2023屆廣東省中山市三校中考數(shù)學(xué)考前最后一卷含解析_第1頁
2023屆廣東省中山市三校中考數(shù)學(xué)考前最后一卷含解析_第2頁
2023屆廣東省中山市三校中考數(shù)學(xué)考前最后一卷含解析_第3頁
2023屆廣東省中山市三校中考數(shù)學(xué)考前最后一卷含解析_第4頁
2023屆廣東省中山市三校中考數(shù)學(xué)考前最后一卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2023年中考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.計(jì)算4×(–9)的結(jié)果等于A.32 B.–32 C.36 D.–362.已知:如圖,點(diǎn)P是正方形ABCD的對角線AC上的一個(gè)動(dòng)點(diǎn)(A、C除外),作PE⊥AB于點(diǎn)E,作PF⊥BC于點(diǎn)F,設(shè)正方形ABCD的邊長為x,矩形PEBF的周長為y,在下列圖象中,大致表示y與x之間的函數(shù)關(guān)系的是()A. B. C. D.3.下列二次函數(shù)中,圖象以直線x=2為對稱軸、且經(jīng)過點(diǎn)(0,1)的是()A.y=(x﹣2)2+1B.y=(x+2)2+1C.y=(x﹣2)2﹣3D.y=(x+2)2﹣34.如圖,△ABC內(nèi)接于半徑為5的⊙O,圓心O到弦BC的距離等于3,則∠A的正切值等于()A.B.C.D.5.如圖,OP平分∠AOB,PC⊥OA于C,點(diǎn)D是OB上的動(dòng)點(diǎn),若PC=6cm,則PD的長可以是()A.7cm B.4cm C.5cm D.3cm6.實(shí)數(shù)﹣5.22的絕對值是()A.5.22 B.﹣5.22 C.±5.22 D.7.把多項(xiàng)式ax3﹣2ax2+ax分解因式,結(jié)果正確的是()A.a(chǎn)x(x2﹣2x) B.a(chǎn)x2(x﹣2)C.a(chǎn)x(x+1)(x﹣1) D.a(chǎn)x(x﹣1)28.下列計(jì)算正確的是()A.a(chǎn)3﹣a2=a B.a(chǎn)2?a3=a6C.(a﹣b)2=a2﹣b2 D.(﹣a2)3=﹣a69.如圖,四邊形ABCD中,AB=CD,AD∥BC,以點(diǎn)B為圓心,BA為半徑的圓弧與BC交于點(diǎn)E,四邊形AECD是平行四邊形,AB=3,則的弧長為()A. B.π C. D.310.如圖,直線a∥b,直線c與直線a、b分別交于點(diǎn)A、點(diǎn)B,AC⊥AB于點(diǎn)A,交直線b于點(diǎn)C.如果∠1=34°,那么∠2的度數(shù)為()A.34° B.56° C.66° D.146°11.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長為半徑畫弧交AB于M、AC于N,再分別以M、N為圓心,大于12MN的長為半徑畫弧,兩弧交于點(diǎn)P,連接AP并延長交BC于D①AD是∠BAC的平分線;②∠ADC=60°;③點(diǎn)D在AB的中垂線上;④S△ACD:S△ACB=1:1.其中正確的有()A.只有①②③ B.只有①②④ C.只有①③④ D.①②③④12.在一個(gè)口袋中有4個(gè)完全相同的小球,把它們分別標(biāo)號為1,2,3,4,隨機(jī)地摸出一個(gè)小球然后放回,再隨機(jī)地摸出一個(gè)小球.則兩次摸出的小球的標(biāo)號的和等于6的概率為()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,在矩形ABCD中,點(diǎn)E是邊CD的中點(diǎn),將△ADE沿AE折疊后得到△AFE,且點(diǎn)F在矩形ABCD內(nèi)部.將AF延長交邊BC于點(diǎn)G.若,則(用含k的代數(shù)式表示).14.某校為了解本校九年級學(xué)生足球訓(xùn)練情況,隨機(jī)抽查該年級若干名學(xué)生進(jìn)行測試,然后把測試結(jié)果分為4個(gè)等級:A、B、C、D,并將統(tǒng)計(jì)結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.該年級共有700人,估計(jì)該年級足球測試成績?yōu)镈等的人數(shù)為_____人.15.有兩個(gè)一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四個(gè)結(jié)論中正確的是_____(填寫序號).