可得

MF1+MF2=2a=10,又2c=6,∴△MF1F2的面積等于12

(MF1+MF2+2c)r=8r=12.又△MF1F2的面積等于12

2cyM=12,∴yM=4,故M是橢圓的短軸頂點,故滿足條件的點M有2個,故選

C.2.5顆骰子同時擲出,共擲100次則至少一次出現(xiàn)全為6點的概率為(

)A.B.C.D.答案:C解析:5顆骰子同時擲出,沒有全部出現(xiàn)6點的概率是,共擲100次至少一次出現(xiàn)全為6點的概率是.3.若a=0.30.2,b=20.4,c=0.30.3,則a,b,c三個數(shù)的大小關(guān)系是:______(用符號“>”連接這三個字母)答案:∵1=0.30>0.30.2>0.30.3,又∵20.4>20=1,∴b>a>c.故為:b>a>c.4.如圖,⊙O與⊙O′交于

A,B,⊙O的弦AC與⊙O′相切于點A,⊙O′的弦AD與⊙O相切于A點,則下列結(jié)論中正確的是()

A.∠1>∠2

B.∠1=∠2

C.∠1<∠2

D.無法確定

答案:B5.用輾轉(zhuǎn)相除法或者更相減損術(shù)求三個數(shù)的最大公約數(shù).答案:同解析解析:解:324=243×1+81

243=81×3+0

則324與243的最大公約數(shù)為81又135=81×1+54

81=54×1+27

54=27×2+0則81與135的最大公約數(shù)為27所以,三個數(shù)324、243、135的最大公約數(shù)為27.另法為所求。6.如圖所示,圖中線條構(gòu)成的所有矩形中(由6個小的正方形組成),其中為正方形的概率為

______.答案:它的長有10種取法,由長與寬的對稱性,得到它的寬也有10種取法;因為,長與寬相互獨立,所以得到長X寬的個數(shù)有:10X10=100個即總的矩形的個數(shù)有:100個長=寬的個數(shù)為:(1X1的正方形的個數(shù))+(2X2的正方形個數(shù))+(3X3的正方形個數(shù))+(4X4的正方形個數(shù))=16+9+4+1=30個即正方形的個數(shù)有:30個所以為正方形的概率是30100=0.3故為0.37.為了參加奧運會,對自行車運動員甲、乙兩人在相同的條件下進行了6次測試,測得他們的最大速度的數(shù)據(jù)如表所示:

甲273830373531乙332938342836請判斷:誰參加這項重大比賽更合適,并闡述理由.答案:.X甲=27+38+30+37+35+316=33S甲=946≈3.958,(

4分).X乙=33+29+38+34+28+366=33S乙=383≈3.559(8分).X甲=.X乙,S甲>S乙

(10分)乙參加更合適

(12分)8.過點A(-1,4)作圓C:(x-2)2+(y-3)2=1的切線l,求切線l的方程.答案:設(shè)方程為y-4=k(x+1),即kx-y+k+4=0∴d=|2k-3+k+4|k2+1=1∴4k2+3k=0∴k=0或k=-34∴切線l的方程為y=4或3x+4y-13=09.命題“當AB=AC時,△ABC是等腰三角形”與它的逆命題、否命題、逆否命題這四個命題中,真命題有______個.答案:原命題為真命題.逆命題“當△ABC是等腰三角形時,AB=AC”為假命題.否命題“當AB≠AC時,△ABC不是等腰三角形”為假命題.逆否命題“當△ABC不是等腰三角形時,AB≠AC”為真命題.故為:2.10.若數(shù)列{an}(n∈N+)為等差數(shù)列,則數(shù)列bn=a1+a2+a3+…+ann(n∈N+)也為等差數(shù)列,類比上述性質(zhì),相應(yīng)地,若數(shù)列{cn}是等比數(shù)列且cn>0(n∈N+),則有數(shù)列dn=______(n∈N+)也是等比數(shù)列.答案:從商類比開方,從和類比到積,可得如下結(jié)論:nC1C2C3Cn故為:nC1C2C3Cn11.下列4個命題

㏒1/2x>㏒1/3x

其中的真命題是()

、A.(B.C.D.答案:D解析:取x=,則=1,=<1,p2正確當x∈(0,)時,()x<1,而>1.p4正確12.栽培甲、乙兩種果樹,先要培育成苗,然后再進行移栽.已知甲、乙兩種果樹成苗的概率分別為,,移栽后成活的概率分別為,.

(1)求甲、乙兩種果樹至少有一種果樹成苗的概率;

(2)求恰好有一種果樹能培育成苗且移栽成活的概率.答案:(1)甲、乙兩種果樹至少有一種成苗的概率為;(2).恰好有一種果樹培育成苗且移栽成活的概率為.解析:分別記甲、乙兩種果樹成苗為事件,;分別記甲、乙兩種果樹苗移栽成活為事件,,,,,.(1)甲、乙兩種果樹至少有一種成苗的概率為;(2)解法一:分別記兩種果樹培育成苗且移栽成活為事件,則,.恰好有一種果樹培育成苗且移栽成活的概率為.解法二:恰好有一種果樹栽培成活的概率為.13.已知隨機變量x服從二項分布x~B(6,),則P(x=2)=()

A.

B.

C.

D.答案:D14.某簡單幾何體的三視圖如圖所示,其正視圖.側(cè)視圖.俯視圖均為直角三角形,面積分別是1,2,4,則這個幾何體的體積為()A.83B.43C.8D.4答案:由三視圖知幾何體是一個三棱錐,設(shè)出三棱錐的三條兩兩垂直的棱分別是x,y,z∴xy=2

①xz=4

②yz=8

③由①②得z=2y

④∴y=2∴以y為高的底面面積是2,∴三棱錐的體積是13×2×2=43故選B.15.下表表示y是x的函數(shù),則函數(shù)的值域是

______.

答案:有圖表可知,所有的函數(shù)值構(gòu)成的集合為{2,3,4,5},故函數(shù)的值域為{2,3,4,5}.16.用反證法證明“如果a<b,那么“”,假設(shè)的內(nèi)容應(yīng)是()

A.

B.

