版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
章末綜合測(cè)評(píng)(二)推理與證明(時(shí)間120分鐘,滿分150分)一、選擇題(本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.?dāng)?shù)列2,5,11,20,x,47,…中的x等于()A.28 B.32C.33 D.27【解析】觀察知數(shù)列{an}滿足:a1=2,an+1-an=3n,故x=20+3×4=32.【答案】B2.(2023·汕頭高二檢測(cè))有一段“三段論”推理是這樣的:對(duì)于可導(dǎo)函數(shù)f(x),若f(x0)=0,則x=x0是函數(shù)f(x)的極值點(diǎn).因?yàn)閒(x)=x3在x=0處的導(dǎo)數(shù)值f′(0)=0,所以x=0是f(x)=x3的極值點(diǎn).以上推理中()A.大前提錯(cuò)誤 B.小前提錯(cuò)誤C.推理形式錯(cuò)誤 D.結(jié)論正確【解析】大前提是錯(cuò)誤的,若f′(x0)=0,x=x0不一定是函數(shù)f(x)的極值點(diǎn),故選A.【答案】A3.下列推理過(guò)程是類(lèi)比推理的是()A.人們通過(guò)大量試驗(yàn)得出擲硬幣出現(xiàn)正面的概率為eq\f(1,2)B.科學(xué)家通過(guò)研究老鷹的眼睛發(fā)明了電子鷹眼C.通過(guò)檢測(cè)溶液的pH值得出溶液的酸堿性D.?dāng)?shù)學(xué)中由周期函數(shù)的定義判斷某函數(shù)是否為周期函數(shù)【解析】A為歸納推理,C,D均為演繹推理,B為類(lèi)比推理.【答案】B4.下面幾種推理是合情推理的是()①由圓的性質(zhì)類(lèi)比出球的有關(guān)性質(zhì);②由直角三角形、等腰三角形、等邊三角形內(nèi)角和是180°歸納出所有三角形的內(nèi)角和都是180°;③由f(x)=sinx,滿足f(-x)=-f(x),x∈R,推出f(x)=sinx是奇函數(shù);④三角形內(nèi)角和是180°,四邊形內(nèi)角和是360°,五邊形內(nèi)角和是540°,由此得凸多邊形內(nèi)角和是(n-2)·180°.A.①② B.①③④C.①②④ D.②④【解析】合情推理分為類(lèi)比推理和歸納推理,①是類(lèi)比推理,②④是歸納推理,③是演繹推理.【答案】C5.設(shè)a=+,b=7,則a,b的大小關(guān)系是()A.a(chǎn)>b B.a(chǎn)=bC.a(chǎn)<b D.a(chǎn)>2(b+1)【解析】因?yàn)閍=+>2eq\r·=8>7,故a>b.【答案】A6.將平面向量的數(shù)量運(yùn)算與實(shí)數(shù)的乘法運(yùn)算相類(lèi)比,易得到下列結(jié)論:①a·b=b·a;②(a·b)·c=a·(b·c);③a·(b+c)=a·b+a·c;④|a·b|=|a||b|;⑤由a·b=a·c(a≠0),可得b=c.以上通過(guò)類(lèi)比得到的結(jié)論中,正確的個(gè)數(shù)是()A.2個(gè) B.3個(gè)C.4個(gè) D.5個(gè)【解析】①③正確;②④⑤錯(cuò)誤.【答案】A7.證明命題:“f(x)=ex+eq\f(1,ex)在(0,+∞)上是增函數(shù)”.現(xiàn)給出的證法如下:因?yàn)閒(x)=ex+eq\f(1,ex),所以f′(x)=ex-eq\f(1,ex).因?yàn)閤>0,所以ex>1,0<eq\f(1,ex)<1.所以ex-eq\f(1,ex)>0,即f′(x)>0.所以f(x)在(0,+∞)上是增函數(shù),使用的證明方法是()A.綜合法 B.分析法C.反證法 D.以上都不是【解析】從已知條件出發(fā)利用已知的定理證得結(jié)論,是綜合法.【答案】A8.已知c>1,a=eq\r(c+1)-eq\r(c),b=eq\r(c)-eq\r(c-1),則正確的結(jié)論是()【導(dǎo)學(xué)號(hào):19220232】A.a(chǎn)>b B.a(chǎn)<bC.a(chǎn)=b D.a(chǎn),b大小不定【解析】要比較a與b的大小,由于c>1,所以a>0,b>0,故只需比較eq\f(1,a)與eq\f(1,b)的大小即可,而eq\f(1,a)=eq\f(1,\r(c+1)-\r(c))=eq\r(c+1)+eq\r(c),eq\f(1,b)=eq\f(1,\r(c)-\r(c-1))=eq\r(c)+eq\r(c-1),顯然eq\f(1,a)>eq\f(1,b),從而必有a<b,故選B.