①如果方程M有兩個(gè)不相等的實(shí)數(shù)根,那么方程N(yùn)也有兩個(gè)不相等的實(shí)數(shù)根;②如果方程M有兩根符號相同,那么方程N(yùn)的兩根符號也相同;③如果方程M和方程N(yùn)有一個(gè)相同的根,那么這個(gè)根必是x=1;④如果5是方程M的一個(gè)根,那么是方程N(yùn)的一個(gè)根.16.已知一組數(shù)據(jù)1,2,0,﹣1,x,1的平均數(shù)是1,則這組數(shù)據(jù)的中位數(shù)為_____.17.一個(gè)不透明的袋子中裝有6個(gè)球,其中2個(gè)紅球、4個(gè)黑球,這些球除顏色外無其他差別.現(xiàn)從袋子中隨機(jī)摸出一個(gè)球,則它是黑球的概率是______.18.因式分解=______.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在ABCD中,點(diǎn)E是AB邊的中點(diǎn),DE與CB的延長線交于點(diǎn)F(1)求證:△ADE≌△BFE;(2)若DF平分∠ADC,連接CE,試判斷CE和DF的位置關(guān)系,并說明理由.20.(6分)如圖,AB是⊙O的直徑,BC⊥AB,垂足為點(diǎn)B,連接CO并延長交⊙O于點(diǎn)D、E,連接AD并延長交BC于點(diǎn)F.(1)試判斷∠CBD與∠CEB是否相等,并證明你的結(jié)論;(2)求證:(3)若BC=AB,求tan∠CDF的值.21.(6分)如圖,拋物線y=ax2+2x+c與x軸交于A、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).(1)求該拋物線的解析式;(2)在拋物線的對稱軸上是否存在一點(diǎn)Q,使得以A、C、Q為頂點(diǎn)的三角形為直角三角形?若存在,試求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.22.(8分)如圖,在四邊形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于對角線AC,垂足是E,連接BE.(1)求證:四邊形ABCD是平行四邊形;(2)若AB=BE=2,sin∠ACD=,求四邊形ABCD的面積.23.(8分)已知關(guān)于x的一元二次方程.求證:方程有兩個(gè)不相等的實(shí)數(shù)根;如果方程的兩實(shí)根為,,且,求m的值.24.(10分)某校想了解學(xué)生每周的課外閱讀時(shí)間情況,隨機(jī)調(diào)查了部分學(xué)生,對學(xué)生每周的課外閱讀時(shí)間x(單位:小時(shí))進(jìn)行分組整理,并繪制了如圖所示的不完整的頻數(shù)分別直方圖和扇形統(tǒng)計(jì)圖:根據(jù)圖中提供的信息,解答下列問題:(1)補(bǔ)全頻數(shù)分布直方圖(2)求扇形統(tǒng)計(jì)圖中m的值和E組對應(yīng)的圓心角度數(shù)(3)請估計(jì)該校3000名學(xué)生中每周的課外閱讀時(shí)間不小于6小時(shí)的人數(shù)25.(10分)如圖①,在正方形ABCD中,△AEF的頂點(diǎn)E,F(xiàn)分別在BC,CD邊上,高AG與正方形的邊長相等,求∠EAF的度數(shù).如圖②,在Rt△ABD中,∠BAD=90°,AB=AD,點(diǎn)M,N是BD邊上的任意兩點(diǎn),且∠MAN=45°,將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADH位置,連接NH,試判斷MN2,ND2,DH2之間的數(shù)量關(guān)系,并說明理由.在圖①中,若EG=4,GF=6,求正方形ABCD的邊長.26.(12分)如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖像交于點(diǎn)A(1,m),與x軸交于點(diǎn)B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖像于點(diǎn)M,交AB于點(diǎn)N,連接BM.求m的值和反比例函數(shù)的表達(dá)式;直線y=n沿y軸方向平移,當(dāng)n為何值時(shí),△BMN的面積最大?27.(12分)如圖,一次函數(shù)y=k1x+b(k1≠0)與反比例函數(shù)的圖象交于點(diǎn)A(-1,2),B(m,-1).求一次函數(shù)與反比例函數(shù)的解析式;在x軸上是否存在點(diǎn)P(n,0),使△ABP為等腰三角形,請你直接寫出P點(diǎn)的坐標(biāo).