C.且

D.或

答案:D17.一個容量為n的樣本,分成若干組,已知某數(shù)的頻數(shù)和頻率分別為40、0.125,則n的值為()A.640B.320C.240D.160答案:由頻數(shù)、頻率和樣本容量之間的關(guān)系得到,40n=0.125,∴n=320.故選B.18.如圖,AB是平面a的斜線段,A為斜足,若點P在平面a內(nèi)運動,使得△ABP的面積為定值,則動點P的軌跡是()A.圓B.橢圓C.一條直線D.兩條平行直線答案:本題其實就是一個平面斜截一個圓柱表面的問題,因為三角形面積為定值,以AB為底,則底邊長一定,從而可得P到直線AB的距離為定值,分析可得,點P的軌跡為一以AB為軸線的圓柱面,與平面α的交線,且α與圓柱的軸線斜交,由平面與圓柱面的截面的性質(zhì)判斷,可得P的軌跡為橢圓.19.已知過點A(-2,m)和B(m,4)的直線與直線2x+y-1=0平行,則m的值為()

A.0

B.-8

C.2

D.10答案:B20.(理)某單位有8名員工,其中有5名員工曾經(jīng)參加過一種或幾種技能培訓,另外3名員工沒有參加過任何技能培訓,現(xiàn)要從8名員工中任選3人參加一種新的技能培訓;

(I)求恰好選到1名曾經(jīng)參加過技能培訓的員工的概率;

(Ⅱ)這次培訓結(jié)束后,仍然沒有參加過任何技能培訓的員工人數(shù)X是一個隨機變量,求X的分布列和數(shù)學期望.答案:(I)由題意知本題是一個等可能事件的概率,∵試驗發(fā)生包含的事件是從8人中選3個,共有C83=56種結(jié)果,滿足條件的事件是恰好選到1名曾經(jīng)參加過技能培訓的員工,共有C51C32=15∴恰好選到1名已參加過其他技能培訓的員工的概率P=1556(II)隨機變量X可能取的值是:0,1,2,3.P(X=0)=156P(X=1)=1556P(X=2)=1528P(X=3)=C35C38=528∴隨機變量X的分布列是X0123P15615561528528∴X的數(shù)學期望是1×1556+2×

1528+3×528=15821.如圖,從圓O外一點P作圓O的割線PAB、PCD,AB是圓O的直徑,若PA=4,PC=5,CD=3,則∠CBD=______.答案:由割線長定理得:PA?PB=PC?PD即4×PB=5×(5+3)∴PB=10∴AB=6∴R=3,所以△OCD為正三角形,∠CBD=12∠COD=30°.22.若已知中心在坐標原點的橢圓過點(1,233),且它的一條準線方程為x=3,則該橢圓的方程為______.答案:設(shè)橢圓的方程是x2a2+y2b2=1,由題設(shè),中心在坐標原點的橢圓過點(1,233),且它的一條準線方程為x=3,∴1a2+43b2=1,a2c=3,又a2=c2+b2三式聯(lián)立可以解得a=3,b=2,c=1或a=7,b=143,c=73故該橢圓的方程為x23+y22=1或x27+y2149=1故應(yīng)填x23+y22=1或x27+y2149=123.如圖,有兩條相交成π3角的直線EF,MN,交點是O.一開始,甲在OE上距O點2km的A處;乙在OM距O點1km的B處.現(xiàn)在他們同時以2km/h的速度行走.甲沿EF的方向,乙沿NM的方向.設(shè)與OE同向的單位向量為e1,與OM同向的單位向量為e2.

(1)求e1,e2;

(2)若過2小時后,甲到達C點,乙到達D點,請用e1,e2表示CD;

(3)若過t小時后,甲到達G點,乙到達H點,請用e1,e2表示GH;

(4)什么時間兩人間距最短?答案:(1)由題意可得e1=12OA,e2=OB,(2)若過2小時后,甲到達C點,乙到達D點,則OC=-2e1,OD=5e2,故CD=OD-OC=2e1+5e2,(3)同(2)可得:經(jīng)過t小時后,甲到達G點,乙到達H點,則OG=(-2t+2)e1,OH=(2t+1)e2,故GH=OH-OG=(2t-2)e1+(2t+1)e2,(4)由(3)可得GH=(2t-2)e1+(2t+1)e2,故兩人間距離y=|GH|=[(2t-2)e1+(2t+1)e2]2=(2t-2)2+(2t+1)2+2(2t-2)(2t+1)×12=12t2-6t+3,由二次函數(shù)的知識可知,當t=--62×12=14時,上式取到最小值32,故14時兩人間距離最短.24.若不等式(﹣1)na<2+對任意n∈N*恒成立,則實數(shù)a的取值范圍是

[

]A.[﹣2,)

B.(﹣2,)

C.[﹣3,)

D.(﹣3,)答案:A25.已知圓錐的母線長與底面半徑長之比為3:1,一個正方體有四個頂點在圓錐的底面內(nèi),另外的四個頂點在圓錐的側(cè)面上(如圖),則圓錐與正方體的表面積之比為(

A.π:1

B.3π:1

C.3π:2

D.3π:4

答案:D26.在面積為S的△ABC的邊AB上任取一點P,則△PBC的面積大于S4的概率是()A.13B.12C.34D.14答案:記事件A={△PBC的面積大于S4},基本事件空間是線段AB的長度,(如圖)因為S△PBC>S4,則有12BC?PE>14×12BC?AD;化簡記得到:PEAD>14,因為PE平行AD則由三角形的相似性PEAD>14;所以,事件A的幾何度量為線段AP的長度,因為AP=34AB,所以△PBC的面積大于S4的概率=APAB=34.故選C.27.閱讀下面的程序框圖,則輸出的S=()A.14B.20C.30D.55答案:∵S1=0,i1=1;S2=1,i2=2;S3=5,i3=3;S4=14,i4=4;S5=30,i=5>4退出循環(huán),故為C.28.有一個容量為80的樣本,數(shù)據(jù)的最大值是140,最小值是51,組距為10,則可以分為(

