版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
知識(shí)點(diǎn)歸納一.向量的基本概念與基本運(yùn)算1、向量的概念:①向量:既有大小又有方向的量向量不能比較大小,但向量的??梢员容^大小.②零向量:長(zhǎng)度為0的向量,記為,其方向是任意的,與任意向量平行③單位向量:模為1個(gè)單位長(zhǎng)度的向量④平行向量(共線(xiàn)向量):方向相同或相反的非零向量⑤相等向量:長(zhǎng)度相等且方向相同的向量2、向量加法:設(shè),則+==(1);(2)向量加法滿(mǎn)足互換律與結(jié)合律;,但這時(shí)必須“首尾相連”.3、向量的減法:①相反向量:與長(zhǎng)度相等、方向相反的向量,叫做的相反向量②向量減法:向量加上的相反向量叫做與的差,③作圖法:可以表達(dá)為從的終點(diǎn)指向的終點(diǎn)的向量(、有共同起點(diǎn))4、實(shí)數(shù)與向量的積:實(shí)數(shù)λ與向量的積是一個(gè)向量,記作λ,它的長(zhǎng)度與方向規(guī)定如下:(Ⅰ);(Ⅱ)當(dāng)時(shí),λ的方向與的方向相同;當(dāng)時(shí),λ的方向與的方向相反;當(dāng)時(shí),,方向是任意的5、兩個(gè)向量共線(xiàn)定理:向量與非零向量共線(xiàn)有且只有一個(gè)實(shí)數(shù),使得=6、平面向量的基本定理:假如是一個(gè)平面內(nèi)的兩個(gè)不共線(xiàn)向量,那么對(duì)這一平面內(nèi)的任歷來(lái)量,有且只有一對(duì)實(shí)數(shù)使:,其中不共線(xiàn)的向量叫做表達(dá)這一平面內(nèi)所有向量的一組基底二.平面向量的坐標(biāo)表達(dá)1平面向量的坐標(biāo)表達(dá):平面內(nèi)的任歷來(lái)量可表達(dá)成,記作=(x,y)。2平面向量的坐標(biāo)運(yùn)算:若,則若,則若=(x,y),則=(x,y)若,則若,則若,則三.平面向量的數(shù)量積1兩個(gè)向量的數(shù)量積:已知兩個(gè)非零向量與,它們的夾角為,則·=︱︱·︱︱cos叫做與的數(shù)量積(或內(nèi)積)規(guī)定2向量的投影:︱︱cos=∈R,稱(chēng)為向量在方向上的投影投影的絕對(duì)值稱(chēng)為射影3數(shù)量積的幾何意義:·等于的長(zhǎng)度與在方向上的投影的乘積4向量的模與平方的關(guān)系:5乘法公式成立:;6平面向量數(shù)量積的運(yùn)算律:①互換律成立:②對(duì)實(shí)數(shù)的結(jié)合律成立:③分派律成立:特別注意:(1)結(jié)合律不成立:;(2)消去律不成立不能得到(3)=0不能得到=或=7兩個(gè)向量的數(shù)量積的坐標(biāo)運(yùn)算:已知兩個(gè)向量,則·=8向量的夾角:已知兩個(gè)非零向量與,作=,=,則∠AOB=()叫做向量與的夾角cos==當(dāng)且僅當(dāng)兩個(gè)非零向量與同方向時(shí),θ=00,當(dāng)且僅當(dāng)與反方向時(shí)θ=1800,同時(shí)與其它任何非零向量之間不談夾角這一問(wèn)題9垂直:假如與的夾角為900則稱(chēng)與垂直,記作⊥10兩個(gè)非零向量垂直的充要條件:⊥·=O平面向量數(shù)量積的性質(zhì)【練習(xí)題】1、給出下列命題:①兩個(gè)具有共同終點(diǎn)的向量,一定是共線(xiàn)向量;②若A,B,C,D是不共線(xiàn)的四點(diǎn),則=是四邊形ABCD為平行四邊形的充要條件;③若a與b同向,且|a|>|b|,則a>b;④λ,μ為實(shí)數(shù),若λa=μb,則a與b共線(xiàn).其中假命題的個(gè)數(shù)為()A.1?B.2C.3 ? ??D.42.