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、D【解析】

根據(jù)有理數(shù)的乘法法則進(jìn)行計(jì)算即可.【詳解】故選:D.【點(diǎn)睛】考查有理數(shù)的乘法法則:兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘.2、A【解析】由題意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周長等于2個(gè)正方形的邊長.則y=2x,為正比例函數(shù).故選A.3、C【解析】試題分析:根據(jù)頂點(diǎn)式,即A、C兩個(gè)選項(xiàng)的對稱軸都為x=2,再將(0,1)代入,符合的式子為C選項(xiàng)考點(diǎn):二次函數(shù)的頂點(diǎn)式、對稱軸點(diǎn)評:本題考查學(xué)生對二次函數(shù)頂點(diǎn)式的掌握,難度較小,二次函數(shù)的頂點(diǎn)式解析式為y=(x-a)2+h,頂點(diǎn)坐標(biāo)為4、C.【解析】試題分析:如答圖,過點(diǎn)O作OD⊥BC,垂足為D,連接OB,OC,∵OB=5,OD=3,∴根據(jù)勾股定理得BD=4.∵∠A=∠BOC,∴∠A=∠BOD.∴tanA=tan∠BOD=.故選D.考點(diǎn):1.垂徑定理;2.圓周角定理;3.勾股定理;4.銳角三角函數(shù)定義.5、A【解析】

過點(diǎn)P作PD⊥OB于D,根據(jù)角平分線上的點(diǎn)到角的兩邊距離相等可得PC=PD,再根據(jù)垂線段最短解答即可.【詳解】解:作PD⊥OB于D,∵OP平分∠AOB,PC⊥OA,PD⊥OA,∴PD=PC=6cm,則PD的最小值是6cm,故選A.【點(diǎn)睛】考查了角平分線上的點(diǎn)到角的兩邊距離相等的性質(zhì),垂線段最短的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.6、A【解析】

根據(jù)絕對值的性質(zhì)進(jìn)行解答即可.【詳解】實(shí)數(shù)﹣5.1的絕對值是5.1.故選A.【點(diǎn)睛】本題考查的是實(shí)數(shù)的性質(zhì),熟知絕對值的性質(zhì)是解答此題的關(guān)鍵.7、D【解析】

先提取公因式ax,再根據(jù)完全平方公式把x2﹣2x+1繼續(xù)分解即可.【詳解】原式=ax(x2﹣2x+1)=ax(x﹣1)2,故選D.【點(diǎn)睛】本題考查了因式分解,把一個(gè)多項(xiàng)式化成幾個(gè)整式的乘積的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分組分解法.因式分解必須分解到每個(gè)因式都不能再分解為止.8、D【解析】各項(xiàng)計(jì)算得到結(jié)果,即可作出判斷.解:A、原式不能合并,不符合題意;B、原式=a5,不符合題意;C、原式=a2﹣2ab+b2,不符合題意;D、原式=﹣a6,符合題意,故選D9、B【解析】∵四邊形AECD是平行四邊形,

∴AE=CD,

∵AB=BE=CD=3,

∴AB=BE=AE,

∴△ABE是等邊三角形,

∴∠B=60°,∴的弧長=.故選B.10、B【解析】分析:先根據(jù)平行線的性質(zhì)得出∠2+∠BAD=180°,再根據(jù)垂直的定義求出∠2的度數(shù).詳解:∵直線a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于點(diǎn)A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故選B.點(diǎn)睛:本題主要考查了平行線的性質(zhì),解題的關(guān)鍵是掌握兩直線平行,同旁內(nèi)角互補(bǔ),此題難度不大.11、D【解析】