A.10組

B.9組

C.8組

D.7組答案:B29.向量a、b滿足|a|=1,|b|=2,且a與b的夾角為π3,則|a+2b|=______.答案:∵|a|=1,|b|=2,且a與b的夾角為π3,∴a?b=|a|?|b|?cosπ3=1因此,(a+2b)2=|a|2+4a?b+4|b|2=12+4×1+4|b|2=21∴|a+2b|=21故為:2130.兩弦相交,一弦被分為12cm和18cm兩段,另一弦被分為3:8,求另一弦長______.答案:設(shè)另一弦長xcm;由于另一弦被分為3:8的兩段,故兩段的長分別為311xcm,811xcm,有相交弦定理可得:311x?811x=12?18解得x=33故為:33cm31.一個盒子中裝有4張卡片,上面分別寫著四個函數(shù):f1(x)=x3,f2(x)=x4,f3(x)=2|x|,f4(x)=x+1x,現(xiàn)從盒子中任取2張卡片,將卡片上的函數(shù)相乘得到一個新函數(shù),所得函數(shù)為奇函數(shù)的概率是______.答案:要使所得函數(shù)為奇函數(shù),取出的兩個函數(shù)必須是一個奇函數(shù)、一個偶函數(shù).而所給的4個函數(shù)中,有2個奇函數(shù)、2個偶函數(shù).所有的取法種數(shù)為C24=6,滿足條件的取法有2×2=4種,故所得函數(shù)為奇函數(shù)的概率是46=23,故為23.32.復數(shù)i2000=______.答案:復數(shù)i2009=i4×500=i0=1故為:133.設(shè)兩圓C1、C2都和兩坐標軸相切,且都過點(4,1),則兩圓心的距離|C1C2|=______.答案:∵兩圓C1、C2都和兩坐標軸相切,且都過點(4,1),故兩圓圓心在第一象限的角平分線上,設(shè)圓心的坐標為(a,a),則有|a|=(a-4)2-(a-1)2,∴a=5+22,或a=5-22,故圓心為(5+22,5+22

和(5-22,5-22

),故兩圓心的距離|C1C2|=2[(5+22)-(5-22)]=8,故為:834.直角坐標xOy平面上,平行直線x=n(n=0,1,2,…,5)與平行直線y=n(n=0,1,2,…,5)組成的圖形中,矩形共有()

A.25個

B.36個

C.100個

D.225個答案:D35.用綜合法或分析法證明:

(1)如果a>0,b>0,則lga+b2≥lga+lgb2(2)求證6+7>22+5.答案:證明:(1)∵a>0,b>0,a+b2≥ab,∴l(xiāng)ga+b2≥lgab=lga+lgb2,即lga+b2≥lga+lgb2;(2)要證6+7>22+5,只需證明(6+7)

2>(8+5)2,即證明242>

240,也就是證明42>40,上式顯然成立,故原結(jié)論成立.36.我們稱正整數(shù)n為“好數(shù)”,如果n的二進制表示中1的個數(shù)多于0的個數(shù).如6=(110):為好數(shù),1984=(11111000000);不為好數(shù),則:

(1)二進制表示中恰有5位數(shù)碼的好數(shù)共有______個;

(2)不超過2012的好數(shù)共有______個.答案:(1)二進制表示中恰有5位數(shù)碼的二進制數(shù)分別為:10000,10001,10010,10011,10100,10101,10110,10111,11000,11001,11010,11011,11100,11101,11110,11111,共十六個數(shù),再結(jié)合好數(shù)的定義,得到其中好數(shù)有11個;(2)整數(shù)2012的二進制數(shù)為:11111011100,它是一個十一位的二進制數(shù).其中一位的二進制數(shù)是:1,共有C11個;其中二位的二進制數(shù)是:11,共有C22個;

其中三位的二進制數(shù)是:101,110,111,共有C12+C22個;

其中四位的二進制數(shù)是:1011,1101,1110,1111,共有C23+C33個;

其中五位的二進制數(shù)是:10011,10101,10110,11001,11010,11100,10111,11011,11101,11110,11111,共有C24+C34+C44個;

以此類推,其中十位的二進制數(shù)是:共有C49+C59+C69+C79+C89+C99個;其中十一位的小于2012二進制數(shù)是:共有24+4個;一共不超過2012的好數(shù)共有1164個.故1065個37.設(shè)A={x|2x2+ax+2=0},B={x|x2+3x+2a=0},A∩B={2}.

(1)求a的值及集合A、B;

(2)設(shè)全集U=A∪B,求(CUA)∪(CUB)的所有子集.答案:解:(1)∵A∩B={2},∴2∈A,∴8+2a+2=0,∴a=﹣5;B={2,﹣5}(2)U=A∪B=,∴CUA={﹣5},CUB=∴(CUA)∪(CUB)=∴(CUA)∪(CUB)的所有子集為:,{﹣5},{},{﹣5,}.38.在平面直角坐標系中,已知向量a=(-1,2),又點A(8,0),B(n,t),C(ksinθ,t)(0≤θ≤π2).

(1)若AB⊥a,且|AB|=5|OA|(O為坐標原點),求向量OB;

(2)若向量AC與向量a共線,當k>4,且tsinθ取最大值4時,求OA?OC.答案:(1)∵點A(8,0),B(n,t),∴AB=(n-8,t),∵AB⊥a,∴AB?a=(n-8,t)?(-1,2)=0,得n=2t+8.則AB=(2t,t),又|AB|=5|OA|,|OA|=8.∴(2t)2+t2=5×64,解得t=±8,當t=8時,n=24;當t=-8時,n=-8.∴OB=(24,8)或OB=(-8,-8).(2)∵向量AC與向量a共線,∴t=-2ksinθ+16,tsinθ=(-2ksinθ+16)sinθ=-2k(sinθ-4k)2+32k.∵k>4,∴0<4k<1,故當sinθ=4k時,tsinθ取最大值32k,有32k=4,得k=8.這時,sinθ=12,k=8,tsinθ=4,得t=8,則OC=(4,8).∴OA?OC=(8,0)?(4,8)=32.39.如果雙曲線的焦距為6,兩條準線間的距離為4,那么該雙曲線的離心率為()

A.

B.

C.