【答案】B9.設(shè)n為正整數(shù),f(n)=1+eq\f(1,2)+eq\f(1,3)+…+eq\f(1,n),經(jīng)計(jì)算得f(2)=eq\f(3,2),f(4)>2,f(8)>eq\f(5,2),f(16)>3,f(32)>eq\f(7,2),觀察上述結(jié)果,可推測(cè)出一般結(jié)論()A.f(2n)>eq\f(2n+1,2) B.f(n2)≥eq\f(n+2,2)C.f(2n)≥eq\f(n+2,2) D.以上都不對(duì)【解析】f(2)=eq\f(3,2),f(4)=f(22)>eq\f(2+2,2),f(8)=f(23)>eq\f(3+2,2),f(16)=f(24)>eq\f(4+2,2),f(32)=f(25)>eq\f(5+2,2).由此可推知f(2n)≥eq\f(n+2,2).故選C.【答案】C10.定義A*B,B*C,C*D,D*A的運(yùn)算分別對(duì)應(yīng)下面圖1中的(1)(2)(3)(4),則圖中a,b對(duì)應(yīng)的運(yùn)算是()圖1A.B*D,A*D B.B*D,A*CC.B*C,A*D D.C*D,A*D【解析】根據(jù)(1)(2)(3)(4)可知A對(duì)應(yīng)橫線,B對(duì)應(yīng)矩形,C對(duì)應(yīng)豎線,D對(duì)應(yīng)橢圓.由此可知選B.【答案】B11.觀察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,則a10+b10=()A.28 B.76C.123 D.199【解析】從給出的式子特點(diǎn)觀察可推知,等式右端的值,從第三項(xiàng)開(kāi)始,后一個(gè)式子的右端值等于它前面兩個(gè)式子右端值的和,照此規(guī)律,則a10+b10=123.【答案】C12.在等差數(shù)列{an}中,若an>0,公差d>0,則有a4·a6>a3·a7,類(lèi)比上述性質(zhì),在等比數(shù)列{bn}中,若bn>0,公比q>1,則b4,b5,b7,b8的一個(gè)不等關(guān)系是()A.b4+b8>b5+b7 B.b4+b8<b5+b7C.b4+b7>b5+b8 D.b4+b7<b5+b8【解析】在等差數(shù)列{an}中,由于4+6=3+7時(shí),有a4·a6>a3·a7,所以在等比數(shù)列{bn}中,由于4+8=5+7,所以應(yīng)有b4+b8>b5+b7或b4+b8<b5+b7.因?yàn)閎4=b1q3,b5=b1q4,b7=b1q6,b8=b1q7,所以(b4+b8)-(b5+b7)=(b1q3+b1q7)-(b1q4+b1q6)=b1q6·(q-1)-b1q3(q-1)=(b1q6-b1q3)(q-1)=b1q3(q3-1)(q-1).因?yàn)閝>1,bn>0,所以b4+b8>b5+b7.【答案】A二、填空題(本大題共4小題,每小題5分,共20分.將答案填在題中的橫線上.)13.已知x,y∈R,且x+y>2,則x,y中至少有一個(gè)大于1,在用反證法證明時(shí)假設(shè)應(yīng)為_(kāi)_______.【解析】“至少有一個(gè)”的否定為“一個(gè)也沒(méi)有”,故假設(shè)應(yīng)為“x,y均不大于1”(或x≤1且y≤【答案】x,y均不大于1(或x≤1且y≤1)14.如圖2,第n個(gè)圖形是由正n+2邊形“擴(kuò)展”而來(lái)(n=1,2,3,…),則第n-2(n>2)個(gè)圖形中共有________個(gè)頂點(diǎn).圖2【解析】設(shè)第n個(gè)圖形中有an個(gè)頂點(diǎn),則a1=3+3×3,a2=4+4×4,…,an=(n+2)+(n+2)·(n+2),an-2=n2+n.【答案】n2+n15.設(shè)a>0,b>0,則下面兩式的大小關(guān)系為lg(1+eq\r(ab))________eq\f(1,2)[lg(1+a)+lg(1+b)].