①根據(jù)作圖過程可判定AD是∠BAC的角平分線;②利用角平分線的定義可推知∠CAD=10°,則由直角三角形的性質(zhì)來求∠ADC的度數(shù);③利用等角對等邊可以證得△ADB是等腰三角形,由等腰三角形的“三合一”性質(zhì)可以證明點(diǎn)D在AB的中垂線上;④利用10°角所對的直角邊是斜邊的一半,三角形的面積計(jì)算公式來求兩個(gè)三角形面積之比.【詳解】①根據(jù)作圖過程可知AD是∠BAC的角平分線,①正確;②如圖,在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°,又∵AD是∠BAC的平分線,∴∠1=∠2=12∠CAB=10°,∴∠1=90°-∠2=60°,即∠ADC=60°,②正確;③∵∠1=∠B=10°,∴AD=BD,∴點(diǎn)D在AB的中垂線上,③正確;④如圖,∵在直角△ACD中,∠2=10°,∴CD=12AD,∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC?CD=14AC?AD.∴S△ABC=12AC?BC=12AC?32AD=3【點(diǎn)睛】本題主要考查尺規(guī)作角平分線、角平分線的性質(zhì)定理、三角形的外角以及等腰三角形的性質(zhì),熟練掌握有關(guān)知識點(diǎn)是解答的關(guān)鍵.12、C【解析】列舉出所有情況,看兩次摸出的小球的標(biāo)號的和等于6的情況數(shù)占總情況數(shù)的多少即可.解:共16種情況,和為6的情況數(shù)有3種,所以概率為.故選C.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、。【解析】試題分析:如圖,連接EG,∵,∴設(shè),則。∵點(diǎn)E是邊CD的中點(diǎn),∴?!摺鰽DE沿AE折疊后得到△AFE,∴。易證△EFG≌△ECG(HL),∴。∴。∴在Rt△ABG中,由勾股定理得:,即?!?。∴(只取正值)。∴。14、1【解析】試題解析:∵總?cè)藬?shù)為14÷28%=50(人),∴該年級足球測試成績?yōu)镈等的人數(shù)為(人).故答案為:1.15、①②④【解析】試題解析:①在方程ax2+bx+c=0中△=b2-4ac,在方程cx2+bx+a=0中△=b2-4ac,

∴如果方程M有兩個(gè)不相等的實(shí)數(shù)根,那么方程N(yùn)也有兩個(gè)不相等的實(shí)數(shù)根,正確;

②∵和符號相同,和符號也相同,

∴如果方程M有兩根符號相同,那么方程N(yùn)的兩根符號也相同,正確;

③、M-N得:(a-c)x2+c-a=0,即(a-c)x2=a-c,

∵a≠c,

∴x2=1,解得:x=±1,錯(cuò)誤;④∵5是方程M的一個(gè)根,

∴25a+5b+c=0,

∴a+b+c=0,

∴是方程N(yùn)的一個(gè)根,正確.

故正確的是①②④.16、2【解析】

解:這組數(shù)據(jù)的平均數(shù)為2,

有(2+2+0-2+x+2)=2,

可求得x=2.

將這組數(shù)據(jù)從小到大重新排列后,觀察數(shù)據(jù)可知最中間的兩個(gè)數(shù)是2與2,

其平均數(shù)即中位數(shù)是(2+2)÷2=2.

故答案是:2.17、【解析】

根據(jù)概率的概念直接求得.【詳解】解:4÷6=.故答案為:.【點(diǎn)睛】本題用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.18、.【解析】解:==,故答案為:.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)見解析;(1)見解析.【解析】