D.2答案:C40.已知:集合A={x,y},B={2,2y},若A=B,則x+y=______.答案:∵集合A={x,y},B={2,2y},而A=B∴x=2y=0或x=2yy=2即x=4y=2∴x+y=2或6故為:2或641.命題“存在實數(shù)x,,使x>1”的否定是()

A.對任意實數(shù)x,都有x>1

B.不存在實數(shù)x,使x≤1

C.對任意實數(shù)x,都有x≤1

D.存在實數(shù)x,使x≤1答案:C42.若矩陣M=1111,則直線x+y+2=0在M對應(yīng)的變換作用下所得到的直線方程為______.答案:設(shè)直線x+y+2=0上任意一點(x0,y0),(x',y')是所得的直線上一點,[1

1][x']=[x0][1

1][y']=[y0]∴x′+y′=x0x′+y′=y0,∴代入直線x+y+2=0方程:(x'+y')+x′+y'+2=0得到I的方程x+y+1=0故為:x+y+1=0.43.

已知向量a,b的夾角為,且|a|=2,|b|=1,則向量a與向量2+2b的夾角等于()

A.

B.

C.

D.答案:D44.復數(shù)z=(2+i)(1+i)在復平面上對應(yīng)的點位于()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限答案:因為z=(2+i)(1+i)=2+3i+i2=1+3i,所以復數(shù)對應(yīng)點的坐標為(1,3),所以位于第一象限.故選A.45.如圖所示的多面體,它的正視圖為直角三角形,側(cè)視圖為矩形,俯視圖為直角梯形(尺寸如圖所示)

(1)求證:AE∥平面DCF;

(2)若M是AE的中點,AB=3,∠CEF=90°,求證:平面AEF⊥平面BMC.答案:(1)證法1:過點E作EG⊥CF交CF于G,連結(jié)DG,可得四邊形BCGE為矩形,又四邊形ABCD為矩形,所以AD=EG,從而四邊形ADGE為平行四邊形故AE∥DG

因為AE?平面DCF,DG?平面DCF,所以AE∥平面DCF

證法2:(面面平行的性質(zhì)法)因為四邊形BEFC為梯形,所以BE∥CF.又因為BE?平面DCF,CF?平面DCF,所以BE∥平面DCF.因為四邊形ABCD為矩形,所以AB∥DC.同理可證AB∥平面DCF.又因為BE和AB是平面ABE內(nèi)的兩相交直線,所以平面ABE∥平面DCF.又因為AE?平面ABE,所以AE∥平面DCF.(2)在Rt△EFG中,∠CEF=90°,EG=3,EF=2.∴∠GEF=30°,GF=12EF=1.在RT△CEG中,∠CEG=60°,∴CG=EGtan60°=3,BE=3.∵AB=3,M是AE中點,∴BM⊥AE,由側(cè)視圖是矩形,俯視圖是直角梯形,得BC⊥AB,BC⊥BE,∵AB∩BM=B,∴AE⊥平面BCM又∵AE?平面ACE,∴平面ACE⊥平面BCM.46.設(shè)平面α的法向量為(1,2,-2),平面β的法向量為(-2,-4,k),若α∥β,則k=______.答案:∵α∥β∴平面α、β的法向量互相平行,由此可得a=(1,2,-2),b=(-2,-4,k),a∥b∴1-2=2-4=-2k,解之得k=4.故為:447.甲、乙、丙、丁四位同學各自對A、B兩個變量的線性相關(guān)性作試驗,并用回歸分析方法分別求得相關(guān)系數(shù)r與殘差平方和m如表:

則哪位同學的實驗結(jié)果體現(xiàn)A、B兩個變量更強的線性相關(guān)性()

A.丙

B.乙

C.甲

D.丁答案:C48.若不等式對一切x恒成立,求實數(shù)m的范圍.答案:見解析解析:∵x2-8x+20=(x-4)2+4>0,∴只須mx2-mx-1<0恒成立,即可:①

當m=0時,-1<0,不等式成立;②

當m≠0時,則須,解得-4<m<0.由(1)、(2)得:-4<m≤0.</m<0.49.已知=(1,2),=(x,1),當(+2)⊥(2-)時,實數(shù)x的值為(

A.6

B.2

C.-2

D.或-2答案:D50.如果x2+ky2=2表示焦點在y軸上的橢圓,則實數(shù)k的取值范圍是

______.答案:根據(jù)題意,x2+ky2=2化為標準形式為x22+y22k=1;根據(jù)題意,其表示焦點在y軸上的橢圓,則有2k>2;解可得0<k<1;故為0<k<1.第2卷一.綜合題(共50題)1.圓x2+y2=1和圓x2+y2-6y+5=0的位置關(guān)系是()

A.外切

B.內(nèi)切

C.外離

D.內(nèi)含答案:A2.把38化為二進制數(shù)為()A.101010(2)B.100110(2)C.110100(2)D.110010(2)答案:可以驗證所給的四個選項,在A中,2+8+32=42,在B中,2+4+32=38經(jīng)過驗證知道,B中的二進制表示的數(shù)字換成十進制以后得到38,故選B.3.已知一個幾何體是由上下兩部分構(gòu)成的一個組合體,其三視圖如圖所示,則這個組合體的上下兩部分分別是(

)答案:A4.把下列命題寫成“若p,則q”的形式,并指出條件與結(jié)論.

(1)相似三角形的對應(yīng)角相等;

(2)當a>1時,函數(shù)y=ax是增函數(shù).答案:(1)若兩個三角形相似,則它們的對應(yīng)角相等.條件p:三角形相似,結(jié)論q:對應(yīng)角相等.(2)若a>1,則函數(shù)y=ax是增函數(shù).條件p:a>1,結(jié)論q:函數(shù)y=ax是增函數(shù).5.對變量x、y有觀測數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點圖1;對變量u,v有觀測數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點圖2.由這兩個散點圖可以判斷()

A.變量x與y正相關(guān),u與v正相關(guān)

B.變量x與y正相關(guān),u與v負相關(guān)

C.變量x與y負相關(guān),u與v正相關(guān)

D.變量x與y負相關(guān),u與v負相關(guān)答案:C6.若雙曲線的漸近線方程為y=±34x,則雙曲線的離心率為______.答案:由題意可得,當焦點在x軸上時,ba=34,∴ca=a2+b2a=a2+(3a4)2a=54.當焦點在y軸上時,ab=34,∴ca=a2+b2a=a2+(4a3)2a=53,故為:53

或54.7.若橢圓長軸長與短軸長之比為2,它的一個焦點是(215,0),則橢圓的標準方程是______.答案:由題設(shè)條件知a=2b,c=215,∴4b2=b2+60,∴b2=20,a2=80,∴橢圓的標準方程是x280+y220=1.故為:x280+y220=1.8.“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當它醒來時,發(fā)現(xiàn)烏龜快到終點了,于是急忙追趕,但為時已晚,烏龜還是先到達了終點…,用S1、S2分別表示烏龜和兔子所行的路程,t為時間,則下圖與故事情節(jié)相吻合的是()

A.