【解析】因?yàn)?1+eq\r(ab))2-(1+a)(1+b)=1+2eq\r(ab)+ab-1-a-b-ab=2eq\r(ab)-(a+b)=-(eq\r(a)-eq\r(b))2≤0,所以(1+eq\r(ab))2≤(1+a)(1+b),所以lg(1+eq\r(ab))≤eq\f(1,2)[lg(1+a)+lg(1+b)].【答案】≤16.(2023·杭州高二檢測(cè))對(duì)于命題“如果O是線段AB上一點(diǎn),則|eq\o(OB,\s\up15(→))|·eq\o(OA,\s\up6(→))+|eq\o(OA,\s\up6(→))|·eq\o(OB,\s\up15(→))=0”將它類(lèi)比到平面的情形是:若O是△ABC內(nèi)一點(diǎn),有S△OBC·eq\o(OA,\s\up6(→))+S△OCA·eq\o(OB,\s\up15(→))+S△OBA·eq\o(OC,\s\up6(→))=0,將它類(lèi)比到空間的情形應(yīng)為:若O是四面體ABCD內(nèi)一點(diǎn),則有_______________________________________________.【導(dǎo)學(xué)號(hào):19220233】【解析】根據(jù)類(lèi)比的特點(diǎn)和規(guī)律,所得結(jié)論形式上一致,又線段類(lèi)比平面,平面類(lèi)比到空間,又線段長(zhǎng)類(lèi)比為三角形面積,再類(lèi)比成四面體的體積,故可以類(lèi)比為VO-BCD·eq\o(OA,\s\up6(→))+VO-ACD·eq\o(OB,\s\up15(→))+VO-ABD·eq\o(OC,\s\up6(→))+VO-ABC·eq\o(OD,\s\up6(→))=0.【答案】VO-BCD·eq\o(OA,\s\up6(→))+VO-ACD·eq\o(OB,\s\up15(→))+VO-ABD·eq\o(OC,\s\up6(→))+VO-ABC·eq\o(OD,\s\up6(→))=0三、解答題(本大題共6小題,共70分.解答時(shí)應(yīng)寫(xiě)出必要的文字說(shuō)明、證明過(guò)程或演算步驟.)17.(本小題滿分10分)已知a,b,c成等差數(shù)列,求證:ab+ac,b2+ac,ac+bc也成等差數(shù)列.【證明】因?yàn)閍,b,c成等差數(shù)列,所以2b=a+c,所以(ab+ac)+(ac+bc)=b(a+c)+2ac=2(b2+ac所以ab+ac,b2+ac,ac+bc也成等差數(shù)列.18.(本小題滿分12分)在平面幾何中,對(duì)于Rt△ABC,∠C=90°,設(shè)AB=c,AC=b,BC=a,則(1)a2+b2=c2;(2)cos2A+cos2B(3)Rt△ABC的外接圓半徑r=eq\f(\r(a2+b2),2).把上面的結(jié)論類(lèi)比到空間寫(xiě)出類(lèi)似的結(jié)論,無(wú)需證明.【解】在空間選取三個(gè)面兩兩垂直的四面體作為直角三角形的類(lèi)比對(duì)象.(1)設(shè)三個(gè)兩兩垂直的側(cè)面的面積分別為S1,S2,S3,底面積為S,則Seq\o\al(2,1)+Seq\o\al(2,2)+Seq\o\al(2,3)=S2.(2)設(shè)三個(gè)兩兩垂直的側(cè)面與底面所成的角分別為α,β,γ,則cos2α+cos2β+cos2γ=1.(3)設(shè)三個(gè)兩兩垂直的側(cè)面形成的側(cè)棱長(zhǎng)分別為a,b,c,則這個(gè)四面體的外接球半徑R=eq\f(\r(a2+b2+c2),2).19.(本小題滿分12分)已知△ABC的三條邊分別為a,b,c,且a>b,求證:eq\f(\r(ab),1+\r(ab))<eq\f(a+b,1+a+b).【證明】依題意a>0,b>0,所以1+eq\r(ab)>0,1+a+b>0.所以要證eq\f(\r(ab),1+\r(ab))<eq\f(a+b,1+a+b),只需證eq\r(ab)(1+a+b)<(1+eq\r(ab))(a+b),只需證eq\r(ab)<a+b,因?yàn)閍>b,所以eq\r(ab)<2eq\r(ab)<a+b,所以eq\f(\r(ab),1+\r(ab))<eq\f(a+b,1+a+b).20.(本小題滿分12分)(2023·大同高二檢測(cè))在數(shù)列{an}中,a1=1,an+1=eq\f(2an,2+an),n∈N*,求a2,a3,a4,并猜想數(shù)列的通項(xiàng)公式,并給出證明.