(1)由全等三角形的判定定理AAS證得結(jié)論.(1)由(1)中全等三角形的對應(yīng)邊相等推知點(diǎn)E是邊DF的中點(diǎn),∠1=∠1;根據(jù)角平分線的性質(zhì)、等量代換以及等角對等邊證得DC=FC,則由等腰三角形的“三合一”的性質(zhì)推知CE⊥DF.【詳解】解:(1)證明:如圖,∵四邊形ABCD是平行四邊形,∴AD∥BC.又∵點(diǎn)F在CB的延長線上,∴AD∥CF.∴∠1=∠1.∵點(diǎn)E是AB邊的中點(diǎn),∴AE=BE,∵在△ADE與△BFE中,,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如圖,連接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即點(diǎn)E是DF的中點(diǎn),∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.20、(1)∠CBD與∠CEB相等,證明見解析;(2)證明見解析;(3)tan∠CDF=.【解析】試題分析:(1)由AB是⊙O的直徑,BC切⊙O于點(diǎn)B,可得∠ADB=∠ABC=90°,由此可得∠A+∠ABD=∠ABD+∠CBD=90°,從而可得∠A=∠CBD,結(jié)合∠A=∠CEB即可得到∠CBD=∠CEB;(2)由∠C=∠C,∠CEB=∠CBD,可得∠EBC=∠BDC,從而可得△EBC∽△BDC,再由相似三角形的性質(zhì)即可得到結(jié)論;(3)設(shè)AB=2x,結(jié)合BC=AB,AB是直徑,可得BC=3x,OB=OD=x,再結(jié)合∠ABC=90°,可得OC=x,CD=(-1)x;由AO=DO,可得∠CDF=∠A=∠DBF,從而可得△DCF∽△BCD,由此可得:==,這樣即可得到tan∠CDF=tan∠DBF==.試題解析:(1)∠CBD與∠CEB相等,理由如下:∵BC切⊙O于點(diǎn)B,∴∠CBD=∠BAD,∵∠BAD=∠CEB,∴∠CEB=∠CBD,(2)∵∠C=∠C,∠CEB=∠CBD,∴∠EBC=∠BDC,∴△EBC∽△BDC,∴;(3)設(shè)AB=2x,∵BC=AB,AB是直徑,∴BC=3x,OB=OD=x,∵∠ABC=90°,∴OC=x,∴CD=(-1)x,∵AO=DO,∴∠CDF=∠A=∠DBF,∴△DCF∽△BCD,∴==,∵tan∠DBF==,∴tan∠CDF=.點(diǎn)睛:解答本題第3問的要點(diǎn)是:(1)通過證∠CDF=∠A=∠DBF,把求tan∠CDF轉(zhuǎn)化為求tan∠DBF=;(2)通過證△DCF∽△BCD,得到.21、(1)y=﹣x2+2x+3;(2)見解析.【解析】