B.

C.

D.

答案:B9.設(shè)P,Q為△ABC內(nèi)的兩點,且AP=mAB+nAC

(m,n>0)AQ=pAB+qAC

(p,q>0),則△ABP的面積與△ABQ的面積之比為______.答案:設(shè)P到邊AB的距離為h1,Q到邊AB的距離為h2,則△ABP的面積與△ABQ的面積之比為h1h2,設(shè)AB邊上的單位法向量為e,AB?e=0,則h1=|AP?e|=|(mAB+nAC)?e|=|m?AB?e+nAC?e|=|nAC?e|,同理可得h2=|qAC?e|,∴h1h2=|nq|=nq,故為n:q.10.已知拋物線x2=4y上的點p到焦點的距離是10,則p點坐標是

______.答案:根據(jù)拋物線方程可求得焦點坐標為(0,1)根據(jù)拋物線定義可知點p到焦點的距離與到準線的距離相等,∴yp+1=10,求得yp=9,代入拋物線方程求得x=±6∴p點坐標是(±6,9)故為:(±6,9)11.已知空間三點的坐標為A(1,5,-2),B(2,4,1),C(p,3,q+2),若A,B,C三點共線,則p=______,q=______.答案:∵A(1,5,-2),B(2,4,1),C(p,3,q+2),∴AB=(1,-1,3),AC=(p-1,-2,q+4)∵A,B,C三點共線,∴AB=λAC∴(1,-1,3)=λ(p-1,-2,q+4),∴1=λ(p-1)-1=-2λ,3=λ(q+4),∴λ=12,p=3,q=2,故為:3;212.某班從6名班干部(其中男生4人,女生2人)中選3人參加學校學生會的干部競選.

(1)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列及數(shù)學期望;

(2)在男生甲被選中的情況下,求女生乙也被選中的概率.答案:(1)ξ的所有可能取值為0,1,2.依題意,得P(ξ=0)=C34C36=15,P(ξ=1)=C24C12C36=35,P(ξ=2)=C14C22C36=15.∴ξ的分布列為ξ012P153515∴Eξ=0×15+1×35+2×15=1.(2)設(shè)“男生甲被選中的情況下,女生乙也被選中”為事件C,“男生甲被選中”為事件A,“女生乙被選中”為事件B從4個男生、2個女生中選3人,男生甲被選中的種數(shù)為n(A)=C52=10,男生甲被選中,女生乙也被選中的種數(shù)為n(AB)=C41=4,∴P(C)=n(AB)n(A)=C14C25=410=25故在男生甲被選中的情況下,女生乙也被選中的概率為25.13.如圖,四面體ABCD中,點E是CD的中點,記=(

A.

B.

C.

D.

答案:B14.方程cos2x=x的實根的個數(shù)為

______個.答案:cos2x=x的實根即函數(shù)y=cos2x與y=x的圖象交點的橫坐標,故可以將求根個數(shù)的問題轉(zhuǎn)化為求兩個函數(shù)圖象的交點個數(shù).如圖在同一坐標系中作出y=cos2x與y=x的圖象,由圖象可以看出兩圖象只有一個交點,故方程的實根只有一個.故應(yīng)該填

1.15.關(guān)于x的方程ax+b=0,當a,b滿足條件______

時,方程的解集是有限集;滿足條件______

時,方程的解集是無限集;滿足條件______

時,方程的解集是空集.答案:關(guān)于x的方程ax+b=0,有一個解時,為有限集,所以a,b滿足條件是:a≠0,b∈R;滿足條件a=0,b=0時,方程有無數(shù)組解,方程的解集是無限集;滿足條件

a=0,b≠0

時,方程無解,方程的解集是空集.故為:a≠0,b∈R;a=0,b=0;

a=0,b≠0.16.已知二項分布ξ~B(4,12),則該分布列的方差Dξ值為______.答案:∵二項分布ξ~B(4,12),∴該分布列的方差Dξ=npq=4×12×(1-12)=1故為:117.請寫出所給三視圖表示的簡單組合體由哪些幾何體組成.______.答案:由已知中的三視圖我們可以判斷出該幾何體是由一個底面面積相等的圓錐和圓柱組合而成故為:圓柱體,圓錐體18.若A是圓x2+y2=16上的一個動點,過點A向y軸作垂線,垂足為B,則線段AB中點C的軌跡方程為()

A.x2+2y2=16

B.x2+4y2=16

C.2x2+y2=16

D.4x2+y2=16答案:D19.參數(shù)方程(0<θ<2π)表示()

A.雙曲線的一支,這支過點(1,)

B.拋物線的一部分,這部分過(1,)

C.雙曲線的一支,這支過點(-1,)

D.拋物線的一部分,這部分過(-1,)答案:B20.定義xn+1yn+1=1011xnyn為向量OPn=(xn,yn)到向量OPn+1=(xn+1,yn+1)的一個矩陣變換,其中O是坐標原點,n∈N*.已知OP1=(2,0),則OP2011的坐標為______.答案:由題意,xn+1=xnyn+1=xn+yn∴向量的橫坐標不變,縱坐標構(gòu)成以0為首項,2為公差的等差數(shù)列∴OP2011的坐標為(2,4020)故為:(2,4020)21.語句|x|≤3或|x|>5的否定是()

A.|x|≥3或|x|<5

B.|x|>3或|x|≤5

C.|x|≥3且|x|<5

D.|x|>3且|x|≤5答案:D22.下列各圖中,可表示函數(shù)y=f(x)的圖象的只可能是()A.

B.

C.

D.

答案:根據(jù)函數(shù)的定義知:自變量取唯一值時,因變量(函數(shù))有且只有唯一值與其相對應(yīng).∴從圖象上看,任意一條與x軸垂直的直線與函數(shù)圖象的交點最多只能有一個交點.從而排除A,B,C,故選D.23.已知A、B、C三點共線,A分的比為λ=-,A,B的縱坐標分別為2,5,則點C的縱坐標為()

A.-10

B.6

C.8

D.10答案:D24.把函數(shù)y=sin(x-)-2的圖象經(jīng)過按平移得到y(tǒng)=sinx的圖象,則=(

A.