【解】數(shù)列{an}中,a1=1,a2=eq\f(2a1,2+a1)=eq\f(2,3),a3=eq\f(2a2,2+a2)=eq\f(1,2)=eq\f(2,4),a4=eq\f(2a3,2+a3)=eq\f(2,5),…,所以猜想{an}的通項(xiàng)公式an=eq\f(2,n+1)(n∈N*).此猜想正確.證明如下:因?yàn)閍1=1,an+1=eq\f(2an,2+an),所以eq\f(1,an+1)=eq\f(2+an,2an)=eq\f(1,an)+eq\f(1,2),即eq\f(1,an+1)-eq\f(1,an)=eq\f(1,2),所以數(shù)列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,an)))是以eq\f(1,a1)=1為首項(xiàng),公差為eq\f(1,2)的等差數(shù)列,所以eq\f(1,an)=1+(n-1)eq\f(1,2)=eq\f(n,2)+eq\f(1,2),即通項(xiàng)公式an=eq\f(2,n+1)(n∈N*).21.(本小題滿分12分)已知函數(shù)f(x)=x3-x2,x∈R.(1)若正數(shù)m,n滿足m·n>1,證明:f(m),f(n)至少有一個(gè)不小于零;(2)若a,b為不相等的正實(shí)數(shù)且滿足f(a)=f(b),求證:a+b<eq\f(4,3).【證明】(1)假設(shè)f(m)<0,f(n)<0,即m3-m2<0,n3-n2<0,∵m>0,n>0,∴m-1<0,n-1<0,∴0<m<1,0<n<1,∴mn<1,這與m·n>1矛盾,∴假設(shè)不成立,即f(m),f(n)至少有一個(gè)不小于零.(2)證明:由f(a)=f(b),得a3-a2=b3-b2,∴a3-b3=a2-b2,∴(a-b)(a2+ab+b2)=(a-b)(a+b),∵a≠b,∴a2+ab+b2=a+b,∴(a+b)2-(a+b)=ab<eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)))2,∴eq\f(3,4)(a+b)2-
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度個(gè)人創(chuàng)業(yè)貸款擔(dān)保合同模板3篇
- 2024年度大學(xué)真實(shí)就讀體驗(yàn)效果跟蹤監(jiān)督協(xié)議3篇
- 2024年房屋拆除及重建項(xiàng)目造價(jià)概算與監(jiān)理服務(wù)合同3篇
- 2024年度中小微企業(yè)科技創(chuàng)新合作協(xié)議3篇
- 2024年文化創(chuàng)意產(chǎn)業(yè)聘用合同規(guī)范文本3篇
- 2024印刷廠與印刷包裝企業(yè)年度印刷合作合同模板3篇
- 2024年太陽(yáng)能熱水器節(jié)能減排技術(shù)應(yīng)用合同3篇
- 2024年度旋挖樁基勞務(wù)分包及材料運(yùn)輸與儲(chǔ)存合同3篇
- 2024年度預(yù)算編制與執(zhí)行審計(jì)合同3篇
- 2024年度教育培訓(xùn)機(jī)構(gòu)課程買(mǎi)賣(mài)合同范本教育質(zhì)量3篇
- 2024-2025學(xué)年九年級(jí)化學(xué)人教版上冊(cè)檢測(cè)試卷(1-4單元)
- 服裝廠安全教育培訓(xùn)規(guī)章制度
- 車(chē)輛修理廠自查自糾整改方案及總結(jié)報(bào)告
- 湖北省八校2025屆高二生物第一學(xué)期期末質(zhì)量檢測(cè)模擬試題含解析
- 一例尿毒癥患者股骨頸骨折的臨床護(hù)理查房
- 期末測(cè)試卷(試題)-2024-2025學(xué)年人教PEP版(2024)英語(yǔ)三年級(jí)上冊(cè)
- 2023年小學(xué)二年級(jí)數(shù)學(xué)競(jìng)賽試題(后附答案)
- 七年級(jí)上冊(cè)道德與法治第1-4單元共4個(gè)單元復(fù)習(xí)教學(xué)設(shè)計(jì)
- 《數(shù)據(jù)可視化 》 課件全套 楊華 第1-9章 數(shù)據(jù)可視化概述- 可視化大屏
- GB/T 44146-2024基于InSAR技術(shù)的地殼形變監(jiān)測(cè)規(guī)范
- 出國(guó)柬埔寨勞務(wù)合同范本
評(píng)論
0/150
提交評(píng)論