(1)將B(3,0),C(0,3)代入拋物線y=ax2+2x+c,可以求得拋物線的解析式;(2)拋物線的對稱軸為直線x=1,設(shè)點(diǎn)Q的坐標(biāo)為(1,t),利用勾股定理求出AC2、AQ2、CQ2,然后分AC為斜邊,AQ為斜邊,CQ時(shí)斜邊三種情況求解即可.【詳解】解:(1)∵拋物線y=ax2+2x+c與x軸交于A、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3),∴,得,∴該拋物線的解析式為y=﹣x2+2x+3;(2)在拋物線的對稱軸上存在一點(diǎn)Q,使得以A、C、Q為頂點(diǎn)的三角形為直角三角形,理由:∵拋物線y=﹣x2+2x+3=﹣(x﹣1)2+4,點(diǎn)B(3,0),點(diǎn)C(0,3),∴拋物線的對稱軸為直線x=1,∴點(diǎn)A的坐標(biāo)為(﹣1,0),設(shè)點(diǎn)Q的坐標(biāo)為(1,t),則AC2=OC2+OA2=32+12=10,AQ2=22+t2=4+t2,CQ2=12+(3﹣t)2=t2﹣6t+10,當(dāng)AC為斜邊時(shí),10=4+t2+t2﹣6t+10,解得,t1=1或t2=2,∴點(diǎn)Q的坐標(biāo)為(1,1)或(1,2),當(dāng)AQ為斜邊時(shí),4+t2=10+t2﹣6t+10,解得,t=,∴點(diǎn)Q的坐標(biāo)為(1,),當(dāng)CQ時(shí)斜邊時(shí),t2﹣6t+10=4+t2+10,解得,t=,∴點(diǎn)Q的坐標(biāo)為(1,﹣),由上可得,當(dāng)點(diǎn)Q的坐標(biāo)是(1,1)、(1,2)、(1,)或(1,﹣)時(shí),使得以A、C、Q為頂點(diǎn)的三角形為直角三角形.【點(diǎn)睛】本題考查了待定系數(shù)法求函數(shù)解析式,二次函數(shù)的圖像與性質(zhì),勾股定理及分類討論的數(shù)學(xué)思想,熟練掌握待定系數(shù)法是解(1)的關(guān)鍵,分三種情況討論是解(2)的關(guān)鍵.22、(1)證明見解析;(2)S平行四邊形ABCD=3.【解析】試題分析:(1)根據(jù)平行四邊形的性質(zhì)得出∠ABC+∠DCB=180°,推出∠ADC+∠BCD=180°,根據(jù)平行線的判定得出AD∥BC,根據(jù)平行四邊形的判定推出即可;(2)證明△ABE是等邊三角形,得出AE=AB=2,由直角三角形的性質(zhì)求出CE和DE,得出AC的長,即可求出四邊形ABCD的面積.試題解析:(1)∵AB∥CD,∴∠ABC+∠DCB=180°,∵∠ABC=∠ADC,∴∠ADC+∠BCD=180°,∴AD∥BC,∵AB∥CD,∴四邊形ABCD是平行四邊形;(2)∵sin∠ACD=,∴∠ACD=60°,∵四邊形ABCD是平行四邊形,∴AB∥CD,CD=AB=2,∴∠BAC=∠ACD=60°,∵AB=BE=2,∴△ABE是等邊三角形,∴AE=AB=2,∵DE⊥AC,∴∠CDE=90°﹣60°=30°,∴CE=CD=1,∴DE=CE=,AC=AE+CE=3,∴S平行四邊形ABCD=2S△ACD=AC?DE=3.23、(1)證明見解析(1)1或1【解析】試題分析:(1)要證明方程有兩個(gè)不相等的實(shí)數(shù)根,只要證明原來的一元二次方程的△的值大于0即可;(1)根據(jù)根與系數(shù)的關(guān)系可以得到關(guān)于m的方程,從而可以求得m的值.試題解析:(1)證明:∵,∴△=[﹣(m﹣3)]1﹣4×1×(﹣m)=m1﹣1m+9=(m﹣1)1+8>0,∴方程有兩個(gè)不相等的實(shí)數(shù)根;(1)∵,方程的兩實(shí)根為,,且,∴,,∴,∴(m﹣3)1﹣3×(﹣m)=7,解得,m1=1,m1=1,即m的值是1或1.24、略;m=40,1.4°;870人.【解析】試題分析:根據(jù)A組的人數(shù)和比例得出總?cè)藬?shù),然后得出D組的人數(shù),補(bǔ)全條形統(tǒng)計(jì)圖;根據(jù)C組的人數(shù)和總?cè)藬?shù)得出m的值,根據(jù)E組的人數(shù)求出E的百分比,然后計(jì)算圓心角的度數(shù);根據(jù)D組合E組的百分?jǐn)?shù)總和,估算出該校的每周的課外閱讀時(shí)間不小于6小時(shí)的人數(shù).試題解析:(1)補(bǔ)全頻數(shù)分布直方圖,如圖所示.(2)∵10÷10%=100∴40÷100=40%∴m=40∵4÷100=4%∴“E”組對應(yīng)的圓心角度數(shù)=4%×360°=1.4°(3)3000×(25%+4%)=870(人).答:估計(jì)該校學(xué)生中每周的課外閱讀時(shí)間不小于6小時(shí)的人數(shù)是870人.考點(diǎn):統(tǒng)計(jì)圖.25、(1)45°.(1)MN1=ND1+DH1.理由見解析;(3)11.【解析】

(1)先根據(jù)AG⊥EF得出△ABE和△AGE是直角三角形,再根據(jù)HL定理得出△ABE≌△AGE,故可得出∠BAE=∠GAE,同理可得出∠GAF=∠DAF,由此可得出結(jié)論;(1)由旋轉(zhuǎn)的性質(zhì)得出∠BAM=∠DAH,再根據(jù)SAS定理得出△AMN≌△AHN,故可得出MN=HN.再由∠BAD=90°,AB=AD可知∠ABD=∠ADB=45°,根據(jù)勾股定理即可得出結(jié)論;(3)設(shè)正方形ABCD的邊長為x,則CE=x-4,CF=x-2,再根據(jù)勾股定理即可得出x的值.【詳解】解:(1)在正方形ABCD中,∠B=∠D=90°,∵AG⊥EF,∴△ABE和△AGE是直角三角形.在Rt△ABE和Rt△AGE中,,∴△ABE≌△AGE(HL),∴∠BAE=∠GAE.同理,∠GAF=∠DAF.∴∠EAF=∠EAG+∠FAG=∠BAD=45°.(1)MN1=ND1+DH1.由旋轉(zhuǎn)可知:∠BAM=∠DAH,∵∠BAM+∠DAN=4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論