B.

C.

D.答案:A25.平面向量與的夾角為60°,=(2,0),||=1,則|+2|()

A.

B.2

C.4

D.12答案:B26.已知雙曲線x2-y23=1,過P(2,1)點作一直線交雙曲線于A、B兩點,并使P為AB的中點,則直線AB的斜率為______.答案:設(shè)A(x1,y1)、B(x2,y2),代入雙曲線方程x2-y23=1相減得直線AB的斜率kAB=y1-y2x1-x2=3(x1+x2)y1+y2=3×x1+x22y1+y22=3×21=6.故為:627.若a2+b2=c2,求證:a,b,c不可能都是奇數(shù).答案:證明:假設(shè)a,b,c都是奇數(shù),則a2,b2,c2都是奇數(shù),得a2+b2為偶數(shù),而c2為奇數(shù),即a2+b2≠c2,這與a2+b2=c2相矛盾,所以假設(shè)不成立,故原命題成立.28.數(shù)據(jù):1,1,3,3的眾數(shù)和中位數(shù)分別是()

A.1或3,2

B.3,2

C.1或3,1或3

D.3,3答案:A29.復數(shù)(12+32i)3i的值為______.答案:(12+32i)3i=(cosπ3+isinπ3)3cosπ2+isinπ2=cosπ+isinπcosπ2+

isinπ2=cosπ2+isinπ2=i,故為:i.30.一牧場有10頭牛,因誤食含有病毒的飼料而被感染,已知該病的發(fā)病率為0.02.設(shè)發(fā)病的牛的頭數(shù)為ξ,則Dξ=______;.答案:∵由題意知該病的發(fā)病率為0.02,且每次實驗結(jié)果都是相互獨立的,∴ξ~B(10,0.02),∴由二項分布的方差公式得到Dξ=10×0.02×0.98=0.196.故為:0.19631.已知D是△ABC所在平面內(nèi)一點,,則()

A.

B.

C.=

D.答案:A32.如圖所示,面積為S的平面凸四邊形的第i條邊的邊長記為ai(i=1,2,3,4),此四邊形內(nèi)任一點P到第i條邊的距離記為hi(i=1,2,3,4),若a11=a22=a33=a44=k,則4

i=1(ihi)=2Sk.類比以上性質(zhì),體積為V的三棱錐的第i個面的面積記為Si(i=1,2,3,4),此三棱錐內(nèi)任一點Q到第i個面的距離記為Hi(i=1,2,3,4),若S11=S22=S33=S44=K,則4

i=1(iHi)=()A.4VKB.3VKC.2VKD.VK答案:根據(jù)三棱錐的體積公式V=13Sh得:13S1H1+13S2H2+13S3H3+13S4H4=V,即S1H1+2S2H2+3S3H3+4S4H4=3V,∴H1+2H2+3H3+4H4=3VK,即4i=1(iHi)=3VK.故選B.33.如圖,AB是半圓O的直徑,C、D是半圓上的兩點,半圓O的切線PC交AB的延長線于點P,∠PCB=25°,則∠ADC為()

A.105°

B.115°

C.120°

D.125°

答案:B34.設(shè)a,b是不共線的兩個向量,已知=2+m,=+,=-2.若A,B,D三點共線,則m的值為()

A.1

B.2

C.-2

D.-1答案:D35.已知命題p:所有有理數(shù)都是實數(shù),命題q:正數(shù)的對數(shù)都是負數(shù),則下列命題中為真命題的是()A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)答案:不難判斷命題p為真命題,命題q為假命題,從而?p為假命題,?q為真命題,所以A、B、C均為假命題,故選D.36.已知函數(shù)f(x)=2-x,x≤112+log2x,x>1,則滿足f(x)≥1的x的取值范圍為______.答案:當x≤1時,2-x≥1,解得-x≥0,即x≤0,所以x≤0;當x>1時,12+log2x≥1,解得x≥2,所以x≥2.所以滿足f(x)≥1的x的取值范圍為(-∞,0]∪[2,+∞).故為:(-∞,0]∪[2,+∞).37.已知拋物線y=14x2,則過其焦點垂直于其對稱軸的直線方程為______.答案:拋物線y=14x2的標準方程為x2=4y的焦點F(0,1),對稱軸為y軸所以拋物線y=14x2,則過其焦點垂直于其對稱軸的直線方程為y=1故為y=1.38.求證:答案:證明見解析解析:證:∴39.用A、B、C三類不同的元件連接成兩個系統(tǒng)N1、N2當元件A、B、C都正常工作時,系統(tǒng)N1正常工作,當元件A正常工作且元件B、C至少有一個正常工作時,系統(tǒng)N2正常工作。已知元件A、B、C正常工作的概率依次為0.80,0.90,0.90,分別求系統(tǒng)N1、N2正常工作的概率.

答案:0.792解析:解:分別記三個元件A、B、C能正常工作為事件A、B、C,由題意,這三個事件相互獨立,系統(tǒng)N1正常工作的概率為P(A·B·C)=P(A)·P(B)·P(C)=0.8′0.9′0.9=0.648系統(tǒng)N2中,記事件D為B、C至少有一個正常工作,則P(D)=1–P()="1–"P()·P()=1–(1–0.9)′(1–0.9)=0.99系統(tǒng)N2正常工作的概率為P(A·D)=P(A)·P(D)=0.8′0.99=0.792。40.離心率e=23,短軸長為85的橢圓標準方程為______.答案:離心率e=23,短軸長為85,所以ca=23;b=45又a2=b2+c2解得a2=144,b2=80所以橢圓標準方程為x2144+y280=1或y2144+x280=1故為x2144+y280=1或y2144+x280=141.如圖,在等腰△ABC中,AC=AB,以AB為直徑的⊙O交BC于點E,過點E作⊙O的切線交AC于點D,交AB的延長線于點P.問:PD與AC是否互相垂直?請說明理由.答案:PD與AC互相垂直.理由如下:連接OE,則OE⊥PD;∵AC=AB,OE=OB,∴∠OEB=∠B=∠C,∴OE∥AC,∴PD與AC互相垂直.42.A、B、C、D、E五種不同的商品要在貨架上排成一排,其中A、B兩種商品必須排在一起,而C、D兩種商品不能排在一起,則不同的排法共有______種.答案:先把A、B進行排列,有A22種排法,再把A、B看成一個元素,和E進行排列,有A22種排法,最后再把C、D插入進去,有A23種排法,根據(jù)分步計數(shù)原理可得A22A22A23=24種排法.故為:2443.在120個零件中,一級品24個,二級品36個,三級品60個.用系統(tǒng)抽樣法從中抽取容量為20的樣本、則每個個體被抽取到的概率是()

A.