設(shè)a0為單位向量,①若a為平面內(nèi)的某個(gè)向量,則a=|a|a0;②若a與a0平行,則a=|a|a0;③若a與a0平行且|a|=1,則a=a0.上述命題中,假命題的個(gè)數(shù)是()A.0? ?? B.1C.2 ?? D.33、設(shè)兩個(gè)非零向量a與b不共線(xiàn).(1)若=a+b,=2a+8b,=3(a-b).求證:A,B,D三點(diǎn)共線(xiàn);(2)試擬定實(shí)數(shù)k,使ka+b和a+kb共線(xiàn).4、已知兩點(diǎn)A(4,1),B(7,-3),則與同向的單位向量是()A.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,5),-\f(4,5))) ? ???B.eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(3,5),\f(4,5)))C.eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(4,5),\f(3,5)))? ? ?D.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,5),-\f(3,5)))5、在△ABC中,M為邊BC上任意一點(diǎn),N為AM中點(diǎn),=λ+μ,則λ+μ的值為()A.eq\f(1,2)?B.eq\f(1,3)C.eq\f(1,4)? D.16、已知兩個(gè)單位向量e1,e2的夾角為eq\f(π,3),若向量b1=e1-2e2,b2=3e1+4e2,則b1·b2=__(dá)______(dá).7、已知|a|=1,|b|=2,a與b的夾角為120°,a+b+c=0,則a與c的夾角為()A.150°? B.90°C.60°? ??D.30°8、已知a與b為兩個(gè)不共線(xiàn)的單位向量,k為實(shí)數(shù),若向量a+b與向量ka-b垂直,則k=_____(dá)___(dá).9、設(shè)向量a,b滿(mǎn)足|a|=1,|a-b|=eq\r(3),a·(a-b)=0,則|2a+b|=()A.2?B.2eq\r(3)C.4? ???D.4eq\r(3)10、已知向量a=(sinx,1),b=eq\b\lc\(\rc\)(\a\vs4\al\co1(cosx,-\f(1,2))).(1)當(dāng)a⊥b時(shí),求|a+b|的值;(2)求函數(shù)f(x)=a·(b-a)的最小正周期.11、已知f(x)=a·b,其中a=(2cosx,-eq\r(3)sin2x),b=(cosx,1)(x∈R).(1)求f(x)的周期和單調(diào)遞減區(qū)間;(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,f(A)=-1,a=eq\r(7),·=3,求邊長(zhǎng)b和c的值(b>c).AOMNPB12、如圖,在中,a,b,M為OB的中點(diǎn),N為AB的中點(diǎn),P為ON、AM的交點(diǎn),則等(AOMNPBAabBabCabDab13.△ABC中,AB邊的高為CD,若=a,=b,a·b=0,|a|=1,|b|=2,則=()A.eq\f(1,3)a-eq\f(1,3)b? B.eq\f(2,3)a-eq\f(2,3)bC.eq\f(3,5)a-eq\f(3,5)b ? ?D.eq\f(4,5)a-eq\f(4,5)b14.(2023·鄭州質(zhì)檢)若向量a=(x-1,2),b=(4,y)互相垂直,則9x+3y的最小值為()A.12?? ?? B.2eq\r(3)C.3eq\r(2) ??? D.615.