B.

C.

D.答案:D44.

008年北京成功舉辦了第29屆奧運會,中國取得了51金、21銀、28銅的驕人成績.下表為北京奧運會官方票務(wù)網(wǎng)站公布的幾種球類比賽的門票價格,某球迷賽前準備用12000元預定15張下表中球類比賽的門票:

比賽項目

票價(元/場)

籃球

1000

足球

800

乒乓球

500

若在準備資金允許的范圍內(nèi)和總票數(shù)不變的前提下,這個球迷想預定上表中三種球類門票,其中足球門票數(shù)與乒乓球門票數(shù)相同,且足球門票的費用不超過男籃門票的費用,則可以預訂男籃門票數(shù)為

A.2

B.3

C.4

D.5

答案:D45.已知a≠0,證明關(guān)于x的方程ax=b有且只有一個根.答案:證明:一方面,∵ax=b,且a≠0,方程兩邊同除以a得:x=ba,∴方程ax=b有一個根x=ba,另一方面,假設(shè)方程ax=b還有一個根x0且x0≠ba,則由此不等式兩邊同乘以a得ax0≠b,這與假設(shè)矛盾,故方程ax=b只有一個根.綜上所述,方程ax=b有且只有一個根.46.直線y=kx+1與圓x2+y2=4的位置關(guān)系是()

A.相交

B.相切

C.相離

D.與k的取值有關(guān)答案:A47.已知點G是△ABC的重心,O是空間任一點,若OA+OB+OC=λOG,則實數(shù)λ=______.答案:由于G是三角形ABC的重心,則有GA+GB+GC=0,OA-OG+OB-OG+OC-OG=0故OA+OB+OC=3OG又由已知OA+OB+OC=λOG故可得λ=3故為:348.如圖所示,O點在△ABC內(nèi)部,D、E分別是AC,BC邊的中點,且有OA+2OB+3OC=O,則△AEC的面積與△AOC的面積的比為()

A.2

B.

C.3

D.

答案:B49.命題“所有能被2整除的數(shù)都是偶數(shù)”的否定

是()

A.所有不能被2整除的整數(shù)都是偶數(shù)

B.所有能被2整除的整數(shù)都不是偶數(shù)

C.存在一個不能被2整除的整數(shù)是偶數(shù)

D.存在一個能被2整除的整數(shù)不是偶數(shù)答案:D50.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a、b、c三個向量共面,則實數(shù)λ等于

A.

B.

C.

D.答案:D第3卷一.綜合題(共50題)1.用0,1,2,3組成沒有重復數(shù)字的四位數(shù),其中奇數(shù)有()

A.8個

B.10個

C.18個

D.24個答案:A2.乒乓球單打比賽在甲、乙兩名運動員間進行,比賽采用7局4勝制(即先勝4局者獲勝,比賽結(jié)束),假設(shè)兩人在每一局比賽中獲勝的可能性相同,那么甲以4比2獲勝的概率為()

A.

B.

C.

D.答案:D3.若圓錐的側(cè)面展開圖是弧長為2πcm,半徑為2cm的扇形,則該圓錐的體積為______cm3.答案:∵圓錐的側(cè)面展開圖的弧長為2πcm,半徑為2cm,故圓錐的底面周長為2πcm,母線長為2cm則圓錐的底面半徑為1,高為1則圓錐的體積V=13?π?12?1=π3.故為:π3.4.右圖程序運行后輸出的結(jié)果為()

A.3456

B.4567

C.5678

D.6789

答案:A5.過點(-1,3)且垂直于直線x-2y+3=0的直線方程為(

A.2x+y-1=0

B.2x+y-5=0

C.x+2y-5=0

D.x-2y+7=0答案:A6.如果關(guān)于x的不等式組有解,那么實數(shù)a的取值范圍(

A.(-∞,-3)∪(1,+∞)

B.(-∞,-1)∪(3,+∞)

C.(-1,3)

D.(-3,1)答案:C7.方程x(x2+y2-1)=0和x2-(x2+y2-1)2=0表示的圖形是()

A.都是兩個點

B.一條直線和一個圓

C.前者為兩個點,后者是一條直線和一個圓

D.前者是一條直線和一個圓,后者是兩個圓答案:D8.如圖,從圓O外一點P引圓O的切線PA和割線PBC,已知PA=22,PC=4,圓心O到BC的距離為3,則圓O的半徑為______.答案:∵PA為圓的切線,PBC為圓的割線,由線割線定理得:PA2=PB?PC又∵PA=22,PC=4,∴PB=2,BC=2又∵圓心O到BC的距離為3,∴R=2故為:29.數(shù)集{1,x,2x}中的元素x應(yīng)滿足的條件是______.答案:根據(jù)集合中元素的互異性可得1≠x,x≠2x,1≠2x∴x≠1且x≠12且x≠0.故為:x≠1且x≠12且x≠0.10.從甲、乙、丙、丁四人中任選兩名代表,甲被選中的概率為

______.答案:由題意:甲、乙、丙、丁四人中任選兩名代表,共有六種情況:甲和乙、甲和丙、甲和丁、乙和丙、乙和丁、丙和丁,因每種情況出現(xiàn)的可能性相等,所以甲被選中的概率為12.故為:12.11.如果直線l1,l2的斜率分別為二次方程x2-4x+1=0的兩個根,那么l1與l2的夾角為()

A.

B.

C.

D.答案:A12.如圖是用來求2+32+43+54+…+101100的計算程序,請補充完整:______.

答案:2+32+43+54+…+101100=(1+1)+(1+12)+(1+13)+…+(1+1100)故循環(huán)體中應(yīng)是S=S+(1+1i)故為:S=S+(1+1i)13.在平面直角坐標中,h為坐標原點,設(shè)向量OA=a,OB=b,其中a=(3,1),b=(1,3),若OC=λa+μb,且0≤λ≤μ≤1,C點所有可能的位置區(qū)域用陰影表示正確的是()A.

B.

C.

D.

答案:∵向量OA=a,OB=b,a=(3,1),b=(1,3),OC=λa+μb,∴OC=(3λ,λ)+(μ,3μ)=(3λ+μ,λ+3μ),∵0≤λ≤μ≤1,∴0≤3λ+μ≤4,0≤λ+3μ≤4,且3λ+μ≤λ+3μ.故選A.14.向量化簡后等于()

A.

B.

C.

D.答案:C15.如圖,從圓O外一點A引切線AD和割線ABC,AB=3,BC=2,則切線AD的長為______.答案:由切割線定理可得AD2=AB?AC=3×5,∴AD=15.故為15.16.集合{0,1}的子集有()個.A.1個B.2個C.3個D.4個答案:根據(jù)題意,集合{0,1}的子集有{0}、{1}、{0,1}、?,共4個,故選D.17.下列四個散點圖中,使用線性回歸模型擬合效果最好的是()

A.

B.

C.

D.

答案:D18.集合M={(x,y)|xy≤0,x,y∈R}的意義是()A.第二象限內(nèi)的點集B.第四象限內(nèi)的點集C.第二、四象限內(nèi)的點集D.不在第一、三象限內(nèi)的點的集合答案:∵xy≤0,∴xy<0或xy=0當xy<0時,則有x<0y>0或x>0y<0,點(x,y)在二、四象限,當xy=0時,則有x=0或y=0,點(x,y)在坐標軸上,故選D.19.從某校隨機抽取了100名學生,將他們的體重(單位:kg)數(shù)據(jù)繪制成頻率分布直方圖(如圖),由圖中數(shù)據(jù)可知m=______,所抽取的學生中體重在45~50kg的人數(shù)是______.答案:由頻率分步直方圖知,(0.02+m+0.06+0.02)×5=1,∴m=0.1,∴所抽取的體重在45~50kg的人數(shù)是0.1×5×100=50人,故為:0.1;5020.______稱為向量的長度(或稱為模),記作

______,______稱為零向量,記作

______,______稱為單位向量.答案:向量AB所在線段AB的長度,即向量AB的大小,稱為向量AB的長度(或成為模),記作|AB|;長度為零的向量稱為零向量,記作0;長度等于1個單位的向量稱為單位向量.故為:向量AB所在線段AB的長度,即向量AB的大小,|AB|;長度為零的向量,0;長度等于1個單位的向量.21.3i(1+i)2的虛部等于______.答案:3i(1+i)2=2,所以其虛部等于0,故為022.下列圖形中不一定是平面圖形的是()

A.三角形

B.四邊相等的四邊形

C.梯形

D.平行四邊形答案:B23.在極坐標系中,曲線ρ=2cosθ所表示圖形的面積為______.答案:將原極坐標方程為p=2cosθ,化成:p2=2ρcosθ,其直角坐標方程為:∴x2+y2=2x,是一個半徑為1的圓,其面積為π.故填:π.24.回歸直線方程必定過點()A.(0,0)B.(.x,0)C.(0,.y)D.(.x,.y)答案:∵線性回歸方程一定過這組數(shù)據(jù)的樣本中心點,∴線性回歸方程y=bx+a表示的直線必經(jīng)過(.x,.y).故選D.25.已知平面上的向量PA、PB滿足|PA|2+|PB|2=4,|AB|=2,設(shè)向量PC=2PA+PB,則|PC|的最小值是

______.答案:|PA|2+|PB|2=4,|AB|=2∴|PA|2+|PB|2=|AB|2∴PA?PB=0∴PC2=4PA2+4PA?PB+PB2=3PA2+4≥4∴|PC|≥2故為2.26.正方形ABCD的邊長為1,=,=,則|+|=(

A.0

B.2

C.

D.2答案:C27.設(shè)函數(shù)f(x)=(2a-1)x+b是R上的減函數(shù),則a的范圍為______.答案:∵f(x)=(2a-1)x+b是R上的減函數(shù),∴2a-1<0,解得a<12.故為:a<12.28.某地區(qū)居民生活用電分為高峰和低谷兩個時間段進行分時計價.該地區(qū)的電網(wǎng)銷售電價表如圖:高峰時間段用電價格表低谷時間段用電價格表高峰月用電量

(單位:千瓦時)高峰電價(單位:元/千瓦時)低谷月用電量

(單位:千瓦時)低谷電價(單位:

元/千瓦時)50及以下的部分0.56850及以下的部分0.288超過50至200的部分0.598超過50至200的部分0.318超過200的部分0.668超過200的部分0.388若某家庭5月份的高峰時間段用電量為200千瓦時,低谷時間段用電量為100千瓦時,則按這種計費方式該家庭本月應(yīng)付的電費為______元(用數(shù)字作答)答案:高峰時間段用電的電費為50×0.568+150×0.598=28.4+89.7=118.1(元),低谷時間段用電的電費為50×0.288+50×0.318=14.4+15.9=30.3(元),本月的總電費為118.1+30.3=148.4(元),故為:148.4.29.拋物線y2=4x,O為坐標原點,A,B為拋物線上兩個動點,且OA⊥OB,當直線AB的傾斜角為45°時,△AOB的面積為______.答案:設(shè)直線AB的方程為y=x-m,代入拋物線聯(lián)立得x2-(2m+4)x+m2=0,則x1+x2=2m+4,x1x2=m2,∴|x1-x2|=16m+16∵三角形的面積為S△AOB=|12my1-12my2|=12m(|x1-x2|)=12m16m+16;又因為OA⊥OB,設(shè)A(x1,2x1),B(x2,-2x2)所以2x1x1?-2x2x2=-1,求的m=4,代入上式可得S△AOB=12m16m+16=12×4×64+16=85故為:8530.設(shè)集合A={x|},則A∩B等于(

A.

B.

C.

D.答案:B31.點P(1,2,2)到原點的距離是()

A.9

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論