(2023·山西省四校聯(lián)考)在△OAB(O為原點(diǎn))中,=(2cosα,2sinα),=(5cosβ,5sinβ),若·=-5,則△OAB的面積S=()A.eq\r(3)??? B.eq\f(\r(3),2)C.5eq\r(3) ??? D.eq\f(5\r(3),2)16、若a,b,c均為單位向量,且a·b=0,(a-c)·(b-c)≤0,則|a+b-c|的最大值為().A.eq\r(2)-1B.1C.eq\r(2)D.217、已知△ABC為等邊三角形,AB=2.設(shè)點(diǎn)P,Q滿(mǎn)足eq\o(AP,\s\up6(→))=λeq\o(AB,\s\up6(→)),eq\o(AQ,\s\up6(→))=(1-λ)eq\o(AC,\s\up6(→)),λ∈R,若eq\o(BQ,\s\up6(→))·eq\o(CP,\s\up6(→))=-eq\f(3,2),則λ=().A.eq\f(1,2)B.eq\f(1±\r(2),2)C.eq\f(1±\r(10),2)D.eq\f(-3±2\r(2),2)18如圖,已知平行四邊形ABCD的頂點(diǎn)A(0,0),B(4,1),C(6,8).(1)求頂點(diǎn)D的坐標(biāo);(2)若=2,F為AD的中點(diǎn),求AE與BF的交點(diǎn)I的坐標(biāo)..【課后練習(xí)題】1.下列等式:①0eq\a\vs4\al(-)a=-a;②-(-a)=a;③a+(-a)=0;④a+0eq\a\vs4\al(=)a;⑤a-b=a+(-b).對(duì)的的個(gè)數(shù)是()A.2?B.3C.4 ? ? D.5解析:選C2.(2023·福州模擬)若a+b+c=0,則a,b,c()A.都是非零向量時(shí)也也許無(wú)法構(gòu)成一個(gè)三角形B.一定不也許構(gòu)成三角形C.都是非零向量時(shí)能構(gòu)成三角形D.一定可構(gòu)成三角形解析:選A3.(2023·威海質(zhì)檢)已知平面上不共線(xiàn)的四點(diǎn)O,A,B,C.若+2=3,則eq\f(||,||)的值為()A.eq\f(1,2)?????B.eq\f(1,3)C.eq\f(1,4)? ? ?D.eq\f(1,6)解析:選A4.(2023·海淀期末)如圖,正方形ABCD中,點(diǎn)E是DC的中點(diǎn),點(diǎn)F是BC的一個(gè)三等分點(diǎn)(靠近B),那么=()A.eq\f(1,2)-eq\f(1,3) ??B.eq\f(1,4)+eq\f(1,2)C.eq\f(1,3)+eq\f(1,2) ???D.eq\f(1,2)-eq\f(2,3)解析:選D5.(2023·揭陽(yáng)模擬)已知點(diǎn)O為△ABC外接圓的圓心,且++=0,則△ABC的內(nèi)角A等于()A.30°???? B.60°C.90°?? ?D.120°解析:選A6.已知△ABC的三個(gè)頂點(diǎn)A、B、C及平面內(nèi)一點(diǎn)P滿(mǎn)足++=,則點(diǎn)P與△ABC的關(guān)系為()A.P在△ABC內(nèi)部B.P在△ABC外部C.P在AB邊所在直線(xiàn)上D.P是AC邊的一個(gè)三等分點(diǎn)解析:選D7.(2023·鄭州五校聯(lián)考)設(shè)點(diǎn)M是線(xiàn)段BC的中點(diǎn),點(diǎn)A在直線(xiàn)BC外,2=16,|+|=|-|,則||=__(dá)_____(dá)_.答案:28.(2023·大慶模擬)已知O為四邊形ABCD所在平面內(nèi)一點(diǎn),且向量,,,滿(mǎn)足等式+=+,則四邊形ABCD的形狀為_(kāi)____(dá)___(dá).答案:平行四邊形9.設(shè)向量e1,e2不共線(xiàn),=3(e1+e2),=e2-e1,=2e1+e2,給出下列結(jié)論:①A,B,C共線(xiàn);②A,B,D共線(xiàn);③B,C,D共線(xiàn);④A,C,D共線(xiàn),其中所有對(duì)的結(jié)論的序號(hào)為_(kāi)_______.答案:④10.設(shè)i,j分別是平面直角坐標(biāo)系Ox,Oy正方向上的單位向量,且=-2i+mj,=ni+j,=5i-j,若點(diǎn)A,B,C在同一條直線(xiàn)上,且m=2n,求實(shí)數(shù)m,n的值.eq\b\lc\{\rc\(\a\vs4\al\co1(m=6,,n=3,))或eq\b\lc\{\rc\(\a\vs4\al\co1(m=3,,n=\f(3,2).))7.已知向量a=eq\b\lc\(\rc\)(\a\vs4\al\co1(8,\f(x,2))),b=(x,1),其中x>0,若(a-2b)∥(2a+b),則x=__(dá)______.答案:48.P={a|a=(-1,1)+m(1,2),m∈R},Q={b|b=(1,-2)+n(2,3),n∈R}是兩個(gè)向量集合,則P∩Q等于___(dá)_____.答案:eq\b\lc\{\rc\}(\a\vs4\al\co1(-13,-23))9.已知向量=(1,-3),=(2,-1),=(k+1,k-2),若A,B,C三點(diǎn)能構(gòu)成三角形,則實(shí)數(shù)k應(yīng)滿(mǎn)足的條件是________.答案:k≠110.已知A(1,1),B(3,-1),C(a,b).(1)若A,B,C三點(diǎn)共線(xiàn),求a,b的關(guān)系式;(2)若=2,求點(diǎn)C的坐標(biāo).(5,-3).11.已知a=(1,0),b=(2,1).求:(1)|a+3b|;(2)當(dāng)k為什么實(shí)數(shù)時(shí),ka-b與a+3b平行,平行時(shí)它們是同向還是反向?方向相反.12.已知O為坐標(biāo)原點(diǎn),A(0,2),B(4,6),=t1+t2.(1)求點(diǎn)M在第二或第三象限的充要條件;(2)求證:當(dāng)t1=1時(shí),不管t2為什么實(shí)數(shù),A,B,M三點(diǎn)都共線(xiàn).8.已知向量a,b夾角為45°,且|a|=1,|2a-b|=eq\r(10),則|b|=________.答案:3eq\r(2)9.已知向量a=(2,-1),b=(x,-2),c=(3,y),若a∥b,(a+b)⊥(b-c),M(x,y),N(y,x),則向量的模為_(kāi)___(dá)___(dá)_.答案:8eq\r(2)10.已知a=(1,2),b=(-2,n),a與b的夾角是45°.(1)求b;(2)若c與b同向,且a與c-a垂直,求c.c=eq\f(1,2)b=
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 合并同類(lèi)項(xiàng)解元次方程說(shuō)課稿
- 電商項(xiàng)目規(guī)劃
- 美術(shù)館黃金屋租賃合同
- 休閑娛樂(lè)場(chǎng)所消火栓施工合同
- 會(huì)計(jì)師事務(wù)所出納人員聘用協(xié)議
- 老年大學(xué)教師勞動(dòng)合同范本
- 羽絨制品維修工聘用合同模板
- 農(nóng)藥采購(gòu)合同管理
- 電梯工程師招聘協(xié)議
- 房地產(chǎn)開(kāi)發(fā)招標(biāo)廉政責(zé)任
- JJG 707-2014扭矩扳子行業(yè)標(biāo)準(zhǔn)
- 2024醫(yī)保練兵理論知識(shí)考試題庫(kù)(濃縮500題)
- 三重一大培訓(xùn)課件
- 【增加多場(chǎng)景】員工使用公司車(chē)輛協(xié)議
- 單孔腹腔鏡手術(shù)
- 2024年度2024行政復(fù)議法培訓(xùn)
- 車(chē)輛托運(yùn)合同
- 2023土的分散性判別試驗(yàn)規(guī)程
- 牧原招聘測(cè)評(píng)試題
- 29.4常見(jiàn)腫瘤標(biāo)志物講解
- 大學(xué)生職業(yè)生涯規(guī)劃環(huán)境設(shè)計(jì) (模板)
評(píng)論
0/150
提交評(píng)論